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An important step in tumorigenesis involves loss of
sensitivity to various apoptotic signals by malignant
cells, imbuing them with an enhanced survival
phenotype. NF-xB also regulates epidermal thick-
ness, susceptibility to apoptosis, and tumor forma-
tion in skin. Keratinocytes were examined for their
susceptibility to apoptosis using cytokines produced
during an immunologic response to tumor antigens,
i.e., interferon-y and/or tumor necrosis factor-o
(TNF-a). The role for NF-xB in this response was
examined using a retroviral vector containing a
degradation-resistant form of IKBol. Whereas inter-
feron-y and TNF-o either alone or in combination
did not induce apoptosis in keratinocytes, after infec-
tion with the retrovirus to block NF-XB activation
they became susceptible to TNF-o. but not Fas-
induced apoptosis. Moreover, when keratinocytes
with repressed NF-kB activity were simultaneously
treated with interferon-y, there was a synergistic
induction of apoptosis by TNF-a that was dependent
on FADD, tumor-necrosis-factor-related apoptosis-
inducing ligand (TRAIL), and caspase activation.
Molecular abnormalities accompanying repressed
NF-xB activity included failure to induce TNF-RII

receptor together with enhanced levels of TRAIL
death receptor 4. The ability of interferon-y when
combined with TNF-0 to mediate keratinocyte
apoptosis included induction of TRAIL coupled with
diminished capacity of keratinocytes with repressed
NF-kB activity to increase the TRAIL decoy recep-
tor-1, as well as lower levels of several NF-kB-
dependent antiapoptotic proteins accompanied by
enhanced caspase 8 levels. These results indicate that
interferon-Y and TNF-o synergistically induce kerati-
nocyte apoptosis when concomitant induction of
NF-xB is blocked. Participants in the apoptotic
response mediated by NF-xB, besides cell-survival
proteins, include modulation of TRAIL and both
death and decoy receptors. Thus, not only does NF-
kB signaling influence the intrinsic survival pathway
for keratinocytes in normal skin, but it may also play
a role in determining the apoptotic response to cyto-
kines generated during an immune response
via TRAIL produced by the keratinocytes them-
selves. Key words: cell death/cytokines/death receptors/
skin cancer/transcription factor. J Invest Dermatol 117:898—
907, 2001

ot only does normal epidermal thickness require
proper regulation of keratinocyte apoptosis, but an
important step in cutaneous tumorigenesis involves
loss of appropriate death signaling pathways in
premalignant and malignant keratinocytes (Van
Hogerlinden et al, 1999; Thompson, 1995; Ashkenazi and Dixit,
1998). There are several examples in which resistance of
keratinocytes to apoptosis has been linked to development of skin
cancer (Pena et al, 1998; Rodriguez-Villanueva ef al, 1998; Duftey
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et al, 1999; Hill et al, 1999). An important family of gene regulatory
proteins that can profoundly influence the induction of keratino-
cyte apoptosis involves NF-xB (Duffey et al, 1999; Hu et al, 1999;
Li et al, 1999; Qin et al, 1999; Takeda et al, 1999; Seitz et al, 2000).
NEF-kB activation serves as a principal mediator for resistance to
apoptosis by induction of numerous antiapoptotic factors such as
TRAF-1, TRAF-2, c-IAP1, c-IAP2 (Wang et al, 1998), as well
as enhancing levels of the cyclin-dependent kinase inhibitor
p21 WA/ P favelaud et al, 2000). The ability of tumor necrosis
factor-ot (TNF-0) to induce apoptosis in several cell types is
potently suppressed, despite the engagement of death receptors
(DR), because of the simultaneous activation of cell survival signals
mediated via NF-xB (Beg and Baltimore, 1996; Van Antwerp and
Verma, 1996; Wang et al, 1996). Indeed, enhanced antitumor
effects have been achieved using TNF-ot when accompanied by
concomitant inhibition of NF-xB (Wang et al, 1999).

TNF-ot can interact with two distinct receptors (TNF-RI,
CD120a; or TNF-RII, CD120b), which are both expressed on
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many cell types (Tartaglia and Goeddel, 1992). Whereas TNF-RI
contains a death domain and can trigger apoptosis (Feinstein et al,
1995), TNF-RII lacks a death domain and hence may be
considered as a decoy receptor (DcR) (Park er al, 1999). Thus,
these two TINF-al receptors are not homologous, and have distinct
biologic roles that can influence apoptotic responses in either a
positive or a negative fashion (Horie et al, 1999; Gaeta et al, 2000).
To further explore the molecular basis determining susceptibility to
apoptosis in keratinocytes, a dominant negative (DN) retroviral-
based inhibitor of NF-kB activation was used, and the response to
TNEF-a alone and in combination with interferon y (IFN-y) was
characterized.

IFN-v and TNF-o represent primary cytokines implicated in the
pathophysiology of benign and malignant skin diseases character-
ized by disordered epidermal kinetics and apoptotic responses
(Nickoloff, 1991; Wrone-Smith et al, 1995; 1997; Kothny-Wilkes
et al, 1998; Arnold et al, 1999). Moreover, IFN-y when combined
with TNF-o has shown clinical efficacy against some malignancies
including cutaneous melanoma (Eggermont ef al, 1996). Although
we and others have previously utilized ultraviolet (UV) light as the
stimulus to trigger keratinocyte apoptosis, it has become clear that
this response involves many different DR and mediators of
apoptosis (Schwarz et al, 1995; Brash et al, 1996; Henseleit et al,
1997; Rehemtulla et al, 1997; Aragane et al, 1998; Denning et al,
1998; Gutierrez-Steil et al, 1998; Sheikh et al, 1998; Chaturvedi et
al, 1999; Leverkus et al, 2000; Qin et al, 2001). For example, UV-
light-induced apoptotic signaling has been linked to the following
molecules: TNF-o (Schwarz et al, 1995), Fas/Fas ligand
(Rehemtulla et al, 1997; Aragane et al, 1998; Gutierrez-Steil et al,
1998; Leverkus et al, 1997), TNF-RI (Sheikh ef al, 1998), caspases 3
and 8 (Chaturvedi et al, 1999), PKC-delta (Denning et al, 1998), as
well as p53 (Brash et al, 1996; Henseleit et al, 1997; Tron et al,
1998). Thus, in contrast to these UV-light-related studies, this
report will focus on more direct engagement of the TNF-o
receptor family members by various ligands, and subsequent
apoptotic signaling in keratinocytes.

There are a growing number of members of the TNF receptor
family that can influence apoptotic responses (Dembic et al, 1990;
Ashkenazi and Dixit, 1999). That so many different receptors are
actually present on any one cell indicates that each type of receptor
may participate with a distinctive role, and that complex regulation
of apoptosis exists to respond to various stimuli. With respect to the
TNF receptor family as mentioned earlier, one set of receptors that
possess cytoplasmic death domains can initiate intracellular signaling
events that lead to apoptosis, whereas another set of receptors —
referred to as DcR — can bind various ligands but are not capable of
triggering the caspase cascade due to either absent or truncated
cytoplasmic death domains (Dembic et al, 1990; Lewis et al, 1991;
Tartaglia et al, 1991; Pan et al, 1997; Sheridan et al, 1997). In this
report, the receptors of interest include those that trigger apoptosis,
such as TNF-RI, tumor-necrosis-factor-related apoptosis-inducing
ligand receptor 1 (TRAIL-R1) (DR4), TRAIL-R2 (DR5), and
Fas, whereas the receptors not effective in killing are TNF-RII and
TRAIL-R3 (DcR1, also referred to as TRID; Pan et al, 1997;
Sheridan et al, 1997). The ligands for these receptors that are used in
this study include TNF-at or TRAIL, which can induce apoptosis
depending on the overall response of either normal proliferating
keratinocytes or keratinocytes with repressed NF-kB activity. The
novel observation that NF-kB-mediated signaling can influence
levels of various DcR adds a new dimension to the regulation of
apoptosis beyond death ligands and DR, which may participate in
epidermal homeostasis, particularly as the apoptosis induced by
IFN-Yy plus TNF-o is partially mediated by endogenously produced
TRAIL (Nickoloff and Denning, 2001).

MATERIALS AND METHODS

Keratinocyte culture Normal human keratinocytes were isolated from
neonatal foreskins and grown in a low calcium (0.07 mM), serum-free
medium (Clonetics, San Diego, CA) on plastic dishes as previously
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described (Wrone-Smith et al, 1995). Primary keratinocyte cultures were
passaged when reaching approximately 50% confluence, and could be
maintained for 10-15 population doublings prior to the onset of
spontaneous replicative senescence (Nickoloff et al, 2000). The DN
IkBa. cDNA (IkBaDN) was kindly provided by Dr. Tom Ellis (Loyola
University Medical Center) and subcloned into the BamHI and Notl of
LZRS and MGF-based retroviral expression vector as previously
described (Qin et al, 1999). The LZRS vector containing enhanced
green fluorescent protein (GFP) was kindly provided by Dr. Paul A.
Khavari (Stanford University School of Medicine, Stanford, CA). The
Phoenix-Ampo retroviral packaging cells were obtained from American
Type Culture Collection (Manassas, VA) with permission from Dr. Gary
P. Nolan (Stanford University Medical Center, Stanford, CA). The
packaging cells were cultured in Dulbecco’s modified Eagle’s medium
(Life Technologies, Grand Island, NY) and transfected with LZRS—
IkBaDN vector by using CaCl, and 2 X Hanks’ balanced salt solution.
After overnight incubation, the cells were fed with fresh medium and
incubated at 32°C for an additional 24-48 h. The supernatants were
collected for cell infection. Keratinocytes were seeded into six-well plates
and infected with 300 pl of viral supernatant in the presence of 4 g per
ml hexadimethrine bromide (Polybrene Sigma J-9268) for 1 h at 32°C,
and then the supernatant was removed and replaced with fresh medium,
incubated at 37°C in 5% CO, overnight. Typically, the efficiency of
viral infection as assessed by GFP analysis using flow cytometry of
permeabilized cells is greater than 85%. The overexpression of the
IkBaDN protein was detected by western blot analysis. For some
experiments various caspase inhibitors were added 1 h before exposure to
IFN-Y plus TNF-0. These inhibitors included ZVAD-fmk and DVED-
fmk, which were purchased from Enzyme Systems Products (Livermore,
CA) and used at a final concentration of 10 UM as previously described
(Chaturvedi ef al, 1999). In other experiments, a FADD DN retroviral
construct was produced courtesy of Dr. Vishva Dixit (Genentech, South
San Francisco, CA). Overexpression of FADD DN protein was
confirmed by western blot analysis.

Materials Recombinant human TNF-o and IFN-y were obtained
from R&D Systems (Minneapolis, MN) and used at a final concentration
of 500 U per ml for TNF-0, and 10°> U per ml for IEN-y. For western
blot analysis, keratinocytes were treated for 24 h, whereas for mRNA
analysis keratinocytes were treated for 6 h in all experiments. LZ-TRAIL
(100 ng per ml) was generated at Immunex (Seattle, WA) as previously
described (Walczak ef al, 1997; 1999). Basically, the production and
purification of human TRAIL employs a plasmid containing the
extracellular regions of the ligand (amino acids 95-281) and is linked to
an exogenous, modified leucine zipper that drives trimerization and is
expressed in Chinese hamster ovary cells (Qin ef al, 2001). Antibodies
used to detect IxkBa (SC-371), p50 (SC-7178), p65 (SC-109), actin,
TNEF-RI (SC-7895), TNE-RII (SC-7862), TRAF1 (SC-983), TRAF2
(SC-877), TRADD (SC-7868), and p21YW*/CP1 (SC-397) were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies
to detect caspase 8 (66231 A, FADD (65751 A), intercellular adhesion
molecule 1 (ICAM-1, CD54), and CD3 were purchased from
PharMingen (San Diego, CA). Monoclonal antibodies to detect TRAIL-
R1 (DR4), TRAIL-R2 (DR5), and TRAIL-R3 (DcR1), as well as cell
surface detection of TRAIL (monoclonal antibody 181; Fanger et al,
1999), were obtained from Immunex, as were receptor-fusion proteins
that could neutralize TNF-o (TF:Fc), and TRAIL (TR:Fc) with
CTLA4:Ig used as a control fusion protein. A FasL:Fc reagent was
purchased from Alexis Biochemicals (San Diego, CA). To determine if
apoptosis could be induced via activation of Fas, an anti-Fas IgM
antibody was used that triggers apoptosis in Jurkat cells when used at
100 ng per ml (CH11; Upstate Biotechnology, Lake Placid, NY). In
some experiments, keratinocytes were pretreated for 2 h with 5 ug per
ml cycloheximide (CHX, Sigma Chemical, St. Louis, MO) for 6 h prior
to addition of anti-Fas antibody.

Western blot analysis Nuclear cell lysate and whole cell lysate were
prepared to detect different proteins as described previously (Qin et al,
1999). In brief, for nuclear keratinocytes cells were harvested by scraping
and washed with phosphate-buffered saline (PBS); the pellet was
resuspended in buffer A [10 mM HEPES, pH 7.9, 10 mM KCl, 1.0 mM
ethylenediamine tetraacetic acid (EDTA), 1.0 mM ethyleneglycol-bis(B-
aminoethyl  ether)-N,N,N’,N’-tetraacetic ~acid (EGTA), 0.1 mM
dithiothreitol (DTT)], incubated in ice for 20 min with 10% Nonidet P-
40, and then microfuged, and the supernatant was discarded. The pellet
was resuspended in buffer C (20 mM HEPES, 0.4 M NaCl, 1 mM
EDTA, 1mM EGTA, 1mM DTT, 1 mM phenylmethylsulfonyl
fluoride) for 15 min on ice. Cells were vortexed and microfuged and the
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supernatant was saved and frozen at —80°C. For the whole cell lysate,
keratinocytes were washed with PBS and were incubated in ice for
15 min in CHAPS buffer (Chaturvedi et al, 1999). Cells were
microfuged and supernatants were saved and frozen at —80°C. The
protein concentration of each sample was determined using Bio-Rad
protein assay as previously described (Qin et al, 1999). Thirty micrograms
of protein were loaded on 8%—12.5% sodium dodecyl sulfide
polyacrylamide gel, transferred to Immobilon-p (PVDF) membrane, and
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Figure 1. Overexpression of a degradation-resistant form of IKBol
in keratinocytes prevents activation of NF-xB by IFN-y and/or
TNF-o. Left side panel: Keratinocytes infected with an empty vector
(only linker). Constitutive and cytokine-induced levels of IkBol in the
cytoplasm, as well as intranuclear levels of p50 and p65 subunits of NF-
KB, are assessed (western blot) and compared to DNA binding activity
(gel shift). Note that IFN-y and/or TNF-a induced p65, and to a lesser
extent p50 levels, with enhanced DNA binding. By contrast,
keratinocytes infected with IKBODN-containing retrovirus (right side
panel) have enhanced constitutive levels of IkBo, and fail to induce
either p50/p65 levels or DNA binding after IFN-y and/or TNF-a
exposure. Results portrayed are representative of three independent
experiments.
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blocked in 5% nonfat powdered milk in TBST (50 mM Tris, pH 7.5,
150 mM NaCl1, 0.01% Tween-20). The membrane was incubated with
the primary antibody in 2.5% powdered milk in TBST and was washed
extensively with TBST, and then incubated with 1:1500 diluted
antirabbit or mouse horseradish peroxidase (Amersham, IL). Proteins
were visualized with enhanced chemiluminescence reagents (Amersham)
according to the manufacturer’s instruction. Loading of proteins to verify
equivalent distribution of proteins in each well was confirmed by
Ponceau-S staining and detection of actin levels.

RNase protection assay (RPA) Total cellular RNA was extracted
using Trizol Reagent (Gibco BRL, Grand Island, NY) as previously
described (Qin et al, 1999). The RPA was performed according to the
supplier’s instructions (PharMingen). Briefly, human apoptosis template
set hAP0O-5 was labeled with [0i->*P] uridine triphosphate. RNA (10 pg)
and 8 X 10° cpm of labeled probes were used for hybridization, and
after RNase treatment the protected probes were resolved on a 5%
sequencing gel.

Electrophoretic mobility shift assays (EMSA) EMSA were
performed as previously described (Qin ef al, 1999). In brief, 1 pug of
poly(dI-dC) (Pharmacia Biotech) and 10* cpm of *2p_labeled double
stranded oligonucleotide were incubated with 5 Hg of nuclear protein on
ice for 30 min. The reaction mixture was separated on 4% native
polyacrylamide gel, dried, and autoradiographed. The NF-kB
oligonucleotide had the following sequence: 5-AGT TGA GGG GAC
TTT CCC AGG C-3".

Assessment of apoptosis and cell surface detection of DR/DcR and
TRAIL For cell cycle and apoptosis analyses, DNA content was
measured by propidium iodide (PI) staining and flow cytometry (Qin et
al, 1999). After treatments, keratinocytes were trypsinized, combined
with floating cells, and counted, and 10° cells were washed once in 2 ml
fluorescence-activated cell sorter (FACS) buffer (PBS, 5% fetal bovine
serum, 0.02% sodium azide). The cell pellet was suspended in 100 ul
fetal bovine serum on ice, and 600 pl ice-cold 100% ethanol was added
with gentle vortexing. The cells were incubated for 30 min on ice and
washed once with FACS buffer. The cells were suspended in 0.5 ml
10 pg per ml RNase in PBS and incubated at 37°C for 15 min. After
5 min at room temperature, 0.5 ml of 100 ug per ml PI in PBS was

Figure 2. Enhanced susceptibility of
keratinocytes with repressed NF-kB activity
to apoptosis induced by TNF-o, but not by
anti-Fas antibody; IFN-y plus TNFo; and
TRAIL. (a) Keratinocytes were infected with
either empty retrovirus (vector) or IKBoDN-
containing retroviruses and then exposed to
various treatments including the following stimuli:
IEN-y (10> U per ml), TNE-ot (500 U per ml),
anti-Fas antibody (100 ng per ml), or TRAIL
(100 ng per ml), for 18 h followed by PI staining
and FACS analysis. As indicated, some cultures
were exposed to IFN-y plus anti-Fas antibody,
CHX pretreatment (5 ug per ml, 2 h) followed
by anti-Fas antibody, or IFN-y plus TNF-o.
() Dependence of IFN-y plus TNF-o induced
apoptosis on caspase activation demonstrated by
using protease inhibitors, DVED-fmk and ZVAD-
fmk. Results portrayed represent the relative mean
number of apoptotic cells (% cells with sub-G
DNA content, y axis) £ SEM for three
independent experiments.
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Figure 3. Inhibition of NF-xB signaling in keratinocytes results
in diminished or absent induction by IFN-Y and/or TNF-o for
molecular mediators involved in apoptosis. Keratinocytes with
either normal (vector) or NF-kB-repressed (IKBODN) activity
difterentially respond to cytokine stimulation as assessed by Western blot
analysis (upper panels) and RPA (lower panels). Note that whereas normal
keratinocytes (left side panel) upregulate protein and mRNA levels for cell
survival mediators (i.e., TRAF1, c-IAP1, c-IAP2, and p21W3“/uP1),
keratinocytes with repressed NF-kB activity fail to induce these
molecules to the same extent. Results portrayed are representative of one
of two independent experiments. Equivalent loading was confirmed by
using actin  for immunoblots and  glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA for RPA.

added to each sample, mixed gently, and incubated at 4°C for at least 1
h. PI staining was quantitated by running the samples on a Coulter Epics
XL-MCL flow cytometer. Cells with DNA content less than the G/ G
amount of untreated cells were considered apoptotic. In some assays,
apoptosis was measured using Annexin-V/PI staining by following the
manufacturer’s instructions (Beckman-Coulter, Hialeah, FL), and then
the cells analysed using the aforementioned flow cytometer. Results
portrayed represent mean values for three independent experiments, and
in the apoptotic assays results are provided plus/minus standard errors
under the indicated conditions. To identify cell surface expression,
keratinocytes were incubated with the indicated primary monoclonal
antibodies, washed, and resuspended in PBS containing 2% fetal bovine
serum. Fluorescein isothiocyanate (FITC) conjugated secondary antibody
(Biosource International, Hopkinton, MA) was added, and after washing
cells were analyzed by flow cytometry as previously described (Qin ef al,
1999). Statistical analysis was performed and differences were considered
significant using Student’s ¢ test when p <0.05.

RESULTS

Overexpression of IKBUDN blocks cytokine-induced NF-xB
activation  As several different cytokines can activate NF-xB in
various cell types, normal human keratinocytes were examined for
the intranuclear levels of p50 and p65 subunits of NF-kB, as well as
DNA binding, before and after exposure (60 min) to IEN-y (10° U
per ml) and/or TNF-o0 (500 U per ml). Keratinocytes infected
with a vector control (retrovirus containing only linker) had
detectable constitutive levels of IKBo, but there was no detectable
p50, p65, or significant DNA binding (Fig 1, lef side). Exposure to
either IFN-y alone or TNF-o alone, however, produced increased
nuclear levels of p65 and p50, as well as enhanced DNA binding.
Combining IFN-y and TNF-o further enhanced these responses.
By contrast, keratinocytes infected with the IKBoDN-containing
retrovirus had higher constitutive levels of IkBat (reflecting the
resistance to degradation), but there was no constitutive or
inducible levels for either of the p65 and p50 subunits of NF-kB
or DNA binding activity in these cultured keratinocytes with
repressed NF-xB activity (Fig 1, right side). Taken together, these
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results confirm the efficacy of using this retroviral-based protocol to
generate keratinocytes with dysfunctional NF-xB-mediated
signaling. As such, these IKBoDN-infected keratinocytes can
serve as model target cells to simulate the types of epidermal cells
involved in cutaneous carcinogenesis (Van Hogerlinden et al,

1999).

Repression of NF-kB activation renders keratinocytes
susceptible to apoptosis To extend earlier studies (Qin ef al,
1999; Seitz et al, 2000) demonstrating an enhanced susceptibility of
keratinocytes with repressed NF-xB activity to UV-induced
apoptosis, the response to cytokines and death ligands was
explored. Under normal culture conditions, addition of IFN-y or
TNE-o either alone or in combination only induces growth arrest,
but not significant levels of apoptosis in proliferating keratinocytes
(Fig 2). Cell cycle analysis revealed similar patterns of growth arrest
for both normal keratinocytes and those with repressed NF-kB
activity following exposure to IFN-y or TNF-o. The G;:S ratios
for a representative experiment are as follows: control keratinocytes
(linker only), untreated 2.9, after IFN-Y treatment 5.9, after TNF-o.
alone 4.6; IkBaDN-infected keratinocytes, untreated 2.6, after
IFN-y 5.4, after TNF-o treatment 4.6. There is less than 2%
apoptosis amongst keratinocytes either before or 18 h after addition
of these cytokines containing sub-G, DNA content after PI
staining and flow cytometry. By phase contrast microscopy these
keratinocyte cultures also displayed no visual evidence of any
cytopathic effects following addition of IFN-y and/or TNF-o (data
not shown). In keratinocytes infected with the IKBODN-
containing retrovirus, however, whereas there is no spontaneous
apoptosis, addition of TNF-o. but not IFN-Y triggered apoptosis as
the cells become rounded-up and detached from the surface with
membrane blebbing (data not shown), and increased sub-G, DNA
content after PI-FACS analysis (Fig 2). Eight percent of
keratinocytes in the IKBODN cultures become apoptotic after
TNEF-0 exposure, which is an approximately 4-fold increase (p
<0.05) compared to untreated cells. Moreover, when IFN-y is
combined with TNF-o in these keratinocytes with deficient NF-
KB signaling, there was clearly more cytopathic effect visible by
phase contrast microscopy in the culture, and an approximately 12-
fold increase (p <0.05) in cells with sub-Gy DNA content (mean
value 24%).

To determine if this enhanced susceptibility based on IFN-y
pretreatment was specific for the TNF-o-receptor mediated death
pathway, keratinocyte cultures were also exposed to an agonistic
anti-Fas antibody (100 ng per ml) or TRAIL (100 ng per ml).
Figure 2(a) reveals that no increased apoptosis was triggered in
either proliferating keratinocytes with linker or IKBoDN-infected
keratinocytes to either anti-Fas antibody or IEN-y (10> U per ml)
with anti-Fas antibody. To verify the agonistic functional activity of
the CH11 antibody, keratinocytes were pretreated with CHX
(which by itself does not induce apoptosis — data not shown) which
did enhance sensitivity to pro-apoptotic effects of anti-Fas
antibody. By contrast to these anti-Fas results, 18% of normal
keratinocytes underwent apoptosis after exposure to TRAIL, and
keratinocytes with repressed NF-kB activity displayed an even
greater enhanced apoptotic response (p <0.05) to TRAIL
(increased to 38% of keratinocytes with sub-G, DNA content).

To determine if caspase activation was necessary for induction of
IFN-y plus TNF-0 mediated apoptosis under these conditions, two
different protease inhibitors were used. Addition of either DVED-
fink or ZVAD-fink blocked the ability of IFN-y plus TNF-o. to
induce apoptosis in the NF-kB-repressed keratinocyte cultures
(Fig 2b).

Influence of NF-xB activity on cell survival pathway To
begin to explore molecular mechanisms underlying the enhanced
apoptotic susceptibility to IFN-y plus TNF-ot in NF-xB-repressed
keratinocytes, the relative levels of proteins contributing to cell
survival were analyzed. Figure 3 depicts protein (western blot,
upper panel) and mRINA (RPA, lower panel) levels in keratinocytes
with intact (vector control) or repressed (IKBoDN) NEF-xB
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Figure 4. Modulation of death effector molecules in normal and NF-kB-repressed keratinocytes in response to IFN-y and/or TNF-a.
Analysis by both Western blot (left side) and RPA (right side) reveals that, in NF-kB-repressed keratinocytes, the indicated cytokines induced higher
levels of pro-apoptotic mediators such as TRADD and FADD, but not caspase 8. Results portrayed are representative of two independent experiments.
Equivalent loading was confirmed by using actin for immunoblots and GAPDH mRNA for RPA.

activity, before and after exposure to cytokines (24 h treatment for
protein analysis, and 6 h treatment for mRINA analysis). The ability
of IFN-y and/or TNF-o to induce TRAF1 was completely
blocked by IkBaDN-infected keratinocytes, with a lesser degree of
inhibition of TRAF2. Similarly, there was almost complete
inhibition of the IFN-y and/or TNF-o induced levels of
C-IAP2, and to a lesser extent C-IAP1. As TRAF1 and TRAF2
are both required for optimal NF-kB signaling, these reduced levels
may contribute not only to the failure to activate NF-xXB in
response to the cytokines in Fig 1, but also to the absent or low
levels of the antiapoptotic C-IAP proteins depicted in the lower
portion of Fig 3. Levels of p21W* /<Pl were also examined
because induction ofp21wm/Clpl can protect against apoptosis, and
is dependent on NF-xB activation (Javelaud et al, 2000). Figure 3
(upper panel) reveals that, whereas p21 VP! can be induced by
cytokine treatment in vector-control-infected keratinocytes, there
is complete inhibition of p21%*!/“®! induction in keratinocytes
infected with the IKBODN-containing retrovirus. In the next
section we move from cell survival pathways to the death effector
pathways.

Modulation of death effector and related molecules Many
molecular mediators involved in apoptotic signaling have been
discovered that are either directly/indirectly related to TNF
receptor family members or participate in the apoptotic response.
Figure 4 represents an analysis (protein and mRNA levels) for
some of these molecular mediators in normal keratinocytes (vector,
left side) or NF-xB-repressed keratinocytes (IKBODN, right side).
IFN-y and/or TNF-o slightly increased TRADD in control
cultures, which was further enhanced in the NF-xB-repressed
cultures at the protein level, with less change in mRNA levels.
FADD protein levels were significantly increased in NF-xB-
repressed cultures after exposure to IFN-y and/or TNF-o.. IFN-y
exposure consistently enhanced mRNA and protein levels of
caspase 8. This induction of caspase 8 was not dependent on NF-
KB activation, as the IKBoDN-infected cells had a fairly similar
response to the empty-vector-infected cells. As the markedly
enhanced apoptotic susceptibility of the NF-kB-repressed
keratinocytes to IFN-y and TNF-0. may have involved an
additional set of molecular mediators, attention was directed at
the relative levels of DR expression by the keratinocytes.

NF-kB activity and cytokine exposure influences levels of
TNF receptor family members As TNF-o exposure alone
induced a greater apoptosis when NF-kB activation was blocked
(Fig 1), the initial experiments examined the influence of cytokines
on TNF-RI and TNE-RII levels, with particular focus on

Vector Control lxBaDN

TNFRIT

TNFRI

Actin

TNFRII

TNFRI

GAPDH

Figure 5. Differential regulation of TNF-RI versus TNF-RII
expression in normal and NF-xkB-repressed keratinocytes in
response to IFN-y and/or TNF-o. Left side panels portray
keratinocytes infected with empty vector (control) virus, whereas the
right side panel portrays keratinocytes infected with IkBaDN-containing
retrovirus, before and after exposure to IFN-y and/or TNF-a. Cells
were analyzed by western blot (upper panels) and RPA (lower panels) to
detect TNF-RII and TNF-RI protein and mRNA levels, revealing
constitutive presence of TNF-RI but not TNF-RII. Note that NF-xB-
repressed keratinocytes were unable to induce TNF-RII after exposure
to IFN-y plus TNF-o. Equivalent loading was confirmed by using actin
for immunoblots and GAPDH mRNA for RPA.

comparisons/contrasts between normal and NF-kB-repressed
keratinocytes. Figure 5 reveals that TNNF-RI levels were not
significantly influenced by the cytokines in all keratinocytes
examined, irrespective of their NF-xB status. TNF-RII (which
lacks the capacity to trigger apoptosis and hence may serve as a
DcR) was only induced in the normal keratinocytes by IFN-y and
TNF-o, however; such induction of TNF-RII was blocked in the
NEF-xB-repressed keratinocytes.

To more completely characterize other members of the TNF
receptor family, as well as related DcR, additional studies were
conducted. Western blot analysis revealed that TRAIL-R1 (DR4)
was significantly induced only in the NF-kB-repressed keratino-
cytes by cytokine treatment, being particularly prominent after
treatment with IFN-y + TNF-o (Fig 6, upper panel). By contrast
TRAIL-R2 (DR5) levels were constitutively prominent and did
not change after cytokine exposure; and were not influenced by the
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Figure 6. IFN-y induces TRAIL mRNA levels independent of
NF-kB activation, but NF-kB-repressed keratinocytes fail to
constitutively express the TRAIL DcR1 but enhance their
expression of TRAIL-R1 (DR4) after IFN-y plus TNF-o
exposure. Left side panel represents vector-control-infected keratinocytes,
and right side panel represents keratinocytes infected with IKBODN-
containing retrovirus. Note increased protein levels for TRAIL-RI
(DR4) in the NF-kB-repressed keratinocytes after exposure to IFN-y
plus TNF-0, which is not induced in normal keratinocytes. Also, RPA
demonstrates the lower cytokine-inducible mRNA level for TRAIL-R3
(DcR1) in the NF-xB-repressed keratinocytes. Many other pro-
apoptotic mediators such as Fas, DR3 (receptor for Apo 3 L), TRAIL-
R1 (DR4), and TRAIL-R2 (DR5) are constitutively present and not
significantly changed by cytokine exposure or status of NF-KB activity.

NF-kB activity in cultured keratinocytes. In addition to these
protein levels, mRNA levels were assessed using RPA. Beginning
with Fas (i.e., CD95), IFN-y, but not TNF-q, induced CD95
mRNA levels, and the presence of the IKBaDN did not influence
this induction (Fig 6, lower panel). Under no conditions was
CD95L mRNA detected in the keratinocyte cultures. This,
together with the lack of response of either normal or NF-kB-
repressed keratinocytes to anti-Fas antibody (either with or without
IFN-y), indicates that it is unlikely for either CD95 or CD95L to
participate in this experimental system (also see Fig 9).

The DR3 (receptor for Apo 3 L/ TWEAK), TRAIL-R1 (DR4),
and TRAIL-R2 (DR5) mRNA levels were constitutively present
in both normal and NF-kB-repressed keratinocytes, but there was
no significant change after exposure to the cytokines (Fig 6). The
differences between the protein and mRNA levels for TRAIL-R 1
(DR4) suggest that this DR expression is regulated primarily by
post-transcriptional events. IFN-y induced TRAIL mRNA, either
with or without concomitant TNF-a, in both normal and NF-kB-
repressed keratinocytes. Interestingly, whereas normal keratinocytes
constitutively expressed TRAIL-R3 (DcR1), which is a DcR for
TRAIL (i.e., TRID) that lacks an intracellular death domain, the
NF-kB-repressed keratinocytes had no detectable transcripts using
RPA (Fig 6). Moreover, whereas IFN-y either with or without
concomitant TNF-o could induce DcR 1 in normal keratinocytes,
only a slight induction of TRAIL-R3 (DcR 1) was observed in the
NF-kB-repressed keratinocytes following IFN-y or IFN-y plus
TNEF-0. exposure. To explore the actual cell surface levels of
TRAIL, keratinocytes before and then 24 h after exposure to IFN-
Y (10 U per ml) were examined by flow cytometry (FACS).
Figure 7 reveals constitutive detection of TRAIL on approxi-
mately 30% of normal keratinocytes. After IFN-y treatment, 75% of
keratinocytes were positive for TRAIL, with a 2-fold increase in
the mean channel fluorescence. The induction of ICAM-1 by IFN-
Y served as a positive control, with CD3 staining a negative
(isotype) control.

Determination of cell surface levels of TNF receptor family
members By FACS analysis, both normal and NF-kB-repressed
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TRAIL (Untreated Keratinocytes)

TRAIL (IFN-y Treated Keratinocytes)

,«——— ICAM-1 (IFN-y Treated Keratinocytes)
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CD3 (IFN-y Treated Keratinocytes)

10° o’ 102
Log Fluorescence Intensity

Figure 7. Flow cytometric analysis to detect cell surface levels of
TRAIL. FACS analysis reveals low but detectable constitutive surface
levels of TRAIL, which are increased 2-fold after keratinocytes are
treated with IFN-y (24 h, 10> U per ml). Note the lack of staining for
CD3 (negative isotype control monoclonal antibody) and higher surface
levels of ICAM-1 induced by IFN-y treatment.

keratinocytes were found to express identical cell surface levels of
TNEF-RI, but no detectable TNF-RII. Figure 8(4) reveals a
representative FACS profile for normal keratinocytes. Figure 8(B)
illustrates the expression of various TRAIL-related DR and DcR as
indicated for keratinocytes infected with empty retroviral vector
(linker, left side panels) and for keratinocytes infected with IKBaDN
retroviral vector (right side panels). Normal keratinocytes express
both DR (TRAIL-R1, DR4, and TRAIL-R2, DR5) as previously
described (Leverkus et al, 2000). Compared to control keratinocytes
(linker), keratinocytes with repressed NF-kB activity display
enhanced expression of TRAIL-R2 (DR4) levels, whereas the
repressed NF-xB keratinocytes express either low or undetectable

levels of DcR (DcR 1, DcR?2).

Delineation of functional role for FADD and TRAIL in IFN-
Y plus TNF-00 mediated apoptotic response in NF-xB-
repressed keratinocytes To establish that the IFN-y plus TNF-
o mediated apoptotic response of NF-kB-repressed keratinocytes
was mediated by specific cell surface DR, several experimental
approaches were undertaken. First, keratinocytes initially infected
with the IKBODN retroviral vector were secondarily infected with
an additional retroviral vector containing a FADD-DN-bearing
construct. Figure 9(A4) (upper panel) reveals a western blot analysis
confirming the overproduction of the FADD DN protein in
keratinocytes infected by the relevant retroviral construct. Whereas
addition of IFN-y plus TNF-o induced apoptosis in the NF-xB-
repressed keratinocytes (IKBADN, Fig 9A4, lower panel), infection
by the FADD DN in either linker cells or cells previously infected
with IKBODN significantly reduced the apoptotic response from
30% to 8% for the double infected cells.

To further probe the specific DR involved, several receptor
fusion proteins with inhibitory activity were utilized. Figure 9(B)
(left side) reveals the ability of the TRAIL-DRS5 receptor fusion
protein (TR:Fc) to completely inhibit the apoptotic response to
TRAIL in NF-kB-repressed keratinocytes, whereas no inhibition
was seen using the TNF-RI receptor fusion protein (TF:Fc), or the
FasL:Fc fusion protein, or the control CTLA4:Ig fusion protein.
When NF-kB-repressed keratinocytes were preincubated for 2 h
with either TR:Fc or TF:Fc, but not CTLA4:Ig, the apoptotic
response as assessed at 24 h (mid panel) or 48 h (right side) was
significantly reduced, as shown in Fig 9(B). Combining the TR:Fc
and TF:Fc returned the IFN-Y plus TNF-o apoptotic response to
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Figure 8. Flow cytometric analysis to detect cell surface levels of TNF family members. (A) Upper panel reveals prominent surface expression
for TNF-RI but not TNF-RII on cultured keratinocytes (CD3 represents isotype control staining). (B) Lower panel reveals surface staining profile for
keratinocytes infected with empty retroviral vector (linker) (left side) compared to keratinocytes infected with IKBOUDN retroviral vector (right side).
Note the enhanced expression of TRAIL-R1 (DR4) and absent DcR1 and DcR2 on the NF-kB-repressed keratinocytes compared to normal

keratinocytes.

near baseline levels. Taken together, these functional results
indicate that the apoptosis induced by IFN-y plus TNF-o in NF-
KB-repressed keratinocytes is related to the TRAIL and TNF-o
mediated death pathways.

DISCUSSION

Many members of the TNF receptor family (Ashkenazi and Dixit,
1998; 1999) are involved in regulating the apoptotic response of

keratinocytes to various stimuli (reviewed in Kothny-Wilkes et al,
1999; Teraki and Shiohara, 1999; Wehrli et al, 2000). In this study,
we focused on the ability of two different primary cytokines
implicated in many benign and malignant skin diseases (i.e., [FN-y
and TNF-0) to trigger apoptosis. This experimental system
featured normal proliferating keratinocytes, as well as proliferating
keratinocytes with dysfunctional NF-kB signaling created by a
mutant KB molecule that could resist degradation and hence
sequester p65 and p50 in the cytoplasm, thereby preventing
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Figure 9. Immunoblot analysis and
functional studies demonstrating FADD and
TRAIL dependence of the apoptotic
response of NF-kB-repressed keratinocytes
to IFN-Y plus TNF-o. (A) Upper panel reveals
western blot demonstrating enhanced expression
of FADD in keratinocytes infected with FADD-
DN-containing retrovirus compared to linker
control.  (A) Lower panel reveals functional
apoptosis assay (PI/sub-Gy) in which the IFN-y
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translocation to the nucleus (Fig 1). The most important functional
result in this report is the enhanced susceptibility of keratinocytes
with repressed NF-KB activity to induction of apoptosis by TNF-o.
(Fig 2). Moreover, when IFN-y, which by itself did not induce
apoptosis, was combined with TNF-a, only the NF-xB-repressed
keratinocytes were synergistically triggered to rapidly become
apoptotic (within 18 h; Fig 2). Similarly, the NF-kB-repressed
keratinocytes were also more susceptible to TRAIL-induced
apoptosis compared to normal keratinocytes (Fig 2). By using
receptor fusion proteins, we could demonstrate that the IFIN-¥ plus
TNEF-0 mediated apoptosis in NF-kB-repressed keratinocytes was
dependent on endogenously produced TRAIL with no participa-
tion of the Fas/FasL apoptotic pathway (Fig 9).

These results confirm and extend earlier studies in which
keratinocytes that were either pharmacologically or genetically
altered to repress NF-xB activity had increased sensitivity to UV-
light-induced apoptosis (Qin et al, 1999), as had immortalized
HaCaT cells with disrupted NF-B signaling (Chaturvedi et al,
2001). An important role for caspase participation was demon-
strated by use of various caspase inhibitors (Fig 2), and by the
ability of IFN-Y to increase caspase 8 levels (Fig 4). Recently, an

+IFN-y + TNF
24 hr 24 hr 48 hr

independent group also observed that IFN-Y can enhance caspase 8
levels and thereby sensitize tumor cells to a DR apoptotic program
(Ruiz-Ruiz et al, 2000). The inability of IFN-y by itself to induce
apoptosis in normal keratinocytes despite increasing TRAIL may
reflect the concomitant expression of DcR.

From a mechanistic viewpoint, several results revealed a
potential role for the modulation of various DR and DcR, as
well as NF-xB-dependent cell survival gene products, in this
experimental system. Beginning with NF-xB-dependent anti-
apoptotic proteins, it was clearly demonstrated by using the
degradation-resistant IkBOl-containing retroviral vector, that
keratinocytes with repressed NF-kB activity failed to induce
their C-TAP2 levels after IFN-y plus TNF-o exposure (Fig 3).
In addition, the inability of NF-kB-repressed keratinocytes to
induce p21™W*/<P s similar to an earlier report demonstrating
the importance of p21W* /<! in antagonizing the apoptotic
effect of TNF-o in an NF-kB-dependent fashion (Javelaud et
al, 2000). Furthermore, the inability of the NF-kB-repressed
keratinocytes to significantly enhance their TRAF1 levels could
create a vicious cycle as optimal NF-kB activation via TNF-RI
requires TRAF1 and TRAF2 (Wang et al, 1998).
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‘Whereas IFN-y plus TNF-0. strongly induced DcR TNF-RII in
normal keratinocytes but not in NF-kB-repressed keratinocytes
(Fig 5), we were unable to detect any surface expression for TNF-
RIT (despite easily detected TNF-RI) on these cultured keratino-
cytes (Fig 7). Several other previous investigators have also failed to
detect TNF-RII on the surface of keratinocytes (Kristensen et al,
1993; Trefzer et al, 1993; Tobin et al, 1998). Thus, the functional
significance of the presumed induction of intracellular levels is
unknown at this time, although Gaeta et al (2000) have observed in
endothelial cells that intracellular TNF receptors may influence
receptor desensitization. Given the presence of an NF-xB binding
site in the TNF-RII promoter (Santee and Owen-Schaub, 1996),
our findings using keratinocytes (Fig 5) were not entirely unex-
pected. In a different experimental system it was previously
observed that IFN-Y could rescue a malignant cell line from TNF-
o-induced apoptosis by upregulation of TNFE-RII (Horie et dl,
1999).

Another contributing molecular mechanism to be considered is
the TRAIL-mediated pathway, rather than the TNF-o-mediated
pathway. As seen in Fig 6, IFN-y could induced markedly elevated
levels of TRAIL mRNA in a non-NF-kB dependent fashion, but
the NF-kB-repressed keratinocytes were distinguished from nor-
mal keratinocytes by their failure to constitutively express TRAIL
DcR1. Indeed, the levels of TRAIL-R3 (DcR1) mRNA 6 h after
exposure to IFN-y plus TNF-o in the NF-kB-repressed
keratinocytes revealed that they barely reached the constitutive
levels in normal keratinocytes. By flow cytometry, the NF-xB-
repressed keratinocytes were characterized by relatively higher
levels of DR, without detectable concomitant DcR (Fig 8),
confirming and extending the RPA and western blot analyses
(Fig 6). The ability of IFN-y to enhance cell surface levels of
TRAIL was observed by flow cytometry (Fig 7). Studies are under
way to characterize the biologic properties of TRAIL produced by
keratinocytes (i.e., in the absence and presence of TNF-), because
we recently observed highly distinctive apoptotic responses of
keratinocytes to various preparations of TRAIL (Qin et al, 2001).
Another group has also demonstrated that TRAIL expressed by
epidermal keratinocytes is biologically active and can trigger
apoptosis of indicator cell lines (Bachmann et al, 2001).

Taken together, these quantitative RINA and protein levels
combined with functional studies suggest the following scenario.
When normal keratinocytes are infected by a retrovirus containing
mutant IKBol cDNA, the infected keratinocytes with repressed NF-
KB activity undergo several phenotypic and molecular changes,
including the following. (i) Constitutive and cytokine-inducible
NF-kB levels are decreased, resulting in decreased antiapoptotic
gene products. (ii) A vicious cycle is created such that subsequent
NF-kB signaling is further disrupted by inadequate levels of
TRAF-1/TRAF-2. (iii) Important TRAIL DcR such as DcR-1
and DcR-2 disappear, whereas TRAIL DR are upregulated
(Ashkenazi and Dixit, 1999). Hence, when various pro-apoptotic
stimuli are present, such as delivered by IFN-y (which can enhance
TRAIL) coupled with TNF-a, the repressed NF-kB cells are
unable to mobilize the antiapoptotic constituents and succumb to
the pro-apoptotic signals delivered through the DR, including
TNEF-RI and TRAIL DR4/DR5, in the setting of enhanced
FADD and caspase 8 levels (Kuang ef al, 2000; Sprick et al, 2000).
The enhanced susceptibility induced by IFN-y did not appear to be
a generalized phenomenon, because pretreatment with IFN-y did
not create any apoptotic response triggered through the Fas
receptor.

Based on these results, it may be possible to devise new
treatments for skin cancer to take advantage of the enhanced
susceptibility of NF-kB-repressed keratinocytes to apoptosis
induced by IFN-y plus TNF-a.. For example, if delivery of agents
that could interfere with NF-kB signaling could be introduced into
tumor cells (Duffey et al, 1999), the local immune response that
features production of IFN-y and TNF-o could be more effective
at triggering apoptosis in the tumor cells. Such an approach has
been successfully developed in animal models using TNF-o to
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overcome the NF-kB activation mediated resistance to apoptosis
following conventional chemotherapy (Wang ef al, 1999).

Progress in this area may be impeded by the complexity of the
system. In normal keratinocytes, activation of NF-KB is associated
with growth arrest; thus keratinocytes with impaired NF-kB
signaling would be expected to display an enhanced proliferative
response, but at the same time be rendered more susceptible to
apoptosis (Seitz et al, 1998; 2000). It has been demonstrated that
transgenic mice engineered to have selective inhibition of NF-kB
signaling (using a mutant IKBat cDNA) in epidermal keratinocytes
not only have the predicted enhanced susceptibility of keratinocytes
to apoptosis, but surprisingly are prone to develop squamous cell
carcinoma (Van Hogerlinden et al, 1999). Of interest, whereas
TNEF-o levels were also unexpectedly elevated in the skin of these
mice, Van Hogerlinden et al (1999) suggest that there may be a
concomitant impaired immune response. It will be intriguing to
determine if such an altered immune response includes defective
IFN-y levels, which could explain why the tumor cells with
repressed NF-kB activity could flourish, rather than be susceptible
to the synergistic pro-apoptotic response of the combination of
IFN-y plus TNF-o as documented in our report. In any event,
these in vivo results warrant caution in extrapolating in vitro data,
and there may be other surprises that emerge during attempts to
unravel the molecular mechanisms that underlie the role of
apoptotic signaling during cutaneous carcinogenesis, and the use
of TRAIL or IFN-y plus TNF-o in therapeutic settings to combat
skin cancer.

The authors thank Immunex Corporation for providing LZ-TRAIL and other
reagents, and Crystal Tabor, Heide Bauer, and Brian Bonish for preparation of

figures and manuscript.

REFERENCES

Aragane Y, Kulms D, Metze D, Wilkes G, Poppelmann B, Luger TA, Schwarz T:
Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1)
independently of its ligand CD95L. J Cell Biol 140:171-182, 1998

Arnold R, Seifert M, Asadullah K, Volk HD: Crosstalk between keratinocytes and T
lymphocytes via Fas/Fas ligand interaction: modulation by cytokines. J Immunol
162:7140-7147, 1999

Ashkenazi A, Dixit VM: Death receptors signaling and modulation. Science
281:1305-1308, 1998

Ashkenazi A, Dixit VM: Apoptosis control by death and decoy receptors. Curr Opin
Cell Biol 11:255-260, 1999

Bachmann F, Buechner SA, Wernli M, Strebel S, Erb P: Ultraviolet light
downregulates CD95 ligand and TRAIL receptor expression facilitating
actinic keratosis and squamous cell carcinoma formation. J Invest Dermatol
117:59-66, 2001

Beg AA, Baltimore D: An essential role for NF-xB in preventing TNF-0-induced
cell death. Science 274:784-787, 1996

Brash DE, Ziegler A, Jonason AS, Simon JA, Kunala S, Leffel DJ: Sunlight and
sunburn in human skin cancer: p53, apoptosis and tumor promotion. J Invest
Dermatol Symp Proc 1:136-142, 1996

Chaturvedi V, Qin JZ, Denning MF, Choubey D, Diaz MO, Nickoloft BJ:
Apoptosis in proliferating, senescent, and immortalized keratinocytes. J Biol
Chem 274:23358-23367, 1999

Chaturvedi V, Qin J-Z, Denning MF, Choubey D, Diaz MO, Nickoloff BJ:
Abnormal NF-kB signaling pathway with enhanced susceptibility to apoptosis
in immortalized keratinocytes. J Dermatol Sci 26:67-78, 2001

Dembic Z, Loetscher H, Gubler U, et al: Two human TNF receptors have similar
extracellular, but distinct intracellular domain sequences. Cytokine 2:231-239,
1990

Denning MF, Wang Y, Nickoloff BJ, Wrone-Smith T: Protein kinase C delta is
activated by caspase-dependent proteolysis during ultraviolet radiation-induced
apoptosis of human keratinocytes. J Biol Chem 273:29995-30002, 1998

Duffey DC, Chen Z, Dong G, et al: Expression of a dominant-negative mutant
inhibitor —kBat of nuclear factor —kB in human head and neck squamous cell
carcinoma inhibits survival, proinflammatory cytokine expression, and tumor
growth in vivo. Cancer Res 59:3468-3474, 1999

Eggermont A, Manusama E, Tenhagen TLM: Regional application of TNF- in the
treatment of cancer: a preclinical—clinical interactive program. J Inflamm
47:104-113, 1996

Fanger NA, Maliszewski CR, Schooley K, Griftith TS: Human dendritic cells
mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL). J Exp Med 190:1155-1164, 1999

Feinstein E, Kimchi A, Wallach D, Boldin M, Varfolomeev E: The death domain: a



VOL. 117, NO. 4 OCTOBER 2001

module shared by proteins with diverse cellular functions (letter). Trends
Biochem Sci 20:342-344, 1995

Gaeta ML, Johnson DR, Kluger MS, Pober JS: The death domain of tumor necrosis
factor receptor 1 is necessary but not sufficient for Golgi retention of the
receptor and mediates receptor desensitization. Laboratory Invest 80:1185-1194,
2000

Gutierrez-Steil C, Wrone-Smith T, Sun X, Krueger JG, Coven T, Nickoloftf BJ:
Sunlight-induced basal cell carcinoma tumor cells and ultraviolet-B irradiated
psoriatic plaques express Fas ligand. J Clin Invest 101:33-39, 1998

Henseleit U, Zhang J, Wanner R, Hasse I, Kolde G, Rosenbach T: Role of p53 in
UVB-induced apoptosis in human HaCaT keratinocytes. | Invest Dermatol
109:722-727, 1997

Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ancathaswamey HN, Owen-Schaub
LB: Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science
285:898-900, 1999

Horie T, Dobanshi K, lizuka K, Yoshii A, Shimzu Y, Nakazawa T, Mori M:
Interferon-y rescues TNF-0-induced apoptosis mediated by up-regulation of
TNFR2 on EoL-1 cells. Exp Hematol 27:512-519, 1999

Hu Y, Baud V, Delhase M, ef al: Abnormal morphogenesis but intact IKK activation
in mice lacking the IKKot subunit of IxB kinase. Science 284:316-320, 1999

Javelaud D, Wietzerbin J, Delattre O, Besancon F: Induction of p21W*!/CP! by
TNFa requires NF-xB activity and antagonizes apoptosis in Ewing tumor
cells. Oncogene 19:61-68, 2000

Kothny-Wilkes G, Kulms D, Poppelmann B, Luger TA, Kubin M, Schwarz T:
Interleukin-1 protects transformed keratinocytes from tumor necrosis factor-
related apoptosis-inducing ligand. J Biol Chem 273:29247-29253, 1998

Kothny-Wilkes G, Kulms D, Luger TA, Kubin M, Schwarz T: Interleukin-1 protects
transformed  keratinocytes from tumor necrosis factor-related apoptosis-
inducing ligand- and CD95-induced apoptosis but not from ultraviolet
radiation-induced apoptosis. J Biol Chem 274:28916-28921, 1999

Kristensen M, Chu CQ, Eedy DJ, Feldmann M, Brennan FM, Breathnach SM:
Localization of tumor necrosis factor alpha (TNF-alpha) and its receptors in
normal and psoriatic skin: epidermal cells express the 55-kD but not the 75-kD
TNEF receptor. Clin Exp Immunol 94:354-362, 1993

Kuang AA, Diehl GE, Zhang J, Winoto A: FADD is required for DR4- and DR5-
mediated apoptosis. J Biol Chem 275:25065-25068, 2000

Leverkus M, Yaar M, Gilchrest BA: Fas/Fas ligand interactions contribute to UV-
induced apoptosis in human keratinocytes. Exp Cell Res 232:255-262, 1997

Leverkus M, Neumann M, Mengling T, Ranch CT, Brocker E-B, Krammer PH,
‘Walczak H: Regulation of tumor necrosis factor-related apoptosis-inducing
ligand sensitivity in primary and transformed human keratinocytes. Cancer Res
60:553-559, 2000

Lewis M, Tartaglia LA, Lee A, et al: Cloning and expression of cDNAs for two
distinct murine tumor necrosis factor receptors demonstrate one receptor is
species specific. Proc Natl Acad Sci 88:2830-2836, 1991

Li Q, Lu Q, Hwang JY, Buscher D, Lee KF, Izpisua-Belmonte JC, Verma IM:
IKK1-deficient mice exhibit abnormal development of skin and skeleton.
Genes Dev 13:1322-1328, 1999

Nickoloft BJ: Cytokine network in psoriasis. Arch Dermatol 127:871-874, 1991

Nickoloft BJ, Chaturvedi V, Bacon PE, Qin J-Z, Denning MF, Diaz MO: Id-1
delays senescence but does not immortalize keratinocytes. | Biol Chem
275:27501-27504, 2000

Nickoloft BJ, Denning M: Life and death signaling in epidermis following a planned
cell death pathway involving a TRAIL that does not lead to skin cancer. J Invest
Dermatol 117:1-2, 2001

Pan G, NiJ, Wei YF, Yu G, Gentz R, Dixit VM: An antagonist decoy receptor and a
death domain-containing receptor for TRAIL. Science 277:815-818, 1997

Park YC, Burkitt V, Villa AR, Tong L, Wu H: Structural basis for self-association
and receptor recognition of human TRAF2. Nature 398:533-538, 1999

Pena JC, Rudin CM, Thompson CB: A Bcl-x; transgene promotes malignant
conversion of chemically initiated skin papillomas. Cancer Res 58:2111-2116,
1998

Qin J-Z, Chaturvedi V, Denning MF, Choubey D, Diaz MO, Nickoloff BJ: Role of
NF-kappa B in the apoptotic-resistant phenotype of keratinocytes. J Biol Chem
27:37957-37964, 1999

Qin J-Z, Chaturvedi V, Bonish B, Nickoloft BJ: Avoiding premature apoptosis of
normal epidermal cells. Nat Med 7:385-386, 2001

Rehemtulla A, Hamilton CA, Chinnigan AM, Dixit VM: Ultraviolet radiation-
induced apoptosis is mediated by activation of CD95 (Fas/APO-1). | Biol Chem
272:25783-25786, 1997

Rodriguez-Villanueva J, Greenhalgh D, Wang X]J, et al: Human keratin-1.bcl-2

NE-kB PROTECTS KERATINOCYTES AGAINST APOPTOSIS 907

transgenic mice aberrantly express keratin 6, exhibit reduced sensitivity to
keratinocyte cell death induction, and are susceptible to skin tumor formation.
Oncogene 16:853-863, 1998

Ruiz-Ruiz C, Munoz-Pinedo C, Lopez-Rivas A: Interferon-y treatment elevates
caspase-8 expression and sensitizes human breast tumor cells to a death
receptor-induced mitochondria-operated apoptotic program. Cancer Res
60:5673-5680, 2000

Santee SM, Owen-Schaub LB: Human tumor necrosis factor receptor p75/p80
(CD120b) gene structure and promoter characterization. J Biol Chem
271:21151-21159, 1996

Schwarz A, Bhardwaj R, Aragane Y, et al: Ultraviolet-B induced apoptosis of
keratinocytes: evidence for partial involvement of tumor necrosis factor-o. in
the formation of sunburn cells. J Invest Dermatol 104:922-927, 1995

Seitz CS, Lin Q, Deng H, Khavari PA: Alterations in NF-xB function in transgenic
epithelial tissue demonstrate a growth inhibitory role for NF-xB. Proc Natl Acad
Sci USA 95:2307-2312, 1998

Seitz CS, Freiberg RA, Hinata K, Khavari PA: NF-xB determines localization and
features of cell death in epidermis. J Clin Invest 105:253-260, 2000

Sheikh MS, Antinore MJ, Huang Y, Formace AJ Jr: Ultraviolet-irradiation-induced
apoptosis is mediated via ligand independent activation of tumor necrosis factor
receptor 1. Oncogene 17:2555, 1998

Sheridan JP, Marsters SA, Pitti RM, ef al: Control of TRAIL-induced apoptosis by a
family of signaling and decoy receptors. Science 277:818-821, 1997

Sprick MR, Weigand MA, Rieser E, et al: FADD/MORT1 and caspase-8 are
recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated
by TRAIL receptor 2. Immunity 12:599-609, 2000

Takeda K, Takeuchi O, Tsujimura T, ef al: Limb and skin abnormalities in mice
lacking IKKot. Science 284:383-316, 1999

Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MJ, Goeddel DV: The
two different receptors for tumor necrosis factor mediate distinct cellular
responses. Proc Natl Acad Sci USA 88:9292-9296, 1991

Tartaglia LA, Goeddel DV: Two TNF receptors. Immunol Today 13:151-153, 1992

Teraki Y, Shiohara Y: Apoptosis and the skin. Eur | Dermatol 9:413—426, 1999

Thompson CF: Apoptosis in the pathogenesis and treatment of disease. Science
267:1456-1462, 1995

Tobin D, van Hogerlinden M, Toftgard R: UVB-induced activation of tumor
necrosis factor (TNF) receptor 1/TNF receptor-associated factor-2 mediates
activation of Rel proteins. Proc Natl Acad Sci USA 95:565-569, 1998

Trefzer U, Brockhaus M, Lotscher H, et al: The 55-kDD tumor necrosis factor
receptor on human keratinocytes is regulated by tumor necrosis factor-alpha
and by ultraviolet B radiation. J Clin Invest 92:462—470, 1993

Tron VA, Trotter MJ, Tang L, Krajewska M, Reed JC, Ho VC, Li G: p53-regulated
apoptosis is differentiation dependent in ultraviolet B-irradiated mouse
keratinocytes. Am J Pathol 153:579-585, 1998

Van Antwerp DJ, Verma IM: Signal-induced degradation of IkBou: association with
NF-xB and the PEST sequence in IKBa! are not required. Science 274:787-789,
1996

Van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgard R: Squamous cell
carcinomas and increased apoptosis in skin with inhibited rel/nuclear factor
—KB signaling. Cancer Res 59:3259-3303, 1999

Walczak H, Degli-Esposti MA, Johnson RS, et al: TRAIL-R2: a novel apoptosis-
mediating receptor for TRAIL. EMBO J 16:5386-5397, 1997

Walczak H, Miller RE, Ariail K, et al: Tumoricidal activity of tumor necrosis factor
related apoptosis-inducing ligand in vive. Nat Med 5:157-163, 1999

Wang CY, Mayo MW, Baldwin AS Jr: TNF- and cancer therapy-induced apoptosis:
potentiation by inhibition of NF-xB. Science 274:784-787, 1996

Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr: NF-kappaB
antiapoptosis: induction of TRAF1 and TRAF2 and ¢-IAP1 and c-IAP2 to
suppress caspase-8 activation. Science 281:1680-1683, 1998

Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr: Control of inducible
chemoresistance: enhanced anti-tumor therapy through increased apoptosis
by inhibition of NF-kappaB. Nature Med 5:412—417, 1999

‘Wehrli P, Viard I, Bullani R, Tschopp J, French LE: Death receptors in cutaneous
biology and disease. J Invest Dermatol 115:141-148, 2000

‘Wrone-Smith T, Johnson T, Nelson B, Boise LH, Thompson CG, Nunez G,
Nickoloft BJ: Discordant expression of Bel-x and Bcl-2 by keratinocytes in vitro
and psoriatic keratinocytes in vivo. Am J Pathol 146:1079-1088, 1995

Wrone-Smith T, Mitra RS, Thompson CB, Jasty R, Castle VP, Nickoloff BJ:
Keratinocytes derived from psoriatic plaques are resistant to apoptosis compared
with normal skin. Am J Path 151:1321-1329, 1997





