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Abstract

We present the generic formulas to calculate the ratios of neutrino masses and the Majorana phases of CP violation from
the neutrino mass matrix with two independent vanishing entries in the flavor basis where the charged lepton mass matrix is
diagonal. An order-of-magnitude illustration is given for seven experimentally acceptable textures of the neutrino mass matrix,
and some analytical approximations are made for their phenomenological consequences at low energy scales.

 2002 Elsevier Science B.V.

1. The atmospheric and solar neutrino oscillations observed in the Super-Kamiokande experiment [1] have
provided robust evidence that neutrinos are massive and lepton flavors are mixed. A full description of the mass
spectrum and flavor mixing in the framework of three lepton families requires twelve real parameters: three
charged lepton masses (me,mµ,mτ ), three neutrino masses (m1,m2,m3), three flavor mixing angles (θx, θy, θz),
one Dirac-type CP-violating phase (δ) and two Majorana-type CP-violating phases (ρ and σ ). So far only the
masses of charged leptons have been accurately measured [2]. Although we have achieved some preliminary
knowledge on two neutrino mass-squared differences and three flavor mixing angles from current neutrino
oscillation experiments, much more effort is needed to determine these parameters precisely. The more challenging
task is to pin down the absolute neutrino mass scale and the CP-violating phases. Towards reaching these goals, a
number of new neutrino experiments have been proposed [3].

After sufficient information on neutrino masses and lepton flavor mixing parameters is experimentally
accumulated, a determination of the textures of lepton mass matrices should become possible. On the other
hand, the textures of charged lepton and neutrino mass matrices may finally be derived from a fundamental
theory of lepton mass generation, which is unfortunately unknown for the time being. It is therefore important
in phenomenology to investigate how the textures of lepton mass matrices can link up with the observables of
lepton flavor mixing.
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Recently Frampton, Glashow and Marfatia [4] have examined the possibility that a restricted class of lepton mass
matrices may suffice to describe current experimental data. They find seven acceptable textures of the neutrino mass
matrix with two independent vanishing entries in the flavor basis where the charged lepton mass matrix is diagonal.

In this Letter we carry out a further study of two-zero textures of the neutrino mass matrix. Our work is different
from Ref. [4] in several aspects: (a) we write out the generic constraint equations for the neutrino mass matrix
with two independent vanishing entries, from which the analytically exact expressions of neutrino mass ratios
can be derived; (b) the formulas to calculate the Majorana-type CP-violating phases are presented; (c) the relative
magnitudes of neutrino masses, the Majorana phases, the ratio of two neutrino mass-squared differences, and the
effective mass term of the neutrinoless double beta decay are estimated by taking typical inputs of the flavor mixing
angles and the Dirac-type CP-violating phase; and (d) an order-of-magnitude illustration is given for seven two-zero
textures of the neutrino mass matrix.

2. In the flavor basis where the charged lepton mass matrix is diagonal, the neutrino mass matrix can be written
as

(1)M = V

(
m1 0 0
0 m2 0
0 0 m3

)
V T,

where mi (for i = 1,2,3) denote the real and positive neutrino masses, and V is the lepton flavor mixing matrix
linking the neutrino mass eigenstates (ν1, ν2, ν3) to the neutrino flavor eigenstates (νe, νµ, ντ ) in the chosen basis.
A full description of V needs six real parameters: three mixing angles and three CP-violating phases. Note that
V can always be expressed as a product of the Dirac-type flavor mixing matrix U (consisting of three mixing
angles and one CP-violating phase) and a diagonal phase matrix P (consisting of two nontrivial Majorana phases):
V = UP . Then we may rewrite M in Eq. (1) as

(2)M = U

(
λ1 0 0
0 λ2 0
0 0 λ3

)
UT,

where two Majorana-type CP-violating phases are included into the complex neutrino mass eigenvalues λi , and the
relation |λi | = mi holds. Without loss of generality, we take

(3)λ1 = m1e
2iρ, λ2 = m2e

2iσ , λ3 = m3.

In the following we shall show that both the neutrino mass ratios (m1/m3 and m2/m3) and the Majorana phases
(ρ and σ ) can be determined, if two independent entries of M vanish.

As M is symmetric, it totally has six independent complex entries. If two of them vanish, i.e., Mab = Mαβ = 0,
we obtain the following constraint relations:

(4)
3∑

i=1

(UaiUbiλi) = 0,
3∑

i=1

(UαiUβiλi) = 0,

where each of the four subscripts runs over e, µ and τ , but (α,β) �= (a, b). Solving Eq. (4), we find

(5)
λ1

λ3
= Ua3Ub3Uα2Uβ2 − Ua2Ub2Uα3Uβ3

Ua2Ub2Uα1Uβ1 − Ua1Ub1Uα2Uβ2
,

and

(6)
λ2

λ3
= Ua1Ub1Uα3Uβ3 − Ua3Ub3Uα1Uβ1

Ua2Ub2Uα1Uβ1 − Ua1Ub1Uα2Uβ2
.
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One can observe that the left-hand sides of Eqs. (5) and (6) are associated with the Majorana-type CP-violating
phases, while the right-hand sides of Eqs. (5) and (6) are associated with the Dirac-type CP-violating phase hidden
in the elements of U . Therefore, two Majorana phases must depend upon the Dirac-type CP-violating phase. This
dependence results simply from the texture zeros of M that we have taken.

Comparing Eq. (5) or Eq. (6) with Eq. (3), we arrive at the expressions of two neutrino mass ratios as follows:

(7)
m1

m3
=
∣∣∣∣Ua3Ub3Uα2Uβ2 − Ua2Ub2Uα3Uβ3

Ua2Ub2Uα1Uβ1 − Ua1Ub1Uα2Uβ2

∣∣∣∣, m2

m3
=
∣∣∣∣Ua1Ub1Uα3Uβ3 − Ua3Ub3Uα1Uβ1

Ua2Ub2Uα1Uβ1 − Ua1Ub1Uα2Uβ2

∣∣∣∣.
Furthermore, the expressions of two Majorana phases are found to be

ρ = 1
2

arg
[
Ua3Ub3Uα2Uβ2 − Ua2Ub2Uα3Uβ3

Ua2Ub2Uα1Uβ1 − Ua1Ub1Uα2Uβ2

]
,

(8)σ = 1
2

arg
[
Ua1Ub1Uα3Uβ3 − Ua3Ub3Uα1Uβ1

Ua2Ub2Uα1Uβ1 − Ua1Ub1Uα2Uβ2

]
.

With the inputs of three flavor mixing angles and the Dirac-type CP-violating phase, we are able to predict the
relative magnitudes of three neutrino masses and the values of two Majorana phases. This predictability allows us
to examine whether the chosen texture of M with two independent vanishing entries is empirically acceptable or
not.

Indeed, the prediction for m1/m2 and m2/m3 in a given pattern of M is required to be compatible with the
hierarchy of solar and atmospheric neutrino mass-squared differences:

(9)Rν ≡
∣∣∣∣m2

2 − m2
1

m2
3 − m2

2

∣∣∣∣≈ �m2
sun

�m2
atm

� 1.

The magnitude of Rν depends upon the explicit solution to the solar neutrino problem. For the large-angle
Mikheyev–Smirnov–Wolfenstein (MSW) oscillation of solar neutrinos [5], which is most favored by the present
Super-Kamiokande [1] and SNO [6] data, we have Rν ∼ O(10−2). Because of |Ve3|2 = |Ue3|2 � 1 [7], the
atmospheric neutrino oscillation is approximately decoupled from the solar neutrino oscillation.

With the help of Eqs. (7) and (8), one can calculate the effective mass term of the neutrinoless double beta decay,
whose magnitude amounts to |Mee|. The explicit expression of |Mee| reads as follows:

(10)|Mee| = m3

∣∣∣∣m1

m3
U2

e1e
2iρ + m2

m3
U2

e2e
2iσ + U2

e3

∣∣∣∣.
The Heidelberg–Moscow Collaboration has reported |Mee| < 0.34 eV at the 90% confidence level [8]. Useful
information on the absolute mass scale of neutrinos could in principle be extracted from a more accurate
measurement of |Mee| in the future.

3. As already pointed out in Ref. [4], there are totally fifteen logical possibilities for the texture of M with two
independent vanishing entries, but only seven of them are in accord with current experimental data and empirical
hypotheses. The seven acceptable patterns of M are listed in Table 1, where all the non-vanishing entries are
symbolized by ×’s. To work out the explicit expressions of λ1/λ3 and λ2/λ3 in each case, we adopt the following
parametrization for the Dirac-type flavor mixing matrix U :

(11)U =
(

cxcz sxcz sz
−cxsysz − sxcye

−iδ −sxsysz + cxcye
−iδ sycz

−cxcysz + sxsye
−iδ −sxcysz − cxsye

−iδ cycz

)
,

where sx ≡ sin θx , cx ≡ cosθx , and so on. The advantage of this phase choice is that the Dirac-type CP-violating
phase δ does not appear in the effective mass term of the neutrinoless double beta decay [9]. In other words, the
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Table 1
Seven patterns of the neutrino mass matrix M with two independent vanishing entries, which are in accord with current experimental data and
empirical hypotheses. An order-of-magnitude illustration of M is given by using typical inputs of θx , θy , θz and δ, as explained in the text

Pattern Texture of M Order of magnitude

A1


 0 0 ×

0 × ×
× × ×


 ∼ m3


 0 0 0.1

0 0.4 0.5
0.1 0.5 0.6




A2


 0 × 0

× × ×
0 × ×


 ∼ m3


 0 0.1 0

0.1 0.4 0.5
0 0.5 0.6




B1


× × 0

× 0 ×
0 × ×


 ∼ m3


 0.7 0.06 0

0.06 0 0.8
0 0.8 0.3




B2


× 0 ×

0 × ×
× × 0


 ∼ m1


 1.0 0 0.05

0 0.3 0.8
0.05 0.8 0




B3


× 0 ×

0 0 ×
× × ×


 ∼ m3


 0.7 0 0.07

0 0 0.8
0.07 0.8 0.3




B4


× × 0

× × ×
0 × 0


 ∼ m1


 1.0 0.04 0

0.04 0.3 0.8
0 0.8 0




C


× × ×

× 0 ×
× × 0


 ∼ m3


 1.0 0.06 0.2

0.06 0 1.0
0.2 1.0 0




latter depends only upon the Majorana phases ρ and σ in our phase convention. Without loss of generality, three
mixing angles (θx, θy, θz) can all be arranged to lie in the first quadrant. Three CP-violating phases (δ,ρ,σ ) may
take arbitrary values from −π to +π (or from 0 to 2π ).

Now let us calculate λ1/λ3 and λ2/λ3 for each pattern of M with the help of Eqs. (5), (6) and (11). The
instructive results for m1/m3, m2/m3, ρ, σ , Rν and |Mee| may then be obtained.

Pattern A1. Mee = Meµ = 0 (i.e., a = b = e; α = e and β = µ). We obtain

(12)
λ1

λ3
= + sz

c2
z

(
sxsy

cxcy
eiδ − sz

)
,

λ2

λ3
= − sz

c2
z

(
cxsy

sxcy
eiδ + sz

)
.

As current experimental data favor sin2 2θx ∼ O(1), sin2 2θy ≈ 1 and sin2 2θz � 0.1 [1,6,7], one may make an
analytical approximation for the exact result obtained above. By use of Eqs. (7)–(10), we arrive explicitly at

m1

m3
≈ tx tysz,

m2

m3
≈ ty

tx
sz, ρ ≈ δ

2
, σ ≈ δ

2
± π

2
,

(13)Rν ≈ t2
y

t2
x

∣∣1 − t4
x

∣∣s2
z , |Mee| = 0

to lowest order, where tx ≡ tan θx and so on. Taking the typical inputs θx = 30◦, θy = 40◦, θz = 5◦and δ = 90◦, we
obtain m1/m3 ≈ 0.04, m2/m3 ≈ 0.13, ρ ≈ 45◦, and σ ≈ 135◦(or −45◦). In addition, we get Rν ≈ 0.014, consistent
with our empirical hypothesis that the solar neutrino deficit is attributed to the large-angle MSW oscillation. The
vanishing of |Mee| implies that it is in practice impossible to detect the neutrinoless double beta decay.
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Pattern A2. Mee = Meτ = 0 (i.e., a = b = e; α = e and β = τ ). We obtain

(14)
λ1

λ3
= − sz

c2
z

(
sxcy

cxsy
eiδ + sz

)
,

λ2

λ3
= + sz

c2
z

(
cxcy

sxsy
eiδ − sz

)
.

In the lowest-order approximation, we explicitly obtain

m1

m3
≈ tx

ty
sz,

m2

m3
≈ 1

tx ty
sz, ρ ≈ δ

2
± π

2
, σ ≈ δ

2
,

(15)Rν ≈ 1
t2
x t

2
y

∣∣1 − t4
x

∣∣s2
z , |Mee| = 0.

Using the same inputs as above, we get m1/m3 ≈ 0.06, m2/m3 ≈ 0.18, ρ ≈ 135◦(or −45◦), σ ≈ 45◦, and
Rν ≈ 0.03. We see that the phenomenological consequences of Patterns A1 and A2 are nearly the same [4].
However, Pattern A2 seems to be more interesting for model building [10], in particular when the spirit of lepton–
quark similarity is taken into account.

Pattern B1. Mµµ = Meτ = 0 (i.e., a = b = µ; α = e and β = τ ). We obtain

λ1

λ3
= sxcxsy(2c2

ys
2
z − s2

yc
2
z ) − cysz(s

2
xs

2
ye

+iδ + c2
xc

2
ye

−iδ)

sxcxsyc2
y + (s2

x − c2
x)c

3
ysze

iδ + sxcxsys2
z (1 + c2

y)e
2iδ e2iδ,

(16)
λ2

λ3
= sxcxsy(2c2

ys
2
z − s2

yc
2
z) + cysz(c

2
xs

2
ye

+iδ + s2
xc

2
ye

−iδ)

sxcxsyc2
y + (

s2
x − c2

x

)
c3
ysze

iδ + sxcxsys2
z (1 + c2

y)e
2iδ e2iδ.

The smallness of s2
z allows us to make a similar analytical approximation as before. To lowest order, we find

(17)
m1

m3
≈ m2

m3
≈ t2

y , ρ ≈ σ ≈ δ ± π

2
, Rν ≈ 1 + t2

x

tx
|t2ycδ|sz, |Mee| ≈ m3t

2
y ,

where t2y ≡ tan 2θy and cδ ≡ cosδ. Note that

(18)
m1

m3
− m2

m3
≈ 4szcδ

s2xs2y
, σ − ρ ≈ 2szsδ

t2
y s2xt2y

in the next-to-leading order approximation, where sδ ≡ sin δ and s2x ≡ sin 2θx . Typically taking θx = 30◦, θy = 40◦,
θz = 5◦ and δ = 89◦, we arrive at m1/m3 ≈ m2/m3 ≈ 0.7 with a difference of about 0.007, σ ≈ ρ ≈ 179◦ (or −1◦)
with a difference of about 3◦, Rν ≈ 0.02, and |Mee|/m3 ≈ 0.7. One can see that |δ| ≈ 90◦ is required in this texture
of M for plausible inputs of θy and θz, such that Rν gets suppressed sufficiently. If Pattern B1 is realistically correct,
large CP-violating effects may be observable in long-baseline neutrino oscillations. It is also worth mentioning that
a typical upper bound on three nearly degenerate neutrino masses can be extracted from the Heidelberg–Moscow
experiment [8]: m1 ≈ m2 ≈ 0.7m3 ≈ |Mee| < 0.34 eV. This bound is certainly compatible with the present direct-
mass-search experiments [2], in particular, for the electron neutrino.

Pattern B2. Mττ = Meµ = 0 (i.e., a = b = τ ; α = e and β = µ). We obtain

λ1

λ3
= sxcxcy(2s2

ys
2
z − c2

yc
2
z ) + sysz(s

2
xc

2
ye

+iδ + c2
xs

2
ye

−iδ)

sxcxs2
ycy − (s2

x − c2
x)s

3
ysze

iδ + sxcxcys2
z (1 + s2

y )e
2iδ e2iδ,

(19)
λ2

λ3
= sxcxcy(2s2

ys
2
z − c2

yc
2
z ) − sysz(c

2
xc

2
ye

+iδ + s2
xs

2
ye

−iδ)

sxcxs2
ycy − (s2

x − c2
x)s

3
ysze

iδ + sxcxcys2
z (1 + s2

y )e
2iδ e2iδ.
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In the lowest-order approximation, we explicitly obtain

(20)
m1

m3
≈ m2

m3
≈ 1

t2
y

, ρ ≈ σ ≈ δ ± π

2
, Rν ≈ 1 + t2

x

tx
|t2ycδ|sz, |Mee| ≈ m3

t2
y

,

together with

(21)
m2

m3
− m1

m3
≈ 4szcδ

s2xs2y
, σ − ρ ≈ 2t2

y szsδ

s2xt2y
.

Using the same inputs as in Pattern B1, we get m2/m3 ≈ m1/m3 ≈ 1.4 with a difference of about 0.007,
σ ≈ ρ ≈ 179◦ (or −1◦) with a difference of about 1.4◦, Rν ≈ 0.02, and |Mee|/m3 ≈ 1.4. Because of ty ∼ O(1),
the phenomenological consequences of Patterns B1 and B2 are almost the same.

Pattern B3. Mµµ = Meµ = 0 (i.e., a = b = µ; α = e and β = µ). We obtain

(22)
λ1

λ3
= − sy

cy
· sxsy − cxcysze

−iδ

sxcy + cxsysze+iδ
e2iδ,

λ2

λ3
= − sy

cy
· cxsy + sxcysze

−iδ

cxcy − sxsysze+iδ
e2iδ.

The approximate expressions for the neutrino mass ratios, the Majorana phases and the observables Rν and |Mee|
turn out to be

(23)
m1

m3
≈ m2

m3
≈ t2

y , ρ ≈ σ ≈ δ ± π

2
, Rν ≈ 1 + t2

x

tx
t2
y |t2ycδ|sz, |Mee| ≈ m3t

2
y .

In addition,

(24)
m2

m3
− m1

m3
≈ 4t2

y szcδ

s2xs2y
, ρ − σ ≈ 2szsδ

s2x t2y

in the next-to-leading order approximation. Taking the same inputs as in Pattern B1, we find m2/m3 ≈ m1/m3 ≈
0.7 with a difference of about 0.005, ρ ≈ σ ≈ 179◦ (or −1◦) with a difference of about 2◦, Rν ≈ 0.014, and
|Mee|/m3 ≈ 0.7. One can see that the phenomenological consequences of Pattern B3 are essentially the same as
those of Pattern B1. This point has been observed in Ref. [4].

Pattern B4. Mττ = Meτ = 0 (i.e., a = b = τ ; α = e and β = τ ). We obtain

(25)
λ1

λ3
= −cy

sy
· sxcy + cxsysze

−iδ

sxsy − cxcysze+iδ
e2iδ,

λ2

λ3
= −cy

sy
· cxcy − sxsysze

−iδ

cxsy + sxcysze+iδ
e2iδ.

To lowest order, we get the following approximate results:

(26)
m1

m3
≈ m2

m3
≈ 1

t2
y

, ρ ≈ σ ≈ δ ± π

2
, Rν ≈ 1 + t2

x

tx t2
y

|t2ycδ|sz, |Mee| ≈ m3

t2
y

,

together with

(27)
m1

m3
− m2

m3
≈ 4szcδ

s2xs2y t2
y

, ρ − σ ≈ 2szsδ
s2xt2y

.

Using the same inputs as in Pattern B1, we obtain m1/m3 ≈ m2/m3 ≈ 1.4 with a difference of about 0.01,
ρ ≈ σ ≈ 179◦ (or −1◦) with a difference of about 2◦, Rν ≈ 0.03, and |Mee|/m3 ≈ 1.4. One can see that the
phenomenological consequences of Patterns B1, B2, B3 and B4 are nearly the same. Therefore, it is very difficult,
even impossible, to distinguish one of them from the others in practical experiments. Nevertheless, one of the four
textures might be more favored than the others in model building, when underlying flavor symmetries responsible
for those texture zeros are taken into account.
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Pattern C. Mµµ = Mττ = 0 (i.e., a = b = µ and α = β = τ ). We obtain

λ1

λ3
= −cxc

2
z

sz
· cx(s

2
y − c2

y) + 2sxsycyszeiδ

2sxcxsycy − (s2
x − c2

x)(s
2
y − c2

y)sze
iδ + 2sxcxsycys2

z e
2iδ eiδ,

(28)
λ2

λ3
= + sxc

2
z

sz
· sx(s

2
y − c2

y) − 2cxsycyszeiδ

2sxcxsycy − (s2
x − c2

x)(s
2
y − c2

y)sze
iδ + 2sxcxsycys2

z e
2iδ eiδ.

Assuming s2
z � 1 and tx ∼ ty ∼ O(1), we may make an analytical approximation for the exact result in Eq. (28).

To lowest order, we get

m1

m3
≈
√

1 − 2cδ
txt2ysz

+ 1
t2
x t

2
2ys

2
z

,
m2

m3
≈
√

1 + 2txcδ
t2ysz

+ t2
x

t2
2ys

2
z

,

(29)Rν ≈ 1 + tx ty

tx ty

∣∣∣∣ 2
t2x

1 − t2xt2yszcδ

tx + 2t2yszcδ

∣∣∣∣, |Mee| ≈ m3

√
1 − 4cδ

t2xt2ysz
+ 4

t2xt2ys2
z

as well as

(30)ρ ≈ δ + ε ± π

2
with tε = sδ

tx t2ysz − cδ
, σ ≈ δ − ε ± π

2
with tε = txsδ

t2ysz + txcδ
.

One can observe that a small value of Rν is possible if and only if the condition t2xt2yszcδ ≈ 1 is satisfied [4].
Some fine tuning of the inputs seems unavoidable in this case. Taking θx = θy = 44.8◦, θz = 5◦ and δ = 90◦, for
example, we find Rν ≈ 0.03, ρ ≈ +5◦ (or 185◦), σ ≈ −5◦ (or 175◦), and m1 ≈ m2 ≈ m3 ≈ |Mee|. If this texture
of M is realistically correct, large CP violation may manifest itself in neutrino oscillations.

4. As shown above, the seven patterns of M can be classified into three distinct categories [4]: A (with A1 and
A2), B (with B1, B2, B3 and B4), and C. It is experimentally difficult or impossible to distinguish the textures of M

within each category. However, category A is experimentally distinguishable from category B or C. To be specific,
let us summarize the main phenomenological consequences of each category:

(1) The neutrino mass spectrum: m1 ∼ m2 � m3 in category A; m1 ∼ m2 ∼ m3 in category B; and m1 ∼ m2 ∼ m3
in category C.

(2) The Dirac phase of CP violation: δ is not constrained in category A; |δ| ≈ π/2 in category B (for plausible
inputs of θy and θz); and δ is sensitive to the values of three mixing angles in category C.

(3) The Majorana phases of CP violation: |σ − ρ| ≈ π/2 in category A; σ ≈ ρ in category B; and σ ∼ ρ in
category C.

(4) The neutrinoless double beta decay: |Mee| ≈ 0 in category A; |Mee| ∼ m3 in category B; and |Mee| ∼ m3 in
category C.

We see that it is not easy to distinguish between category B and category C, unless the values of flavor mixing
angles (θx, θy, θz) and the ratio of solar and atmospheric neutrino mass-squared differences (Rν) can be accurately
determined.

It is worth remarking that the “inverse” neutrino mass hierarchy m1 � m2 � m3 cannot be incorporated with
three categories of M discussed above. The reason is simply that such a hierarchy conflicts with our empirical
hypotheses [4], i.e., �m2

sun = |m2
2 −m2

1| and �m2
atm = |m2

3 −m2
2|. If m1 � m2 � m3 were assumed, one would in-

evitably be led to Rν ≡ |m2
2 −m2

1|/|m2
3 −m2

2| ≈ m2
1/m

2
2 � 1, contrary to the prerequisite Rν ≈ �m2

sun/�m2
atm � 1

set in Eq. (9). Therefore, we conclude that only the normal hierarchy or near degeneracy of neutrino masses is
allowed for seven two-zero patterns of the neutrino mass matrix under consideration.
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To give an order-of-magnitude illustration of the neutrino mass matrix, we calculate the elements of M for each
pattern by using the formula

(31)Mab =
3∑

i=1

(VaiVbimi) =
3∑

i=1

(UaiUbiλi)

and the typical inputs taken before. The rough results are listed in Table 1. We see that there is no clear hierarchy
among the non-vanishing elements of M , unlike the familiar case of quark mass matrices [11].

Of course, the specific textures of lepton mass matrices cannot be preserved to all orders or at any energy scales
in the unspecified interactions which generate lepton masses [4]. Nevertheless, those phenomenologically favored
textures at low energy scales may shed light on the underlying flavor symmetries responsible for the generation of
lepton masses at high energy scales. It is expected that more precise data of neutrino oscillations in the future could
help select the most favorable pattern of lepton mass matrices.
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