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1. Introduction

The goal of this paper is to study the kernel of the canonical map from a finite module over
a semiperfect ring to its double dual. Such kernels will be referred to as 1-torsion. In particular, we
want to understand under what conditions the 1-torsion contains minimal generators of the ambient
module. The original motivation for this problem came from a question raised by Reiffen and Vetter
[11] in their work on Pfaffian forms on complex spaces. An algebraic reformulation of it, due to
G. Scheja, is discussed in detail in E. Platte’s paper [10]. We quickly recall the basic facts. Let k be
a valued field of characteristic zero and A a reduced equidimensional local analytic k-algebra with
(universally finite) module of Kähler differentials Dk(A). The torsion problem can be stated as follows:
(if k = C) is it possible for Dk(A) to have common minimal generators with its torsion submodule?

After mentioning several cases with a negative answer in [10], Platte constructs a class of exam-
ples showing that indeed the module of differentials can have torsion elements among its minimal
generators. At the end of the paper, he mentions another question, raised by Scheja, whether the tor-
sion submodule of the module of differentials can be a direct summand. He then quotes a result of
Scheja that for hypersurface rings the new problem is equivalent to the original problem, elevates the
question to a conjecture (i.e., the torsion submodule is never a direct summand) and remarks that, if
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true, it would provide a quick proof of Grothendieck’s version of the purity of the branch locus for
complete intersections [6]. Platte concludes his paper with a remark that “[u]nfortunately, a proof of
the weakened torsion conjecture seems to be [methodologically] remote”.

In the present paper, we shall show how methods of stable module theory can be used to pro-
vide new insights and perspectives on the problems of Reiffen–Vetter and Platte–Scheja. One may
begin, for example, by asking a natural question: given the module of differentials of an algebra, how
does one determine whether or not this specific module has torsion elements among its minimal gen-
erators? In fact, properties of the torsion submodule of any finitely presented module is a topic of
interest in its own right and the same question can be posed for any finitely generated module over
a commutative noetherian local ring. Moreover, there is no reason not to pose this question in the
utmost generality, for any finitely generated module over a two-sided noetherian semiperfect ring. In
that setup, the torsion submodule should be replaced by the more general concept of 1-torsion.

The main result of this paper (Theorem 5) provides a verifiable module-theoretic criterion for an
arbitrary finitely generated module over an arbitrary noetherian semiperfect ring to have 1-torsion
elements among its minimal generators. More precisely, this happens exactly when the first syzygy
module of the Auslander transpose of the module has a projective summand. This has immediate
applications in commutative algebra. First, we have an interesting consequence for finite modules over
artinian commutative rings: the 1-torsion submodule can never contain minimal generators of the
module. Secondly, the non-existence of projective summands in the syzygy modules can be deduced
from the vanishing of the ξ -invariants of the module (see below for details). Roughly speaking, those
invariants measure the difference between the cohomology and the Tate–Vogel cohomology of the
module. The latter is an example of an abstract stable homotopy theory, based on the Eckmann–
Hilton homotopy groups of modules.

We also remark that, in equationally defined situations, the obtained criterion allows explicit cal-
culations with a minimum of computing power: to determine whether or not the first syzygy module
of the transpose has a free summand, one needs a presentation matrix for the syzygy module and
a procedure to check whether or not one of the rows of the matrix is a linear combination of the
remaining rows.1

In Section 6 we give a criterion for the 1-torsion submodule to be a direct summand. This is done
in a greater generality: the ring is two-sided noetherian but not necessarily semiperfect. Our methods
do not impose any significant restrictions on the rings in question: there is no assumption on the
characteristic, the ring does not have to be commutative or a domain, nilpotent elements are allowed,
etc. For that reason, it is to be hoped that a proof of the Platte–Scheja conjecture, if at all possible, can
be obtained by some sort of a dimension–reduction procedure. As we mentioned above, in dimension
zero the 1-torsion submodule cannot be a direct summand!

The author is grateful to the referee, whose comments strengthened the original version of Propo-
sition 12 and also led to Proposition 8 (and some of its consequences).

2. Notation and preliminaries

Throughout this paper all rings will be assumed to be associative with identity and all modules
to be unital. In this section we recall some basic facts from module theory. Most of this material, in
one form or another, can be found in [1–3]. Let Λ be a ring and M a (left) Λ-module with a finite
projective presentation

P1
∂

P0
p

M 0.

If finite Λ-modules admit projective covers (i.e., Λ is semiperfect), we shall automatically assume that
the presentation above is minimal. The first syzygy module ΩM of M is defined as the kernel of the
map P0 → M . The transpose Tr M of M is defined by the exact sequence

1 A careful reader may add that one needs a presentation matrix of the original module to begin with.
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0 M∗ p∗
P∗

0
∂∗

P∗
1

ω
Tr M 0,

where (−)∗ stands for the functor HomΛ(−,Λ). The finiteness assumption on the projective presen-
tation of M implies that the beginning of the above sequence is a finite projective presentation of
Tr M . If finite Λ-modules admit projective covers, then both ΩM and Tr M are defined uniquely up to
isomorphism because of our convention that projective presentations be minimal. In general, however,
both ΩM and Tr M are only defined up to projective equivalence.

The following operation on Λ-modules will be of fundamental importance to us.

Definition 1. λM := Ω Tr M .

In the above notation, λM = Kerω = Im ∂∗ � Coker p∗ , which shows that while λM is still defined
up to projective equivalence, its isomorphism class does not depend on the choice of P1.

Lemma 2. Let Λ be a semiperfect ring and N a submodule of a finitely generated projective Λ-module P . Then
N is superfluous in P if and only if N and P have no common nonzero projective summands.

The following consequence of this result is of main interest to us.

Proposition 3. Let Λ be a semiperfect ring, M a finitely presented Λ-module with minimal projective presen-

tation P1
∂→ P0 → M → 0, and

0 M∗ P∗
0

∂∗
P∗

1
ω

Tr M 0

the corresponding (augmented on the left) finite presentation for Tr M. Then:

a) The map ω : P∗
1 → Tr M is a projective cover.

b) M is stable if and only if the above presentation of Tr M is minimal.
c) M is stable if and only if P∗

0 → λM is a projective cover.
d) If Q is a maximal projective direct summand of M, then Q ∗ is a maximal common direct summand of M∗

and P∗
0 .

e) Tr M is stable.
f) Tr M is zero if and only if M is projective.

The proof consists of standard arguments and is left to the reader.
For any Λ-module M , the kernel t(M) of the canonical map eM : M → M∗∗ will be called the

1-torsion submodule of M . The image of eM can be computed as follows.

Lemma 4. Let Λ be a semiperfect ring and M a finitely presented Λ-module such that M∗ is finitely generated.
If M is stable, then the image of the canonical map eM : M → M∗∗ is isomorphic to λ2M. If M � M

∐
Q ,

where M is stable and Q is projective, then the image of eM is isomorphic to λ2M
∐

Q � λ2M
∐

Q .

Proof. The second part of the lemma immediately follows from the first. To prove the first part, we

start with a minimal presentation P1 → P0
ϕ→ M → 0. Since double dual is a natural transformation,

we have Im(eM) = Im(ϕ∗∗). Applying Hom(−,Λ) to the minimal presentation above, we have an
exact sequence

0 M∗ ϕ∗
P∗

0
π

λM 0 . (A)
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Let ψ : Q →M∗ be a projective cover (it exists since M∗ is, by assumption, finitely generated) and

α := ϕ∗ψ . Assuming that M is stable, we have, by Proposition 3, a minimal presentation Q
α→ P∗

0
π→

λM → 0. Applying to it the functor Hom(−,Λ) we have a commutative diagram with an exact top
row:

0 (λM)∗
π∗

P∗∗
0

α∗

ϕ∗∗
Q ∗ Tr(λM) 0

M∗∗

ψ∗
(B)

By the left-exactness of the Hom-functor, ψ∗ is a monomorphism and therefore Im(α∗) � Im(ϕ∗∗). By
Proposition 3, a), the map Q ∗ → Tr(λM) is a projective cover and thus Im(α∗) � Ω(Tr(λM)) = λ2M .
This finishes the proof of the lemma. �
3. The main theorem and first applications

Our goal in this section is to give a necessary and sufficient condition for the 1-torsion submodule
to contain a minimal generator of the ambient module. The ring Λ will be semiperfect and two-sided
noetherian.

Theorem 5. Let Λ be a two-sided noetherian semiperfect ring and M a finitely generated Λ-module. Then
the 1-torsion submodule t(M) contains a minimal generator of M if and only if λM has a nonzero projective
summand.

Proof. The constructions (and notation) used above are collected in the following commutative dia-
gram:

P∗∗
1

∂∗∗
P∗∗

0
α∗

ϕ∗∗
Q ∗ Tr(λM)

(λM)∗

π∗

Im eM M∗∗

ψ∗

P1
∂

eP1∼=

P0

eP0∼=

ϕ
M

eM

t(M)

ι

(C)

where the complexes consisting of dotted arrows are exact (assuming that the epimorphisms are
followed by maps to the zero module and the monomorphisms are preceded by maps from the zero
module). The two shorter complexes of such type give rise to the following commutative diagram
with exact rows and columns:
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0 0

ΩM ΩM

0 (λM)∗
π∗

P∗∗
0

ϕe−1
P0

Im eM 0

0 t(M)
ι

M Im eM 0

0 0

(D)

The map ϕe−1
P0

, being the composition of an isomorphism and a projective cover, is an isomorphism
modulo the Jacobson radical J of Λ. By Nakayama’s lemma, t(M) contains a minimal generator of M
if and only if t(M) is not contained in J M . Reducing the south-west square modulo J , we see that this
happens precisely when (λM)∗ is not contained in J P∗∗

0 . In view of Proposition 3, a), this is equivalent
to saying that the map α∗ in diagram (C) is not a minimal presentation of Tr(λM). By Proposition 3, c),
(with λM in place of M) this is equivalent to saying that λM has a nonzero projective summand. �
Corollary 6. Under the assumptions of Theorem 5, the 1-torsion submodule t(M) contains a minimal generator
of M if and only if (λM)∗ and P∗∗

0 have a common nonzero projective summand under the map π∗ .

Proof. This is just a reformulation of the theorem. In view of Lemma 2, the “only if” part was already
shown at the end of the proof of the theorem. Suppose now that there is a common nonzero projec-
tive summand. Then sequence (B) is not a minimal presentation of Tr(λM) and we are done by Prop-
osition 3, b). �

The short exact sequence 0 → ΩM → (λM)∗ → t(M) → 0 yields the following.

Corollary 7. Under the assumptions of Theorem 5, if t(M) = 0, then ΩM and (λM)∗ are isomorphic. If Λ is
artinian, then the converse is true.

Proof. The first assertion is immediate. The second follows from the fact than an injective endomor-
phism of a module of finite length is an isomorphism. �

Our next goal is to find classes of rings over which the 1-torsion submodule of an arbitrary finitely
generated module cannot reach the top. We begin by establishing a simple criterion. Let Λ be a (not
necessarily noetherian) ring with Jacobson radical J . We shall say that Λ has low 1-torsion if the 1-
torsion submodule t(M) of an arbitrary (not necessarily finitely generated) Λ-module M is contained
in J M .

Proposition 8. A semilocal ring has low 1-torsion if and only if every simple module is 1-torsion free.

Proof. The “only if” part is immediate. Assume now that every simple is 1-torsion free. For an arbi-
trary module M we have an exact sequence

0 → J M → M → M/ J M → 0.
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If m ∈ t(M), then any linear functional M → Λ vanishes on m. Therefore any linear functional on
M/ J M vanishes on the image of m in M/ J M . Since M/ J M is semisimple, our assumption implies
that the image of m is zero, i.e., m ∈ J M . �
Proposition 9. Suppose Λ is a local (not necessarily noetherian) ring with a nonzero socle. Then Λ has low
1-torsion. If, in addition, Λ is semiperfect, then the 1-torsion submodule of any finitely generated Λ-module
does not contain minimal generators of the module.

Proof. Let S be the unique simple module Λ/ J . For the first claim it suffices to show that S is 1-
torsion free. Suppose this is not true. Then t(S) = S and λS must have a projective summand: in
our case λS � X

∐
Λ. Let Λn → Λ → S → 0 be a minimal projective presentation of S . Dualizing

into Λ, we have a short exact sequence 0 → Hom(S,Λ) → ΛΛ → X
∐

ΛΛ → 0, which yields, via the
composition with the projection to the second summand, a surjective endomorphism of ΛΛ . Since
Λ is local, it has IBN. As a consequence, that endomorphism must be an isomorphism. This implies
that Hom(S,Λ) = 0. But, by assumption, the socle of Λ is nonzero and therefore S embeds in Λ, a
contradiction. Thus S is indeed 1-torsion free and Λ has low 1-torsion. The second claim now follows
immediately. �
Corollary 10. Any local artin algebra has low 1-torsion.

Corollary 11. Any commutative local ring of depth zero has low 1-torsion.

Recall that a commutative ring is semiperfect if and only if it is a finite direct product of commuta-
tive local rings. Therefore, by the Krull–Akizuki theorem, commutative artinian rings are semiperfect.
The next result provides examples of low 1-torsion for nonlocal rings.

Proposition 12. Let A be a commutative artinian ring. Then the 1-torsion submodule of a finitely generated
A-module does not contain minimal generators of the module.

Proof. By Theorem 5, it suffices to show that the first syzygy module ΩM of any finitely generated
A-module M has no nonzero projective summands. Suppose that this is not the case. We then have a
short exact sequence 0 → ΩM

∐
P1 → P0 → M → 0, where P1 is a nonzero projective and P0 → M

is a projective cover. Since P1 is superfluous in P0, the short exact sequence 0 → P1 → P0 → X → 0
is not split, i.e., Ext1(X, P1) �= 0. Therefore, there is a maximal ideal m of A such that Ext1

A(X, P1)m =
Ext1

Am
(Xm, P1m) �= 0. But then proj.dim. Xm = 1, contrary to the Auslander–Buchsbaum formula. �

As a consequence of the proof of Theorem 5, we can now quantify the extent to which the 1-
torsion submodule t(M) “penetrates” the top of M (i.e., M/ J M).

Definition 13. Let T(M) be the submodule of M generated by the elements of t(M) not contained
in J M .

Proposition 14. Suppose λM � λM
∐

S, where λM is stable and S is projective. Then, in the notation of
Theorem 5, ϕe−1

P0
|S∗ : S∗ → T(M) is a projective cover.

Proof. Proposition 3, d) shows that S∗ is a maximal common projective summand of (λM)∗ and P∗∗
0 .

Reducing modulo J the south-west commutative square in diagram (D), we see that the statement of
this corollary correctly identifies T(M) as the image of the restriction map in question. That this map
is a projective cover follows from the fact that it is an isomorphism modulo the radical. �

Suppose Λ is a local ring. Then the top of any finitely generated projective Λ-module becomes a
vector space over the residue skew field Λ/ JΛ and we have:
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Proposition 15. If Λ is a two-sided noetherian local ring, then the dimension of the vector subspace of the
top of M generated by the image of T(M) (equivalently, by the image of t(M)) equals the rank of a maximal
projective summand of λM.

Remarks. a) The last proposition can be quickly proved by an argument which does not appeal to
Theorem 5. Let f-rank M denote the rank of a maximal projective (i.e., free) summand of M and b(M)

the minimal number of generators of M . Using the definition of the operator λ and Proposition 3, d),
we have

b(λM) = b(M) − f-rank M.

Applying this formula twice, we have

b
(
λ2M

) = b(M) − f-rank λM − f-rank M.

Lemma 4 gives rise to a short exact sequence

0 t(M) M λ2M
∐

Λf-rank M 0,

which shows that b(T(M)) = b(M) − b(λ2M) − f-rank M . In view of the previous formula, this equals
f-rank λM .

b) For any ring Λ and any superfluous epimorphism f : M → N of finite Λ-modules we have a
commutative diagram with exact rows

0 t(M)
iM

M
eM

f

M∗∗

f ∗∗

0 t(N)
iN

N
eN

N∗∗

Let J be the radical of Λ and suppose that iM ⊗Λ/ J �= 0. Since f ⊗Λ/ J is an isomorphism, we have
that iN ⊗ Λ/ J �= 0.

4. Applications to local algebra

We can now offer another perspective on the results of Reiffen–Vetter and Scheja on hypersurface
algebras.

Proposition 16. Let R be a commutative noetherian local ring, a1, . . . ,an, where n � 1, elements of R gener-
ating a nonzero proper ideal a � R, and M an R-module with presentation

R
[a1,a2,...,an]T

Rn M 0.

Then T(M) is nonzero if and only if a is a principal ideal generated by a nonzerodivisor. In that case, the
1-torsion submodule t(M) is a direct summand of M.2

2 Under an additional assumption that the ideal a contains a nonzerodivisor, this result was also proved in [12], Hilfsatz
(9.10).
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Proof. If a is a principal ideal generated by a ∈ R , then for i = 1, . . . ,n there are elements bi ∈ R
and ci ∈ R such that ai = bia and a = ∑n

i=1 ciai . Therefore (1 − ∑n
i=1 cibi)a = 0. Since R is local and

(a) = a �= 0, one of the bi (and the corresponding ci ) must be a unit. Thus one of the ai generates a

and M has a presentation

R
[a0...0]T

Rn M 0.

This shows that M � R/(a)
∐

Rn−1. By assumption, a is neither the zero element nor a unit. Therefore
the obtained presentation is minimal and λM � a = (a). When a is a nonzerodivisor, this module
is isomorphic to R , showing that T(M) �= (0). In that case (R/(a))∗ � Ann a = (0) and thus t(M) =
R/(a) = T(M).

To prove the other implication, we may assume that a is minimally generated by a1, . . . ,an , thus
making the defining presentation of M minimal. By Theorem 5, λM � a has a nonzero projective
summand, say, a � a1 ⊕ a2 with a2 isomorphic to R . Since R is commutative, a1a2 is contained
in both a1 and a2 and is therefore zero. Since a nonzero element cannot annihilate the identity
of R , we must have a1 = (0) and therefore a � R . This shows that a is principal and generated by a
nonzerodivisor. �
Example. Let R := k[|x, y|]/(x6 − x2 y3 − y5), where k is a field of characteristic 0. The extension of
the Jacobian ideal (6x5 − 2xy3,−3x2 y2 − 5y4) of this curve to R is nonprincipal, and therefore there
are no torsion elements among minimal generators of the module of differentials, i.e., T(Dk(R)) = 0.
Assume now that char k = 2. Then the extension of the Jacobian ideal (x2 y2 + y4) is generated by a
nonzerodivisor and, therefore, the torsion submodule of the module of differentials reaches the top of
the module. In this case, λDk(R) is free of rank one, since it is isomorphic to the ideal generated by
the image of the nonzero partial derivative. Consequently, T(Dk(R)) is a nontrivial cyclic module.

Assume once again that R is a commutative noetherian local ring. As another application of Theo-
rem 5, we shall show that if the transpose of the module M is of large enough depth, then T(M) = 0.
First we recall an auxiliary result (see [4], Lemma 4.7; see also [9], Proposition 3 for a proof inspired
by the present paper).

Lemma 17. Let N be a finitely generated R-module. Then Ω i N has no nonzero free summands for i >

max(depth R − depth M,0).

Combining this with Theorem 5 and recalling that λM = Ω Tr M , we have:

Proposition 18. Let M be a finitely generated R-module such that depth Tr M � depth R. Then the 1-torsion
submodule of M contains no minimal generators of M.

5. Further applications to local algebra: 1-torsion and Tate–Vogel cohomology

For finite modules over a commutative local ring, the absence of free summands can be detected
by the vanishing of the ξ -invariant, introduced by the author in [7]. This nonnegative integer is the
dimension of the kernel of the natural transformation from the cohomology of the module with
coefficients in the residue field to the Tate–Vogel cohomology of the same pair. The details of the
construction can be found in the above reference. Since in this paper we are only interested in appli-
cations, we provide a very simple equivalent definition of the ξ -invariant.

Definition 19. Let R be a commutative noetherian local ring and M a finite R-module. Let V (M,k)

denote the vector subspace of HomR(M,k) consisting of bounded maps, i.e., the maps that admit a
lifting with only finitely many nonzero components to some projective resolutions of M and k. We
set ξ(M) := dim V (M,k) and ξn(M) := dim V (Ωn M,k). We also set ξ0(M) := ξ(M).
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Immediately from the definition we deduce that ξ is additive on direct sums and, for a mod-
ule of finite projective dimension, coincides with the zeroth Betti number. In particular, ξ(Rn) = n.
Consequently, if ξ(M) = 0, then M cannot have a nonzero projective summand. Taking account of
Theorem 5, we have:

Proposition 20. Let R be a commutative noetherian local ring and M a finite R-module. If ξ(λM) = 0, then
the 1-torsion submodule t(M) does not contain minimal generators of M.

In order to make this useful we need to be able to compute the ξ -invariant. In general this is
difficult. But in some situations (see [7,8]) this invariant has been computed. A case of interest to us
is provided by the following result (see Theorem 3.1, [7]).

Theorem 21. Let (S,m,k) be a commutative noetherian local ring, x ∈ m an S-regular element, R := S/(x),
and M a finite R-module. If x ∈ mAnnS M, then ξ i(M) = 0 for all i.

Remark. If x ∈ mAnnS M , then, clearly, the same condition holds if M is replaced by any of its quotient
modules.

Proposition 22. Let (S,m,k) be a commutative noetherian local ring, x ∈ m an S-regular element, R := S/(x),
and M a finite R-module. If x ∈ mAnnS (λR M), then the 1-torsion submodule t(M) does not contain minimal
generators of M.

6. 1-Torsion as a direct summand

In this section we shall give a necessary and sufficient condition for a finitely generated module to
have its 1-torsion submodule as a direct summand. This will be done in a more general context than
we have been working in so far: the ring will be two-sided noetherian but not necessarily semiperfect.

As a motivating example, we consider first the “hypersurface” module of Proposition 16. Let R be
a commutative domain, a := (a1, . . . ,an) a nonzero ideal of R , and M a module with presentation

0 R
[a1,...,an]T

Rn
ϕ

M 0 .

Problem 1. Describe the torsion submodule t(M) of M .

Solution. Suppose x ∈ M is torsion: there is μ �= 0 in R such that μx = 0. Choose x1, . . . , xn ∈ R such
that ϕ((x1, . . . , xn)T ) = x; then μxi = λai , i = 1, . . . ,n, for some λ ∈ R . In other words, xi = (λ/μ)ai ,
i = 1, . . . ,n, in the field of quotients K of R . Since each xi is in R , we must have (λ/μ) ∈ (R : a). As a
result, (x1, . . . , xn)T is in the image of the R-linear map

f : (R : a) → Rn : λ/μ 
→ (λ/μ)(a1, . . . ,an)
T .

Conversely, it is immediate that any element in the image of f gives rise, after applying ϕ , to a tor-
sion element of M . The canonical inclusions R → (R : a) and ι : t(M) → M now become parts of
a commutative diagram with exact rows and columns:
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0 0

0 R (R : a)

f

t(M)

ι

0

0 R
[a1,...,an]T

Rn
ϕ

M 0

This diagram describes both the torsion submodule t(M) and its embedding in M .

Corollary 23. M is torsion-free if and only if (R : a) = R.

Completing the columns of the above diagram we also have the following description of Im eM �
Coker ι:

Corollary 24. The sequence

0 (R : a)
f

Rn
eMϕ

Im eM 0

is exact.

The next problem appears as an exercise in (see [5], Ch. VII, §1, Ex. 32).

Problem 2. Under the above assumptions, show that t(M) is a direct summand of M if and only if

a(R : a) + (
R : (R : a)

) = R.

Lemma 25. (R : (R : a)) ⊆ R.

Proof. Since (R : a) ⊇ R , we have (R : (R : a)) ⊆ (R : R) = R . �
The lemma shows that the left-hand side of the desired equality is contained in R . Thus we have

to show that the torsion is a direct summand if and only if the identity of R belongs to the left-hand
side.

First, assume that the embedding ι : t(M) → M admits a splitting p : M → t(M). Using the lifting
property of the projective resolution of M , we obtain a commutative diagram of R-linear maps with
exact rows:

0 R (R : a)

f

t(M)

ι

0

0 R
[a1,...,an]T

σ

Rn

g

ϕ
M

p

0

0 R (R : a) t(M) 0

We now examine the maps g and σ . Let g(ei) := bi ∈ (R : a), i = 1, . . . ,n, where ei is the ith standard
basis vector. The commutativity of the south-west square implies then that σ = ∑

aibi ∈ a(R : a).
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Since Idt(M) −pι is the zero map, there exists an R-linear map h : (R : a) → R such that (1 − σ) · r =
h(r) for any r ∈ R . The map h can be computed explicitly. Indeed, if λ/μ ∈ (R : a), then μ · h(λ/μ) =
h(λ) = (1 − σ) · λ and, therefore, h(λ/μ) = (1 − σ) · λ/μ. Since the image of h is in R , we must have
(1 − σ) ∈ (R : (R : a)) thus obtaining the desired decomposition of the identity: 1 = σ + (1 − σ).

Conversely, suppose 1 = σ + (1 − σ), where σ ∈ a(R : a) and 1 − σ ∈ (R : (R : a)). Writing σ
as

∑
aibi with all bi ∈ (R : a), and setting g(ei) := bi for each i, we recover the above diagram.

By construction, Id(R:a) −g f is multiplication by 1 − σ , the latter being an element of (R : (R : a)).
Therefore, Id(R:a) −g f factors through R , showing that Idt(M) −pι = 0. This solves Problem 2.

Remark. Using Corollary 24 we can provide an alternative solution to Problem 2. The 1-torsion sub-
module of M is a direct summand if and only if the canonical map eM : M → Im eM is a split
epimorphism. Suppose there is a map i : Im eM → M such that eM i = IdIm eM . Lifting i by maps k
and l, we have a commutative diagram:

0 (R : a)
f

l

Rn
eMϕ

k

Im eM

i

0

0 R
[a1,...,an]T

j

Rn
ϕ

M

eM

0

0 (R : a)
f

Rn
eMϕ

Im eM 0

Here j is the canonical inclusion. As IdIm eM = eM i, there is a map h : Rn → (R : a) such that f h =
IdRn −k. This is equivalent to saying that hf = Id(R:a) − jl. Let h(ei) := bi ∈ (R : a), where ei is the ith
standard basis vector. Then hf is just multiplication by σ := ∑

aibi ∈ a(R : a) and therefore Id(R:a) −hf
is multiplication by 1−σ . On the other hand, since the latter factors through R as the composition jl,
the image of this map must be in R . Consequently, 1 − σ ∈ (R : (R : a)).

Conversely, suppose there is σ ∈ a(R : a) such that 1 − σ ∈ (R : (R : a)). Our immediate goal is to
recover the triple-decker diagram above. Let σ = ∑n

1 aibi , with each bi in (R : a). We first define a
map h : Rn → (R : a) by setting h(ei) := bi for each i. This allows to define a map k : Rn → Rn by
setting k := IdRn − f h, and a map c : (R : a) → (R : a) by setting c := Id(R:a) −hf . Since hf = σ , the
last map is just multiplication by 1 − σ ∈ (R : (R : a)), and therefore its image must be in R . In other
words, c factors through R , i.e., c = jl, where j is the canonical inclusion R → (R : a) and l is a map
(R : a) → R . It is now straightforward to check that the pair l,k gives rise to a map i : Im eM → M and
that eM i = IdIm eM .

We now switch to a general context: Λ is a two-sided noetherian ring and M a finitely generated
(left) Λ-module. Diagram (D) of Section 3 provides the following lifting of the canonical inclusion
ι : t(M) → M:

0 ΩM (λM)∗

e−1
P0

π∗

t(M)

ι

0

0 ΩM P0
ϕ

M 0

Suppose now that ι admits a splitting p : M → t(M). Lifting p, we have a commutative diagram
with exact rows:
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0 ΩM (λM)∗

e−1
P0

π∗

t(M)

ι

0

0 ΩM

σ

P0

g

ϕ
M

p

0

0 ΩM (λM)∗ t(M) 0

Since Idt(M) −pι is the zero map, there exists a Λ-linear map h : (λM)∗ → ΩM such that
Id(λM)∗ −ge−1

P0
π∗ factors through h.

Conversely, given Λ-linear maps g : P0 → (λM)∗ and h : (λM)∗ → ΩM such that Id(λM)∗ −ge−1
P0

π∗
factors through h, define σ : ΩM → ΩM by setting σ := IdΩM −h|ΩM . It is then clear that g and σ
are part of a commutative square as above, and therefore they give rise to a map p : M → t(M). It is
also clear that pι = Idt(M) . Thus we have:

Proposition 26. Let Λ be a two-sided noetherian ring and M a finitely generated (left) Λ-module. Then the
1-torsion submodule t(M) is a direct summand of M if and only if there is a Λ-linear map g : P0 → (λM)∗
such that Id(λM)∗ −geP−1

0
π∗ admits a lifting h : (λM)∗ → ΩM.

Similar to the remark on p. 2605, we can give an alternative criterion for 1-torsion being a direct
summand. Suppose the canonical map M → Im eM admits a splitting i : Im eM → M . Augmenting the
notation of Theorem 5, we have a commutative diagram with exact rows

0 (λM)∗
e−1

P0
π∗

l

P0
eMϕ

k

Im eM

i

0

0 ΩM
ν

j

P0
ϕ

M

eM

0

0 (λM)∗
e−1

P0
π∗

P0
eMϕ

Im eM 0

where the maps l and k are some liftings of the map i. (Once again, for the sake of simplicity, we have
slightly abused the notation for the maps going into the south-east corner.) Since IdIm eM −eM i = 0,
there is a Λ-linear map h : P0 → (λM)∗ such that IdP0 −k = e−1

P0
π∗h. This implies that Id(λM)∗ − jl =

he−1
P0

π∗ .
Conversely, suppose there are Λ-linear maps l : (λM)∗ → ΩM and h : P0 → (λM)∗ such that

Id(λM)∗ − jl = he−1
P0

π∗ . Define k := IdP0 −e−1
P0

π∗h. It is then clear that k and l are part of a com-
mutative square as above and therefore they give rise to a map i : Im eM → M . It is also clear that
eM i = IdIm eM . Thus we have proved:

Proposition 27. Let Λ be a two-sided noetherian ring and M a finitely generated (left) Λ-module. Then the
1-torsion submodule t(M) is a direct summand of M if and only if there is a Λ-linear map l : (λM)∗ → ΩM
such that Id(λM)∗ − jl admits an extension h : P0 → (λM)∗ .
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