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Abstract

We study nonlinear approximation in Lp([Rid) (0<p< oo, d>1) from (a) n-term rational
functions, and (b) piecewise polynomials generated by different anisotropic dyadic partitions
of R?. To characterize the rates of each such piecewise polynomial approximation we
introduce a family of smoothness spaces (B-spaces) which can be viewed as an anisotropic
variation of Besov spaces. We use the B-spaces to prove Jackson and Bernstein estimates and
then characterize the piecewise polynomial approximation by interpolation. Our main
estimate relates n-term rational approximation with piecewise polynomial approximation in
L,(R?). This result enables us to obtain a direct estimate for n-term rational approximation in
terms of a minimal B-norm (over all dyadic partitions). We also show that the Haar bases
associated with anisotropic dyadic partitions of R? can be successfully utilized for nonlinear
approximation. We give an effective algorithm for best Haar basis or best B-space selection.
© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Nonlinear approximation; Multivariate piecewise polynomial approximation; Rational
approximation

1. Introduction

The theory of univariate rational approximation on R is a relatively well
developed area in approximation theory (see, e.g., [20]). At the same time, the theory
of multivariate rational approximation is virtually not existing yet. A reason for this
is that it is extremely hard to deal with rational functions of the form R = P/Q,
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where P and Q are algebraic polynomial in d variables (d>1). Very little is known
about this type of rational functions. It seems natural to consider approximation
from the smaller set of n-term rational functions or atomic rational functions that is
the set of all rational functions of the form

d
r;  with r; of the form r(x) = H __axet bk (1.1)

R = 5 5
1 o1 (k= o)™ + B

n
J=

As it will be shown in this article, this is a powerful tool for approximation and at the
same time it is more tangible than the former.

It is also interesting to consider approximation from multivariate rational
functions of the form R =377, r;, where ; are dilates and shifts of a single radial

partial fraction such as r(x) = 1/(1 + |x|*). In [12], we consider such approximation
and prove a direct estimate in terms of the usual Besov norm (exactly the same as the
one used in nonlinear approximation from wavelets or regular splines). To prove
this result, we first constructed good bases consisting of dyadic shifts and dilates
of a single rational function and then utilized them to nonlinear approximation (see
also [19]).

In this article, we take a different approach to the problem. We prove an
estimate that relates the multivariate n-term rational approximation to a broad
class of nonlinear piecewise polynomial approximation in L,,(Rd) (0<p<o0). In
particular, this result relates the n-term rational approximation to nonlinear
approximation from piecewise polynomials generated by any anisotropic dyadic
partition of R?. Then we utilize this relationship to obtain an estimate for
n-term rational approximation in terms of the minimal smoothness norm (over all
dyadic partitions). These estimates extend to the multivariate case results from
[15,17].

As a consequence of our approach, a substantial part of this article is
devoted to nonlinear approximation from piecewise polynomials over dyadic
partitions which is interesting in its own right. To the best of our knowledge
this problem was first posed explicitly in [14, Section 5.4.3]. Note that we
consider not one but a collection of approximation processes each of them
determined by a dyadic partition of RY. The ultimate goal of the theory of
any approximation scheme is to characterize the rates of approximation in terms
of certain smoothness conditions. To characterize the rates of piecewise
polynomial approximation generated by an arbitrary dyadic partition, we introduce
a family of new smoothness spaces (B-spaces) which can be viewed as an anisotropic
variation of Besov spaces. We use the B-spaces to prove Jackson and Bernstein
estimates and then characterize the approximation by interpolation. In [18], we
proved that in the univariate case a scale of Besov spaces governs the rates of
nonlinear piecewise polynomial approximation. Similar Besov spaces have also been
used for characterization of multivariate nonlinear (regular) spline L,-approxima-
tion in [5] (I1<p< o) and [7] (p = o©), see also [11]. Here we extend and refine these
results.
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In addition to this, we consider the library of anisotropic Haar bases which are
naturally associated with anisotropic dyadic partitions of R?. Since every anisotropic
Haar basis is an unconditional basis in L, (1<p<oco) and characterizes the
corresponding B-spaces (see Section 5), it provides an effective tool for nonlinear
approximation from piecewise constants. Moreover, as we show in Section 5, in a
natural discrete setting, there is a practically feasible algorithm for best Haar basis or
best B-space selection for any given function. In this way, the approximation
procedure can effectively be completed.

A leading idea in this article is that the classical smoothness spaces are not suitable
for measuring the smoothness of the functions in highly nonlinear approximation
such as multivariate rational or piecewise polynomial approximation. More
sophisticated means of measuring the smoothness are needed. We believe that, in
some cases, the smoothness should be measured by means of a collection of
smoothness space scales (like the B-spaces).

The outline of the article is the following. In Section 2, we introduce the B-spaces
and establish some of their basic properties. In Section 3, we prove Jackson and
Bernstein estimates and then characterize the nonlinear piecewise polynomial
approximation generated by an arbitrary anisotropic dyadic partition of R?. In
Section 4, we prove an estimate that relates the n-term rational approximation to
nonlinear piecewise polynomial approximation and, as a consequence, we obtain a
direct estimate for rational approximation in terms of the minimal B-norm. Section 5
is devoted to the anisotropic Haar bases. We give an algorithm for best Haar basis or
best B-space selection. In Section 6, we present our view point on some of the
principle questions concerning nonlinear approximation and pose some open
problems. Section 7 is an appendix, where we give the proofs of some auxiliary
statements from Section 2 and the lengthy proof of an interpolation result from
Section 3.

Throughout this article, the positive constants are denoted by ¢, ¢y, ... and they
may vary at every occurrence, 4 ~ B means ¢;B< A< c;B; I denotes the set of all
algebraic polynomials in d variables of total degree <k. For a set EcRY, 1 denotes
the characteristic function of E, and |E| denotes the Lebesgue measure of E. Since we
systematically work with quasi-normed spaces such as L,, 0<p<1, “norm” will
stand for “norm” or “‘quasi-norm”.

2. B-spaces

In this section, we introduce a family of smoothness spaces (B-spaces) which
will be wused for the characterization of nonlinear piecewise polynomial
approximation (Sections 3 and 5) and in n-term rational approximation (Section
4). These spaces can be defined on R? (d>1) or on an arbitrary box Q in R’.
For convenience, we shall only consider the case when |Q| = 1 and Q is with sides
parallel to the coordinate aces. We shall define the B-spaces by using local
polynomial approximation over boxes from nested anisotropic dyadic partitions of
R? or Q.
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Anisotropic dyadic partitions of R? or Q: We call

P = U P,

meZ

a dyadic partition of R? with levels {,,} if the following conditions are fulfilled:

(a) Every level 2,, is a partition of RY: RY = Ure a2, 1 and £, consists of disjoint
dyadic boxes of the form I =.#| x --- x 4, where each .#; is a semi-open
dyadic interval (#; = [(v — 1)2#,v2")), and |I| = 27"

(b) The levels of # are nested, i.e., 2,,,1 is a refinement of £,,. Thus each I € 2,, has
two children, say, Ji,J> € #,,+1 such that I = J;uJ, and J;nJ, = 0.

(¢) For any boxes I, I" € 2 there exists a box I €2 such that I'ul"<1.

Also, we call 2 =J,,»9 Zn a dyadic partition of Q (|Q| =1) if 2, = {Q}
and the levels {#,,},,-, satisfy conditions (a) and (b) from above with R? replaced
by Q.

The next few remarks will help to understand better the nature of dyadic
partitions. First, condition (c) above is not very restrictive but it prevents £,, from
possible deteriorations as m— — co. This condition implies that in each dyadic
partition 2 of R? there is a single tree structure with set inclusion as the order
relation.

We note that the two children, say, Ji,J,€2,,.1 of any I €%, can be obtain by
splitting I in two equal subboxes in d (d>1) different ways. Therefore, there is a
huge variety of anisotropic dyadic partitions 2 of R? or Q.

A dyadic partition of any box can easily be obtained inductively (by successive
subdividing). For instance, suppose we want to subdivide Q. Assume that the levels
{Z?j}o<j<m have already been defined. We now subdivide each box Ie€Z,, by
“halving” I in one of the d coordinate directions, thus obtaining two new dyadic
boxes which we include in £,,, ;. We process in the same way all boxes from £, and
as a result obtain the next level £,,,; of dyadic boxes.

To construct an anisotropic partition 2 of R?, one can proceed as follows: First,
cover R? by a growing sequence of dyadic boxes [y I; < -, L) =72, R = U/>0 I,
starting from an arbitrary dyadic box [y and growing the consecutive boxes infinitely
many times in all four directions. Second, subdivide each box /; and its sibling
(contained in /;;;) as above.

A typical property of the anisotropic dyadic partitions is that each level 2, of
such a partition 2 consists of dyadic boxes 7 with |I| =27 and at the same time
there could be extremely (uncontrollably) long and narrow boxes in £2,,.

Local polynomial approximation: Fix a box I <R’ and let f e L,(I). Then
E(f.1), = jof If = Pl @1)

is the error of L,(I) approximation to f from I, the set of all algebraic
polynomials of degree <k. The local modulus of smoothness wy(f, ) ) is defined as
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usual by

oi(f, 1), = sup [EHACED]IrRry (2.2)
heR¢

where A¥(f, x) is the kth difference with step 7e R? and AX(f, x) = 0 if the segment
[x,x + kh] is not entirely contained in I.
We shall need the fact that Ex(f, ), and wk(f,I), are equivalent:

E(f, 1), xon(f,1), (2.3)

with constants of equivalence depending only on p, k, and d. Equivalence (2.3)

follows from the case when I = |0, l)d by a simple change of variables; the upper
estimate is Whitney’s theorem (see [2] if p>1 and [22] if 0<p<1) and the lower
estimate follows by the fact that A% (P, x) = 0 if Pell,.

We shall often use the following lemma which establishes the equivalence of
different norms of polynomials over different sets.

Lemma 2.1. Suppose R = I\J, where J <1 and I, J are dyadic boxes in R? or J = §.
Let I' = R be also a dyadic box with |I'| = |I|/2. Then, for each polynomial Pe Il and
O<t,p< o0,

||P||L/,(I)zHPHL,,(R)%HPHL,,(I’) (2.4)
and

1P

1/t—1
LI(R)z|R| & /pHP”L,,(R) (25)
with constants of equivalence depending only on p, 7, k, and d.

Proof. This lemma follows immediately from the obvious case I = [0, l)d (all norms
of a polynomial are equivalent) by change of variables. [

We find useful the concept of near best approximation which we borrowed from
[8]. A polynomial Qe Il is said to be a near best L,(/) approximation to f from II
with constant A if

= Ol <SAE(S 1),

Note that if p>1, then a near best L,(I) approximation Q = Q;(f)) from II) can be
realized by a linear projector.

Lemma 2.2. Let 0<g<p and let Q; be a near best L,(I) approximation to f from II.
Then Qy is a near best L,(I) approximation to f from I.

Proof. See [§]. [

Definition of B-spaces on R? Let 2 be an arbitrary anisotropic dyadic partition of
R? (d>1), >0, 0<p,q< oo, and k> 1. We define the B-space B]’jf;(?) as the set of
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all functions /'€ L,(R?) such that

q/p
I llgon = [ D [Z <|1|°‘wk<f,1>,,>P]

meZ |Ie?,

l/q

1/q

1/p]1
_ Z oma ( Z o (f7 I)ﬁ) (26)

me”Z le?,

is finite, where the /,-norm is replaced by the sup-norm if ¢ = co as usual. From
(2.3), it follows that

/9

q/p
Nl gy = N1 (' 2) = > lz (III“Ek(fJ)p)”] : (2.7)

meZ | IePy,

Evidently, if /e B (2) and ||f\|BM =0, then E(f,I), =0 for all €2, which

together with the fact that f eLp(IRd) and condition (c) on dyadic partitions implies
that /' =0 a.e. (see also the proof of Theorem 2.4 in Appendix A). Therefore,
|l || g () 18 @ norm if p,q>1 and a quasi-norm otherwise.

Pg\”

We now introduce the linear piecewise polynomial approximation generated by Z.
Let Yk = ?k( ) be the set of all piecewise polynomials of degree <k on boxes
Ie®,, that is, Seffl if §= Zleym 1;- P;, where P;ell;. Evidently,

. cy”il cy/’fcy)"c ---. We denote
L, =L(2.k) = | ] 75,

meZ
where the closure is taken in L,(R?). Evidently, L, is a subspace of L, and
L, =span {1;- P;: Prelly, €2},
where “span” means “closed span in L,”. We denote by Sf;(f)p = Sk (f, ?), the
error of L, approximation to f from 7% i.e., S w(f), =infg g ||f — S]], Clearly, if
feL,, then fel, if and only if lim,_ S,’;(f)p =0. It may happen that

L, (2, k)#L,. However, if sup{diam (/) : 1€ ?,,} -0 as m—0, then L,(#,k) = L
Clearly, by (2.7),

1/q

Ni(f,P) = (Z (2 Sk (f, g%)‘/) ) (2.8)
meZ

Therefore, the B-spaces B;’;(?/’) are approximation spaces generated by {S% (f, P),}-

Let Q;,(f) be a polynomial of near best L,(I) approximation to f from IT; with
some constant A (the same for all 7€ #). Note that Oy, (f) can be defined as a linear
projector if n=1. Then Ty y(f) = Tpy(f,?) = 1cp, 11 Qry is a near best L,
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approximation to f from Vk . We define
tmr](f) = by, ;7(f Q) — mr](f) m l;](f) (29)

We now introduce a new norm in B“‘"( ) by

1/4
No(f, 2) = <Z (2“m||fm‘n(f)||p)q> ; where 0<n<p. (2.10)
meZ
Lemma 2.3. The norms || - HBik , N1(+), and N, (-) are equivalent with constants of

equivalence independent of 2.

Proof. The equivalence of || - | Bik(») and N, () has already been indicated in (2.7).

Now, we show that N;(-) = N»(-). Let N;(f) < 0co. By Lemma 2.2, Q;,(f) is a near
best L,(I) approximation to f from II; and hence ||f — T, (f)HpécS,’; ),
Therefore,

[ty O, < ellf = Tun O], + ellf = T (I, <S5 (0), + €Sy (),

This implies N2(f) <cNi(f).
In the other direction, if N>(f') < oo, then it is easily seen that

o0

1/4
S’ni(f)péllf—TmﬁnHﬁ( > |lj,n||j;> ,  A=min{p, 1}. (2.11)

j=m+1

To complete the proof, we need the following discrete Hardy inequality: If {x,,},,.»
and  {ym},ez are two sequences of nonnegative numbers such that

ym<< i X ) , >0, then
>y <e Y @M xm)?, a,q>0, (2.12)

meZ meZ
where ¢ = ¢(4,a,¢). This inequality follows easily by Hoélder’s inequality. We use
(2.8), (2.11), and (2.12) to obtain N, (f)<cN,(f). Therefore, Ni(f)~N>(f). O

The B-spaces B*(?) on R?: For the purposes of nonlinear piecewise polynomial
and n-term rational approximation, we shall only need a specific class of B-spaces,
namely, the spaces B*(2). Therefore, for the rest of this section, we focus our
attention exclusively on these specific B-spaces.

We shall always assume that 0<p< oo, >0, k>1, and 7 is defined by 1/t =
o« + 1/p. We shall briefly denote the B-space B* (%) by B**(#) or simply by B*. By
the definition of B-spaces in (2.6), we have

1/t
1l a0y = (Z (Illawk(f,l)f)r> (2.13)
Ie?
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and, using Lemma 2.3,

1/t

1] g2t () = Na(f', 2) = (Z (I|“||t,$,1(f)||1)f> if 0<n<r, (2.14)
Ie?

where t7,(f) =17 - ty,(f) if [€P,,, meZ.

In some instances, the BZ-norms from (2.13) to (2.14) are not quite convenient
since the L.-norm which they involve is not very friendly when t< 1. This is the case
when the smoothness parameter > 1. We next show that this drawback of the above
norms can be overcome. We introduce the following new B-norms: For felL,,
0<n<p, we set

1/t
N onlf 7) = (Z <1|”f’—”"cok<f,1>,7>f> 2.15)
le?
and
1/t
Nl 2) = (Z (|I|1/”“/'7||t,,,7(f)||,,)f> ; (2.16)
le?

where t7,(f) =17 twy(f,?) if [€P,,, meZ (see (2.9)). Note that AN, .(f,2) =
||| (). Using (2.5) and the relation 1/t =« + 1/p, we readily obtain

1/t
Nolf P)x (Z ||t1,n(f)|,i> . @.17)

le?

The following embedding theorem will be important for our further developments.

Theorem 2.4. If feL,, 0<n<p< oo, and N ,(f,P)< o, then
f= Z tug(f)  a.e. on R? (2.18)

meZ

with the series converging absolutely a.e., and

1, <[] a0

meZ

SC‘/‘/t,i](fa’@% (219)
p

where ¢ = c(o, k,p,d,n).
We shall deduce this theorem from the following more general embedding theorem:

Theorem 2.5. Let 1 <p< 0. Suppose {®,,} is a sequence of functions on RY with the
properties:

(i) ®,,€L,, supp b,,<E,, with 0<|E,|< o and
—1
1P| o < 1Bl 71| @],
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(ii) If xe E,,, then
Yoo (BB <,

Ejax, |Ej|Z|Enl|

where the summation is over all indices j for which E; satisfy the indicated
conditions. Then we have

1/z
> 190)] <c<2||q>j||;> , 0<t<p,

where ¢ = ¢(p,t,c1).

To avoid nonnecessary technicalities at this early stage, we shall give the proofs of
Theorems 2.4 and 2.5 as well as the one of the next theorem in the appendix.

Theorem 2.6. The norms || - |

g Non(2) (0<n<p), and N, (-,2) (0<n<p),
defined in (2.13), (2.15), and (2.16), are equivalent with constants of equivalence
depending only on o, k, p, d, and 1. Furthermore, the equivalence of || - |

B () and
Ny (-, 2P) is no longer valid if n=p.

B-spaces on Q: We shall only define the B-spaces B*(#) on Q which we need in
nonlinear piecewise polynomial and rational approximation. The more general B-
spaces B;fi‘ (#2) on Q can be introduced in an obvious way.

We again assume that O<p<oo, >0, k=1, and 1/t =0+ 1/p. Let 2=
Unso Zm be an arbitrary dyadic partition of @ (|Q =1). We define the space
B* = B*(#) as the set of all f€ L,(Q) such that

I

1/t
B () = (Z (|I|“wk(f,1)f)f> <. (2.20)

Ie?

Evidently, |[f'+ P|z, = |f{. for Pellx and hence |- [, is a semi-norm if t>1 and a
semi-quasi-norm if t<1.

By Theorems 2.7 and 2.8, if /'€ B*(#) then f'e L,(Q). Therefore, it is natural to
define a norm in B*(2) by

sy = 1, @) + g () (2.21)

Similarly as in (2.8), we have

I1f1

meZ

1/t
s X I, + (Z 2" (f 'W)I)T> : (2.22)

where S¥ (f,#). is the error of linear piecewise polynomial approximation, defined

similarly as in the case of B-spaces on R? (see the definition above (2.8)).
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In analogy to (2.15), we introduce a more general norm by

1/t
N on(f,2) :|V||p+<2 <|1|”P”"wk<f,1>,7>f> ., 0<n<p. (2.23)

le?

Also, similarly as in the definition of B-norms on R? (see (2.9) and (2.14)), we define

the operators: Qry(f), Tny(f) = Tny(f, 2); twa(f) = tmy(f; #) (m=0), and 11, (1),
feL,(Q), with the natural modification 7T_,,(f) =0, ie., t,(f) = To,(f) =
Qaq,(f). We define another norm by

1/t 1/t
N, 2) = <Z (|11/p_l/"||f1,n(f)|,1)T> ~ <Z |11,n(f)|;> :

lez le?
where 0<n<p. (2.24)

Theorem 2.4 implies immediately the following analogue of Theorem 2.5:

Theorem 2.7. If feL,(Q), 0<y<p< oo, and N ,(f,P)< w0, then

D g ()]

m=0

f= Z tmy(f)  absolutely a.e. and ||f||,<

m=0

<eN 'y (f, 2).
P

We proceed similarly as in the proof of Theorem 2.6 (see Appendix A) to prove the
equivalence of the above defined B-norms:

Theorem 2.8. The norms || - || gu(p)s N wn(-,?) (0<n<p), and N1, (-,2) (0<n<p),
defined in (2.21)—(2.24), are equivalent with constants of equivalence depending only on
o, k, p, d, and n.

Comparison of B-spaces with Besov spaces: We first recall the definition of Besov
spaces on E = R?, E = [a,b]* or on a Lipschitz domain EcR? (d>1). The Besov
space By(L,) = By(Ly(E)), s>0, 1<p,q< o0, is defined as the set of all functions
f€L,(E) such that

0 dt 1/q
Mo = ([ Controy®) < (229
with the L,-norm replaced by the sup-norm if ¢ = co, where k= [s]+ 1 and
wi(f, 1), is the k-th modulus of smoothness of /" in L,(E). The norm in Bj(L,) is
usually defined by Hf”B;(L,)) = If1l, + me,(Lp)' It is well known that if in (2.25) k is
replaced by any other k>, then the resulting space would be the same with an
equivalent norm. The point is that, for nontrivial functions f, the maximal rate of
convergence of i (f', ), is O(7) when p>1 and it is O(#*~1*1/P) when p<1 (see, e.g.,
[20]). This is the reason for introducing k as a parameter of the Besov spaces with the
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next definition. We define the space

BM(Ly) = BJ*(Ly(E)), 0<p,g<oo, s>0, k>1, (2.26)

as the Besov space B;(L,(E)) from above, where the parameters k and s are already

set independent of each other.
For the theory of nonlinear (regular) spline approximation in L,(E), 0<p< 0,
one can utilize the Besov space

BPHN(Ly) = BPM(Lo(E))

with parameters set as elsewhere in this article: k=1, >0, and 1/7:=a+ 1/p (see
[18] when d =1, and [5,7] when d>1). Since B™k(L,) is embedded in L,, it is
natural to define a norm in BY**(L,) by Wl gaas gy = Il + F pousp - In the
following, we shall restrict our attention to the case E = R? (d>1).
We call a dyadic partition 2 of R? regular if there is a constant K >2 such that for
each box I =: ) x - x S, from 2 we have K~'<|7,|/|.7,|<K, 1<y, u<d.
Now, if 2 is a regular dyadic partition of R? and f € B™*(L,), then f € B**(#) and

1/

which easily follows using the following equivalence:

1
wk(f',l)iz—/ / |AX(f, x)[Fdx dh, Te2, (2.27)
1 o, eyt I

g () Sl gt

where Iy, .= {xel: [x,x + kh|<I} and /(I) is the maximal side of 7 or diam (7) (see
[20] for the proof of (2.27) in the univariate case; the same proof applies to the
multivariate case as well). Notice that the smoothness parameters of B-spaces and
Besov spaces above are normalized differently. Thus the B-space B*(#) corresponds
to the Besov space BS*(L,) with s = do.

Using the idea of the proof of Theorem 2.6 in Appendix A, one can easily prove
that, for a regular dyadic partition £,

BH(L(RY)) = B*(2), if 0<a<1/p, (2.28)

with equivalent norms, and this is no longer true if «>1/p, B*(#) is much larger
than BY**(L,(R?)) in this case. A key fact here is that, for each €2 and «>1/p,
||1]1||B;11,k<LT) = o0, while at the same time ||1/{|gu(») % [[1/]],- The same is true if 1; is
replaced by P-1;, Pelly, P#0.

Suppose now that 2 is an arbitrary dyadic partition of R?. As we mentioned in
Section 2, extremely long and narrow boxes may occur at any level and location of
2. Straightforward calculations show that, for such a box I€Z even if 0<a<1/p
and o is as small as we wish (fixed), ||1]]||B(;/z,k(L1)/Hﬂ]||p can be enormously

(uncontrollably) large, while ||1;]|| g /||17]|, & 1. This is why the Besov spaces are
g B () » P

completely unsuitable for the theory of piecewise polynomial approximation
generated by anisotropic dyadic partitions (see also the results of Section 3 below).
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The situation is quite similar when comparing two B-spaces over completely
different dyadic partitions.

3. Nonlinear piecewise polynomial approximation

In this section, we shall use the B-spaces introduced in Section 2 to characterize the
nonlinear piecewise polynomial approximation generated by an arbitrary dyadic

partition 2 of R?. The same results with almost identical proofs hold on any box Q.
We let X*(#) (k=1) denote the nonlinear set consisting of all piecewise
polynomial functions

where Pyelly, A,=2, and #A4,<n. We denote by a,(f, 9’)p = ak(f, /7)1, the error
of L, approximation to f e L,(R?) from X (2):

o)y it I ol

pelk(p

We next prove Jackson and Bernstein estimates for the above nonlinear
approximation. Then the desired characterization of the approximation
spaces follows immediately by interpolation. Throughout this section, we assume
that 2 is an arbitrary dyadic partition of RY, 0<p<oo, >0, k>1, and 1/7 =
o+ 1/p.

Theorem 3.1. If f '€ B*(2), then
onlfs 2),<cn*|[fllgupy, n=12,..,

with ¢ = c(a,p, k,d).

Proof. By Theorem 2.4, /" can be represented in the form

f= Z t; ae. on RY (3.1)

le?

with the series converging absolutely a.e., where ¢, =1;-P; with P;elly
(=1 -ty,ifIe?,, 0<#n<p). In addition to this, by Theorem 2.6,

1/t
N (Z ||n|;> — ).

le?

1/

Case I 1<p<o. We define 7, ={le?: 2’“Jt/(f)<\|t,||p<2*“+lﬂ/’(f)}.
Clearly,

#.9,<2". (3.2)
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We define

G = Z tr, g;) = Z lt;|, and G, = Z G-

Ie g, Ie g, pusm

We have Gy, e 2%, (2) with M =3, 24" = 2" We use (3.1), (3.2), and Lemma
7.1 (as in the proof of Theorem 2.5) to obtain

o0 o0
ou(f,?),< Yo lull] < gille< D |lon
le®\ Uﬂgm /}/H » p=m+1 p=m+l V4
CN" o Up  y-uli-t/p)
<e S 2 (NFH#L) P <en () Y 2
u=m+1 p=m+1

< c,/V(f)Z"”“"/”) _ CM_I/T+1/pJV(f) _ CM_“JV(]()

which implies the theorem in Case I.

Case 11: 0<p<1. We let ||¢,|[,>|[t1]|,> - be a nonincreasing rearrangement of
the sequence {||#[|,} and define

n
Q= 1, (pGZﬁ(@).
=1

To estimate ||/ — ¢||, we shall use the following simple inequality: If x; >x;> - >0
and 0<t<p, then

- 1/p - 1/t
() = (59)

Jj=n+1 j=1
We obtain
o o 1/p o 1/t
I =oll,<|| Y lul << > IIZI,IZ> <Cn1/”l/r< > ||11,|;)
Jj=n+1 » Jj=n+1 j=1

< |fllpry. O

Theorem 3.2. If p € XX(2P), then
|l g () < cnll ol (33)
with ¢ = ¢(a,p, k,d).

Proof. Let ¢ =5, , 1;- Py, where P;ell, Ac P, #A<n, n=1. To prove (3.3),
we shall use the natural tree structure in £ induced by the inclusion relation: Each
box Ie? has two children (boxes Ji,J,=I such that I = J;uJ, and |Ji| = |J5| =
(1/2)|1]) and one parent in 2. Let IjeZ be the smallest box containing all boxes
from A and let 7 be the minimal binary subtree of 2 containing AU {l}. So, 7 is
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the set of all boxes in 2 which contain at least one box from A and are contained in
Iy. We introduce the following subsets of 7 :

(i) 7! the set of all final boxes in 7 (boxes not containing other boxes from .7 ),

(i) 72 the set of all branching boxes in 7 (boxes with both children in 7 ) and, in
addition, we include [y in 2,

(iii) 7 the set of all children of branching boxes in T,

(iv) 7% the set of all chain boxes in 7 (boxes with exactly one child in 7 ),
excluding Iy if Iy has only one child in 7.

Obviously, 7' = A and hence #7%<#7 ' <n and #7° <2n. Note that #.7* can
be much larger than #A.

The sets A and J generate a natural subdivision of [y into a union of disjoint
rings. By definition, R is a ring if R = I\J with e 2 and J€Z or J = (). We say that
R =1\J is a maximal ring if (a) €7 and JeJ or J =0, (b) R does not contain
boxes from A which are smaller than 7, and (¢) R is maximal with these two
properties (R is not contained in another such). We denote by # the set of all
maximal rings (generated by A). For Re #, we denote by /g and Jg the defining
boxes of R, that is, R =: Ig\Jg with IreJ and Jre T or Jr = . Going further, we
denote #,, = {Re#: |Iz] =27"}. Then #=\,,c; %n. Clearly, # consists of
disjoint subsets of Iy and Iy = | Jg., R. It is readily seen that for each Re %, we have
Ire T or IxeT? or IxeT NnA or Ig=1I,. Therefore, #R<H#T' ++#T°> +
#HA<L4n.

Also, we introduce subrings (of maximal rings). Suppose Re Z and R = Ig\Jg with
IrePy, JRePsiy (u=1). Clearly, for each /<m</+ pu, there exists a unique
I'e 2,, such that Jg < I' < Iz. We now define the subring Kz, of R by Kg,, = I"\Jx.
In addition, we define ¢ == 1g - @ and @p,,, =1k, - @ =k, - erfor/<m</ + p
and ¢p,, =0 if m</ or m>=/+ u. Note that ¢y is the restriction on R of a
polynomial of degree <k and ¢g,, is the restriction of the same polynomial on
Krm<R. Denote A, ={ReR:Krn#0}. It is easily seen that if I<1I,
Ie?, (meZ), and ¢ is not a polynomial on I, then

I= U R U U Kr,, (disjoint sets), (3.4)
Re#, Rel REH \, RATED

where the union on the right contains exactly one subring or none.

We need to estimate wy(¢p,I). for every IeZ. There are two possibilities
for Ie Z:

(i) If Inly =0 or Il but I = R for some ReZ, then ¢ is a polynomial of degree
<k on I and hence wi(¢p,I), = 0.

(i) If ¢ is not a polynomial on I and I€?, (meZ), then we have, using
(3.4),

T

o0
ol Di<cllollp<e Do D lorllite Do llorall,

v=m+1 Re%,, Rel ReH y, ROT#0
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where the second sum contains one element or none. We use this estimate to obtain

1913y =D 27" Y enlo. D)
me”Z 1e?,,
omt - T oumt T
<C22 Z Z HCPRH‘[+CZ 2 Z ||QDR‘er
meZ v=m+1 ReR, meZ Re Ay,
=2+ 2.

Applying inequality (2.12) to the first sum above, we find

Si<e) 27 Y lorlli<e Y llowll,

meZ ReR,, Re

where we used that [|@gl|, < |R|1/r_]/p||<pR||p<2’“”’||(pRHp, ReZ,,, by Hélder’s
inequality.
We shall estimate X, using the following inequality:

Z ||¢RJ71||;)<C||(70R||;7 Re. (35)

meZ
To prove this inequality, suppose that R = Ig\Jg with Ire#, and Jre #,,,. Using
Lemma 2.1, we obtain, for 0<j<p,
1 1 -1 =
10,4511, <Kz 71| 0Rlc <l sl P IRV |l @ll, <277 [l

which implies (3.5).
As above, by Holder’s inequality, |[@g,,ll. <27"*||¢ g l[,- This and (3.5) imply

2)<c Z Z l@rmll, <c Z Z @ ramll,<c Z orll,,

meZ ReA ReR meZ Ren

where we switched the order of summation. From the above estimates for 2 and 2>,
we get

t/p
T T 1—1 -1 T
@l < e > ||<PR||,,<C<Z ||<PR||§> (#R)' P <en' ol

ReR ReR
= cn™||ggll,,

where we used Holder’s inequality and that [ is a disjoint union of all Re#. O

We define the approximation space A} = A}(L,,#) as the set of all functions
feL,(2,k) such that

1/

1/q
~ g1
=, + (Z (o (f, 2),)" ;) <o (3.6)
n=1

with the /,-norm replaced by the sup-norm if ¢ = oo as usual.

We now recall some basic definitions from the real interpolation method. We refer
the reader to [1] as a general reference for interpolation theory. Suppose X and B are
two quasi-normed spaces and B< X. The K-functional is defined for each f'e X and
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t>0 by
K0 = K(ot X, B) = int (1~ gl + gl

The real interpolation space (X, B) g with 0<A<1 and 0<g< oo is defined as the set
of all f € X such that

- AL
Wl ), = W/ 1lx + (/0 (1 *K(f, t))q7> <o,
where the L,-norm is replaced by the sup-norm if ¢ = 0.

The Jackson and Bernstein inequalities from Theorems 3.1 and 3.2 yield (see
[6,20]) the following characterization of the approximation spaces A47:

Theorem 3.3. We have, for 0<y<a and 0<g< o0,

A;/(Lpag) = (”—P(gvk)szk(y))y/a,q

with equivalent norms.

We next show that in one specific case the interpolation space as well as the
corresponding approximation space can be identified as a B-space. The analogue of
this result for Besov spaces is well known (see [8]).

Theorem 3.4. Suppose 2 is a partition of R k>1,1<p<oo,and 1/t = o+ 1/p. Let
O<oa<pfand 1/A:=p+1/p. We have

(Lp(2.k), B (2)),)p.. = BX(?) = AX(L,, ?)

with equivalent norms.

This theorem can be proved by using the machinery of interpolation spaces
(see [8]). Here we take another route by employing the approximation from
piecewise polynomials directly. This approach will enable us to reveal more deeply
the intricacies of nonlinear piecewise polynomial approximation. In order to
streamline the presentation of our results, we give the proof of this theorem in
Appendix A.

Approximation scheme for nonlinear piecewise polynomial approximation: We
assume that f e L,(R?), 0<p< oo, and 2 is an arbitrary dyadic partition of R?. The
proof of Theorem 3.1 suggests the following approximation procedure:

Step 1: Use the local polynomial approximation to represent f as
follows:

F=2 tnlf,2) =) 1),

meZ le?

where 17, (f) =17 - twm,(f,2) if I€?,, and n<p (see Theorem 3.1).



174 P. Petrushev | Journal of Approximation Theory 121 (2003) 158—197

Step 2: Order {||t7,(f)l|,};c» in a nonincreasing sequence ||ty ,(f)|],>|
thy(f)ll,= - and then define the algorithm by

An(f,2), = tya(f).
j=1

By Theorem 3.1 and its proof, it follows that
1 = a0l <cn™\|f 1), for fe B ().
Using this result, one can show that </, (f, 2), achieves the rate of the best n-term

piecewise polynomial approximation generated by 2.
Nonlinear approximation from the library {Z*(2)},: We denote

O-ﬂ(f)p = H}f O-n(f7 9)[]7 (37)

where the infimum is taken over all dyadic partitions . The following theorem is
immediate from the Jackson estimate in Theorem 3.1:

Theorem 3.5. If inf ||f]

k() < 00, then
o0y <en*inf (1]l g
with ¢ = ¢(a, k,p,d).

In Section 5, we shall show that, in a natural discrete setting, there exists an
effective algorithm for finding a partition 2* which minimizes B*(2) over all dyadic
partitions 2.

Remark. There exists another technique that can be employed for the proof of
Theorem 3.1. This method is called “splitting and merging” and has been introduced
in [4] and used for nonlinear approximation of functions from the space BV (R?). It
was further used in [11]. Also, the modulus W(f, t)gﬁp, used in [11] which is a

generalization of a characteristic from [16] (d = 1), can be generalized and utilized
for anisotropic partitions Z.
4. Relation between n-term rational and piecewise polynomial approximation

n-term rational functions: We denote by %, the set of all n-term rational functions
on R of the form

n
R= E T
J=1
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where each r; is of the form

d
arxy + by
V(x) = N ) a/ﬁbkv(xkaﬂke'Rv ﬁk#07
k[[l (xk — o)’ + B

x = (x1,...,xq) R (4.1)

Evidently, every Re#, depends on <4dn parameters and %, is nonlinear. We
denote by R,(f), the error of L,-approximation to f* from %,:

Ri(f), = jof |If = Rl

Our first goal is to show that the rate of n-term rational approximation in
L, (0<p< ) is not worse than the one of nonlinear n-term approximation from

piecewise polynomials over nested box partitions of RY.

Piecewise polynomials over almost nested families of boxes: We denote by ¢ the set
of all semi-open boxes I in R? (not necessarily dyadic) with sides parallel to the
coordinate axes (I = 4| x --- X Sy ).

Suppose =, ¢, n=0,1, ..., is a sequence of sets of boxes which satisfy the
following:

(i) #2,<2".

(ii) For each n>1 there exists a set Q,, consisting of disjoint boxes from _# such that

(@) UH{I: 1eQ,} =U{l: IeE,VE,_},
(b) for each I€Q, and JeZ,UZ,_; either IcJ or InJ =0, and
(€) #Q,<c2".

Thus Q, is a set of “‘small” disjoint boxes which cover the boxes from &,U =, ;.
Now, we denote by &% (Z,) the set of all piecewise polynomials of degree <k on the
boxes from =, i.c., dbeyk(in) if ¢ => .z, 1r- Pr,Prellz. We denote by Slz‘n(f)]7
the error of L, approximation to /'€ L,(RY) from &%(5,), i.e.,

sk.(f) =Sk(f,5,), = inf || .
2 O()p 2 U n)p qﬁeg'k(s,‘) Hf ¢||p

Main results: Our primary goal in this section is to prove the following theorem
that relates the n-term rational approximation to the above described piecewise
polynomial approximation:

Theorem 4.1. LetfeLp(UQid)7 O<p<oo,a>0, and k=1. Then

n

1/u
Ron(f), <27 (Z 2S5 (N, 1" + |lf||ﬁ) ;= min{p, 1}, (4.2)

v=0
with ¢ = ¢(p, k,a,d, c1), where ¢, is from the properties of {E,}.
We now apply the result from Theorem 4.1 to the more particular situation of

nonlinear n-term piecewise polynomial approximation associated with any dyadic
partition 2, developed in Section 3.
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Theorem 4.2. Suppose feLp([RQd)7 O<p<oo, a>0, k=1, and 2 is any anisotropic
dyadic partition of R?. Then

n

1/u
Rn(f)pécn_“(z %[M“Gﬁva’)p]“Jrllfllﬁ) , w=min{p, 1}, (4.3)

m=1

where ¢ = ¢(p, k, o, d).

Corollary 4.3. Suppose infy ||f||gu(p <o with «>0, k=1, and 1/t =0a+1/p,
0<p< oo, where the infimum is taken over all dyadic partitions 2 of RY. Then

Rn(f)p <cn™? ify}f IIf] \ng(:/)’

where ¢ = c(a, p, k,d).

Proof of the main results. For the proof of Theorem 4.1, we shall utilize some ideas
from [15,17]. We let yf (#) denote the set of all piecewise polynomials of degree k on
n disjoint boxes in RY, ie., pe X (#) if o= >orea, 1r- Pr, where 4, is any
collection of n disjoint boxes from ¢ and P; e Il;. The approximation will take place
in L,(RY), 0<p< 0.

Theorem 4.4. For each (pey’,‘n(j), m=1, and n=1, there exists Re R, such that
e = RI|, <c;'exp(—caln/m)"*))]lgl,, (4.4)
where ¢; = ¢2(p,d, k,c1)>0.

D. Newman [13] proved the remarkable result that the uniform nth degree rational

approximation of |x| on [—1,1] is of order O(n¢V"). The following lemma rests on
Newman’s construction.

Lemma 4.5. For each y>0,0<d<1, and v a positive integer, there exists a univariate
rational function o such that deg o <clIn(e+ 1/0)In(e + 1/y) + 4v and
0<1_O—(0<V7 lf|t|<1_57

1 4y )
o<o<r><y<1+[|) ATESY

0<o(t)<l, te(—o0, ),

where ¢ is an absolute constant. Moreover, ¢ has only simple poles and, evidently, if
6 = P/Q, then deg P<deg Q.

Proof. It follows by Lemma 8.3 of [20] (see also [17]) that there exists a rational
function ¢ which satisfies all the conditions of Lemma 4.5 eventually except for the
last one (simple poles). Evidently, adding a suitable sufficiently small constant to the
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denominator of ¢ in its representation as a quotient of two polynomials will ensure
the last condition of the lemma without violating the other conditions. [

For the proof of Theorem 4.4, we shall use the Fefferman-Stein vector valued
maximal inequality (see [10] or [21]): If O<p< o0, 0<g< o0, and 0 <s<min{p, q},

then for any sequence of functions fi,fs, ... on R?

0 1/q 0 1/q
(Z [(M)«)V) <c (Zvj(-w) , (4.5)

J=1
» p

where ¢ = ¢(p, q,s,d) and

1/s
(M f)(x) = sup (|71|/1 [f(y)|sdy> . xeR

le g:xel

Lemma 4.6. Suppose ¢ =1;- P with I€ ¢ and Pelly, and let 1,5>0. Then there
exists a rational function Re R, with { <cIn* (e + 1/1) such that

o — R, <clloll,
and

[RE)I< eI ol (#AD)(x),  xeRAL,
where ¢ = c(k,p,s,d).

Proof. It is easily seen that

d
() (x) =[] (M) (x0), T=1x - x Iy (4.6)
i=1
(product of univariate maximal functions).

We shall prove the lemma in the case when 7 = Q = [—1, l)d. The general case
follows by change of variables. Let 0<A<1 (the case 1>1 is obvious). Since Pel,
then all norms of P are equivalent and this yields

POl elloll, T (1+ x]),  xeRN{0}, (4.7)

where ¢ = ¢(p,k,d) and 10 = [-1,1)7.

Let o be the univariate rational function from Lemma 4.5, applied with y :=
o =min{#",1/2}, and v:=[}k+1/s)]+1. We define R:=xP with x(x):=
H?:l o(x;). By Lemma 4.5,

dego<cln(e+1//")In(e+1/2) +4v<cln®(e+1/2), c=c(k,p,s),

A,
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and ¢ has only simple poles. Therefore, Re %, with /<cIn*!(e+ 1/2). Obviously
0<x(x)<1, xeR?. It is readily seen that

(1 —o(x;))<d) for xeQs =[-1+5,1—29]".

M&

0<1 —k(x

Therefore,
e = Rll1, 0, = 1P = K)l 1,0, <CAll@l],-
and, using (4.7),
1@ = Rll1, 010, <clloll,|Q\0s]"" <3Pl <cillo]l,-

Finally, by (4.6) and (4.7), we find, for xe R\Q,
dv—k
< ch
< ol 1 (75

< o], H (AN 1) (xi) = Aol (A1) (x),
i=1

where we used that 4v — k>1/s and hence

b 1/s 1 4v—k
A0 = (——) >[——) . |=1. O

Proof of Theorem 4.4. Suppose pe % (#) (m<n) and ¢ =: Yoren, V- Pr,Anc 7.

Let 7 = exp(—(n/m)"*!) and s:=4min{p,1}. We apply Lemma 4.6 to each
function ¢; := 1; - P; to conclude that there exist rational functions R;e#, with
/<cln®*(e+ 1/7) such that

o — Rill, <cllol],
and
Ry (x)| <cAllofll, |77 (,10)(x), xeRNL
We define R:= >, , R;. Obviously, Re Zys = A.,. We have

1/p
||<p—R|,,<c<§Ij ||¢,—R1|f;p(,>> s
1/p
<ci<2||<p,||§> +cA
7

where we used (4.5) with ¢ =1 and s=1Imin{p,1} <min{p,1}. Theorem 4.4
follows. O

ST el (7))

1

P

Z ||<P1||p|l|_l/p1]1(-)\|p<ci||<p
I

p
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Proof of Theorem 4.1. Case I: p>1. Evidently, there exists ¢, € #*(Z,) such that
IV = ¢yll, = S2(f),- We define ¢, == ¢, — $,_, v=1, and ¢y = . Then we have,
forv=1,
oull, <Ilf = ¢ll, + I = &y ill, = S2(f), + S21(f), and
l@oll, <S1(£), + [If1],-

From the properties of {5;}, there exists a set of disjoint boxes Q,c ¢ such that
m, = #Q,<c12" and ¢, e 7*(Q,).

We fix j=0. Now, for each v=0,1, ...,j, we apply Theorem 4.4 with ¢ = ¢,,

m = m, (from above), and n := N, := [42" (a(j — v))**] + 1, where 4 == ¢;(In2/¢,)*,
¢; is from Theorem 4.4. We obtain that there exist R, € Zy, such that, for v>1,

N, 1/2d
||q0v R || C2 eXp (CZ (6‘12"> > HCPLH[)

<27 (Sy(f), + Sa(f),) (4.8)

and
ll@o = Roll, <c27||@oll, <27 (Si (f), + IIf1],)- (4.9)
We define R = Z{,:l R,. Obviously, Re Zy with

J J
N:Z N, = Z Ao®? (j 2d+1)<032’, a3 =a3(p,k,d,a,cr).

v=1 v=1

From (4.8) and (4.9), we find

J J
V= Rull,<Ilf = ¢ll, +z; o, — Rl <27 (2; 2"Sn (1), + |lf|p>-
y= V=l

Estimate (4.2) follows from above by a suitable selection of j (depending on n).
Case II: 0<p< 1. The proof is similar to the one from Case I. The only difference
is that, in this case, one should use the p-triangle inequality (|| > g;lIb< > llgjllh,

0<p<1) instead of Minkovski’s inequality. O

Proof of Theorem 4.2. We may assume that ¢, e X% (2) are such that ||f — ¢, , =
o (f,?),, v=0,1,.... Suppose ¢, =:>; , 17 Pr, where P;ell;, A,=2, and
#A4,<2". From the proofs of Theorems 3.2 and 3.4, it follows that the sequence
{#4,} satisfies conditions (i) and (ii) of {Z,} and, therefore, (4.2) holds with S, Ny
replaced by ¢%,(#) which implies (4.3). O

Proof of Corollary 4.3. This corollary follows immediately by Theorems 3.1
and 42. O
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Sharpness of the results: It is rather easy to see that the estimates of this section are
sharp with respect to the rate of approximation. For a given n>1, consider the
function

d
Ju(x) = ( sin nxv> (0 anx (0,1 (x), x=(x],...,xq) R’
1

=

Since sin 7x; oscillates 4n times on [0,4n] and every n-term rational function can
oscillate <2n times on any straight line parallel to the x;-axes (has no more than
2n — 1 zeros), then Rn(fn)p>C|U‘;7||p>cnl//’7 0<p< 00. On the other hand, evidently,

if >0 and 1/t =o+ 1/p, then “f;‘:,”Bda.k(L)SCnl/T, where Bk(L.) is the Besov
space defined in (2.26). Therefore, SUP|/]] s <1RnU')p>cn‘°‘ and hence the
e (Le)

estimate from Corollary 4.3 is sharp, and similarly for the other estimates.

5. Nonlinear n-term approximation from the library of anisotropic Haar bases and best
basis selection

An anisotropic Haar basis is naturally associated with each anisotropic dyadic
partition 2 of a box Q in R? (or Rd). For the sake of simplicity, we shall consider
Haar bases only on a box @ with sides parallel to the coordinate axes and |Q| = 1.
Then 2 =J,_yPm. Let I€e? and I =: #| x --- x F4. Suppose I is split (in 2) by
dividing in half the vth (1 <v<d) side of I. Then we define H; =1, X --- X Hy, X

- x1y,, where H, is the univariate Haar function supported on .#, and
normalized in L.,. In other words, if /€2 and J;,J, are the two children of I in
2 (properly ordered), then H; =1, —1,. We need to add the characteristic
function of Q2 to the collection of the above defined Haar functions. To this end we
denote I° == I, = Q and include both I° and I, in 2, and 2. So, there are two copies
of Q in 2. We define Hp =1, and 2° = 2\{I°}.

Thus # » = {H;: 1P} is the Haar basis associated with 2. We let H == {#'»},
denote the collection (library) of all anisotropic Haar bases on Q.

Clearly, the following is valid for a fixed partition 2: (i) #» is an orthogonal
system in L,(Q) and it is an orthogonal basis for L,(2) = L2(Z2, 1). (ii) The linear
space y,ll of all piecewise constants over the boxes from £, (see Section 2) is spanned
by {H;: Ie J,_, 2.}

Other anisotropic Haar bases which involve products of Haar functions can easily
be constructed, too. We do not consider such constructions in this article since it
does not change the essence of the problems.

Ay is a basis for L,(?) and B*'(2):

Theorem 5.1. For each dyadic partition 2 of Q the Haar basis # » is an unconditional
basis for L,(2), 1<p< .
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Proof. The proof can be carried out exactly as the proof in the case of the univariate
Haar system due to Burkholder (see [24]) and we shall skip it. [

Throughout the rest of this section, we shall assume that 1<p< oo, a>0, 1/7:=
o+ 1/p, and 2 is an arbitrary dyadic partition of Q. We naturally have (see (2.20)
and (2.21))

1/
Wl gz ) = W0 + <Z 1| an(f, 1);) -
Ie?°

We next characterize the B-norm of function in B*!(#) by means of its Haar
coefficients using # ».

Theorem 5.2. Every f € B*'(2) can be represented uniquely in the form

f= Z ci(fYHr a.e. on Q with ¢/(f) = |I|71/IfH,, (5.1)

Ie?

where the series converging absolutely a.e. and unconditionally in L,. Moreover,

1/

1/t
iR N Hop) = (Z III‘”IICI(f')H1|2>

Ie?

1/ 1/
= <Z I|°‘”‘|c,(f)|’> = (Z IICI(f)H1|;> (5:2)
le? Ie?

with constants of equivalence depending only on p, o, and d.

Proof. Let feB?, B* = B»'(#). By Theorems 2.7 and 2.8, feL,(Q) and hence,
using Theorem 5.1, f has a unique representation in the form (5.1). We shall next
prove that

N H )< L (5.3)

Case 1: T>=1. This case is trivial because we obviously have, for I#1°,
e = | [ r|<tit, ana = 1| [ e

which, in view of (5.2), imply (5.3).
Case 1I: 0<t<1. Clearly,

11 e (D Hpl [ <1y <1l (1°1=1).

By Theorem 2.7 with # =t and k = 1, f can be represented in the form

f:TO+§:lj:TO+§: > i ae onQ
=1

j=1 Ie?;

<o (f, 1),
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with the series converging absolutely a.e., where ¢, =1t;.(f) =T, — Tj_1, T; =
Ti-(f,?),and t; =1;-t;if [eP;.

Fix Ie?, (m>0), I#I1°. Evidently, ||c;(f)H/||, = ler(OIH<IIf —ellg, o) for
every constant c¢. Therefore,

o0

er(NH < = Tl () < Z 5l 1y
JEmi

which readily implies

0 T
|1|“f||c1<f>H1||z=|1|“*“||c1<f>Hz||i<|1l"”< > ltjiL,m)
j=m+1
o0

<Y Dl

j=m+l JeZ;, Jcl

< Z ST @yl

j=m+1 Je?;, Jcl

with y.=a—1/14+1=1-1/p>0, where we used that t<1. We now proceed
similarly as in the proof of Theorem 2.6 (see Appendix A). We substitute the above
estimates in the definition of A"(f, #») in (5.2) and switch the order of summation
to obtain (5.3).

In the other direction, the Haar basis 5, obviously satisfies the conditions of
Theorem 2.5 and hence

> ler()Hi ()]

le?

e (f, H ). (5.4)

On the other hand, by Theorem 5.1, 2, is an unconditional basis for L,(2).
Therefore,
f= Z ci(f)H; ae. on Q
Ie?

with the series converging absolutely a.e. and unconditionally in L,. Using (5.4), we
infer ||f||,<cA"(f, # »). We utilize the above representation of f to obtain

o0
S < ||f — Z crHp|| < Z ZC]H[
[|=2-"m j=m ||le?;
T T
o0
= > D] lleHill;
Jj=m Ie?;

with 4 := min{z, 1}. Now, exactly as in the proof of Theorem 2.6 (see Appendix A),
we use this in (2.22) and switch the order of summation to obtain
If1|g: <A (f, # »). This completes the proof of the theorem. [
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Nonlinear n-term approximation from a single basis # »: For a given partition 2,
we denote by X,(2) the set of all functions ¢ of the form

¢=Y_ aH,

leA,
where A,=? and #A,<n. The error 6,(f, f#y)p of nonlinear n-term L,-
approximation to f from 5 is defined by

Gnlfs ffy)p = i;ﬁ;y) Ilf = (pHL,,(Q)'
PE2n(I

Clearly, X,(?)c25,(?) and hence a2,(f, Q’)p<én (f, ny)p. The approximation
spaces /Ig = /IZ{(L,,, H ») generated by the n-term approximation from #, are
defined similarly as the approximation spaces A (see (3.6)). The problem again is to

characterize the approximation spaces A;l which reduces to establishing Jackson and
Bernstein inequalities and interpolation.

Theorem 5.3. Suppose P is an arbitrary partition of Q and let 1 <p< oo, 0>0, and
1/t = o+ 1/p. Then the following Jackson and Bernstein inequalities hold:

Gulfs Hp)y<cn *|[f || g ), fEBEN(P), (5.5)

[l
Therefore, for 0<y<o and 0<gq< o0,
ALy, # 9) = (Ly(2), B (2))

B:"(@)Scna||(/’||Lp(Q)a @an(g))a ¢ =c(a,p,d). (5.6)

yog — AZ;(LIM %?) (57)

with equivalent norms (see Theorem 3.3).

Proof. The Jackson estimate (5.5) can be proved, using Theorem 5.2, exactly as
Theorem 3.1 was proved. The Bernstein inequality (5.6) follows by Theorem 3.2. An
easier proof can be given by using that # 5, is an unconditional basis for
L, (l<p< o). The characterization of /ig in (5.7) follows by (5.5) and (5.6) (see
[6,20)). O

Algorithm for n-term approximation from # »: We note that a near best n-term L,-
approximation from #, (1<p< o) to a given function f €l,(#) can be achieved
by simply retaining the biggest (in L,) n terms from the representation of the
function f in # » (see [23]). This result suggests the following ““threshold” algorithm
for n-term L,-approximation from #, (1<p<o0):

Step 1: Find the Haar decomposition of f in #»: f = ,., c1(f)H;.

Step 2: Order the terms of {|l¢;(f)H/l|,};c» in a nonincreasing sequence
ller, (F)H I, =len (f)Hp|, > -+ and then define the approximant by

n

Auf,2), = e (f) Hy.

Jj=1
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From the above observation,.o,(f, #), provides a near best n-term L,-
approximation to f from piecewise constants generated by 2.

Nonlinear n-term approximation from the library H .= {# »}: We denote by 6,(f),
the error of n-term approximation of f'e L, from the best basis in H, i.e.,

Gulf), = inf Gulf, H5),

The following theorem is immediate from the Jackson estimate (5.5):

Theorem 5.4. If inf, |[f||3“<y) < o0, then
(fn(f)pgcn’“ig)f 1 g1 ()

with ¢ = ¢(p,a,d).

Our approximation scheme for nonlinear n-term approximation of a given
function f'e L,(Q) from the library H = {# »} of all anisotropic Haar bases consists
of two steps:

() Find a basis #(f)eH which minimizes the B*!-norm of f.
(i) Run the above threshold algorithm for near best n-term approximation from

H(f).

The most significant fact in this part is that, in a natural discrete setting, there is an
effective algorithm for best Haar basis selection, which we present below.

The above approximation scheme requires a priori information about the
smoothness «>0 of the function f (which is being approximated) with respect to
the optimal B%!-scale. We do not have an effective solution for this hard problem. Of
course, one can get some idea about the optimal smoothness « of a given function
experimentally.

Best Haar basis or best B-space selection: We next describe a fast algorithm for best
anisotropic Haar basis or best B-space selection in the discrete case of dimension
d = 2. This algorithm is well known (see, e.g., [9] and the references therein). Also,
this algorithm is somewhat related with the algorithm for best basis selection from
wavelet packets (see [3]). Both algorithms rest on one and the same principle.

We consider the set %, of all functions f: [0, l)2 — R which are constants on each
of the 2" x 2" “pixels”

I=[(i— 12727 x (- D227, 1<ij<2"

Denote by 2, the set of all such pixels on [0,1)*. We let [P, denote the set of all
dyadic partitions 2 of [0, 1)2 such that 2,,, = Z,, and we shall consider £ terminated
at level 2n. Thus 2 = |J7", 2,,. Clearly, Z,, = &} (see Section 2).

Motivated by the result from Theorem 5.4, our next goal is to find, for a given
f€,, a dyadic partition 2* = 2*(f) e P, which minimizes the B-norm ./ (f, %)
from (5.2). Evidently, for e P,, # » is an orthogonal basis for the linear space %,
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and, therefore,

F=3" () with o(f) = 1] / 7H,.
Ie? !
We briefly denote d(I,2) = |[I|"|e;(f)[". Also, we set do(1) = d(I,?) if I is
subdivided, say, horizontally in %, and d, (1) := d(I,?) if I is subdivided vertically in
2. Then we have, for the B-norm from (5.2),

N(f,2) = d(I,?) =: D(P).

Ie?

For a given dyadic box J, we denote by P; the set of all dyadic partitions #; of J
which are subpartitions of partitions from P,. Similarly as above, we set

D(Z;) =Y dI,2)).

Ie?;

We next describe a fast algorithm for finding a partition #* € P, which minimizes
the B-norm A"(f, 2). The idea of this construction is to proceed from fine to coarse
levels minimizing D(Z,) for every dyadic box J at every step. More precisely, we use
the following recursive procedure. We first consider all boxes J with |J| = 272"+1,
Each box J like this is the union of two adjacent pixels and, hence, it can be
subdivided in exactly one way. Thus 2% is uniquely determined. Now, suppose that
we have already found all partitions 2% of all dyadic boxes J with
|[/]<27* (0<p<2n) which minimize D(Z2;) over all partitions #;eP;. Let J be
an arbitrary dyadic box such that |J| = 27#*!. There are two cases to be considered.

Case 1. One of the sides of J is of length 27”. Then there is only one way to
subdivide J and, hence, 2% and min D(2;) = D(2%) are uniquely determined.

Case 1I: Both sides of J are of length >27". Then J can be subdivided in two
possible ways: horizontally or vertically and, therefore, J has two sets of children.
Let us denote by J{ and J3 the children of J obtained when dividing J horizontally
and J{ and J} the children of J obtained when dividing J vertically. The key
observation is that

min D(#,) = min{D(#},) + D(Z}) + do(1), D(P%) + D(Z5,) + di(1)}.

Therefore, if ming, D(#;) is attained when J is first subdivided horizontally, then
Py =P 0?5 0{J} will be an optimal partition of J and Zj = 25 L7}, U{J}
will be optimal in the other case. We process like this every dyadic box of area 27#+!
and this completes the recursive procedure. After finitely many steps we find a
partition Z* of Q which minimizes D(2) = A (f, 2)".

Every f € X,, belongs to any (discrete) space Bﬁﬂl (#2) and we have, by Theorem 5.4,

. o
Gm(f),<em™ inf If]

Bi,l(@), Wl:1,2,....

Once the smoothness parameter >0 is fixed, the above algorithm provides a basis
which minimizes the BZ-norm of f. It is a problem to find the optimal smoothness o

of f.
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Several remarks are in order: (i) For a given function f'€ 2, the number of all
coefficients ¢;(f) (or Haar functions H;) that participate in the representations of f
in all anisotropic Haar bases is <2N, where N := 2?" is the number of the pixels.
Moreover, these coefficients can be found by O(N) operations.

(ii) For a given function f'€ 2, and fixed indices o and 7, only O(N) operations are
needed to find a Haar basis #(f) which minimizes the B*!-norm A"(f, 2).

(iil) Another O(N In N) operations (mainly for ordering the coefficients) are
needed for finding a near best n-term approximation to f from the best Haar basis
H(f).

The above idea for best basis selection can be utilized for best B-space selection,
namely, for the selection of a partition 2* which minimizes the B-norm ||/

Bik(g)) ofa
given function f when k>1. Indeed, precisely as above we can find a partition
#*eP, which minimizes ||f||3x 5 or an equivalent norm.

6. Concluding remarks and open problems

Our results from Section 4 show that the set of n-term rational functions is a
powerful tool for approximation. The n-term rational functions that we consider,
however, depend on the coordinate system. It is natural to consider the more general
n-term rational functions of the form R = 377, r;, where each r; is of the form r(4x)
with r from (4.1) and A any affine transform. The set of all such rational functions is
independent of the coordinate system. Here we do not consider such more general
approximation because our approximation method is limited by the conditions on
the maximal inequality we use (see Section 4). We believe that n-term rational
approximation should be considered as a special case of the more general n-term
approximation from the collection (dictionary) of all functions of the form ¢(u;x; +
U1y .eny UgXg + vg), OF @(AX), A an affine transform, where ¢ is a fixed smooth and

well localized function such as ¢(x) = ¢, The ultimate goal of the theory of n-
term rational approximation (of any type) is to characterize the corresponding
approximation spaces. This article does not solve that problem but shows that the
smoothness spaces which govern n-term rational approximation are fairly
sophisticated ones.

We now turn to the fundamental question in nonlinear approximation (and not
only there) of how to measure the smoothness of the functions. In [18], we showed
that all rates of nonlinear univariate spline approximation are governed by the scale
of Besov spaces B**(L.) (1/t=a+1/p). For more sophisticated multivariate
nonlinear approximation, however, the Besov spaces are inappropriate. This is
clearly the case when the approximation tool contains functions supported on long
and narrow regions or have elongated level curves like the piecewise polynomials and
rational functions considered in this paper (see the end of Section 2). It is crystal
clear to us that for highly nonlinear approximation such as the multivariate
piecewise polynomial approximation considered in Sections 3 and 5 there does not
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exist a single super space scale (like the Besov spaces) suitable for measuring the
smoothness. We believe that in many cases the smoothness of the functions should
be measured by means of an appropriate collection of space scales which should vary
with the approximation process. To illustrate this idea we return to the piecewise
polynomial approximation considered in Section 3. For this type of approximation,
a function f should naturally be considered smooth of order o>0 if
infy ||f || (s <0, which means that there exists a partition 2* such that

1l k() < 0. Then the rate of n-term piecewise polynomial (of degree <k)

approximation to f is roughly O(rn~*). It is an open problem to characterize the
approximation spaces generated by {o,(f )p} (see (3.7)).

Clearly, in nonlinear piecewise polynomial or rational approximation there is no
saturation, which means that the corresponding approximation spaces A are
nontrivial for all y> 0. Therefore, it is highly desirable that the smoothness spaces we
use characterize the approximation spaces A for all 0<y<co. This was a guiding
principle to us in designing the B-spaces in this article. Notice that all our
approximation results from Sections 3 and 5 hold for each &> 0. To make this point
more transparent, we shall next briefly compare our results with existing ones, which
involve Besov spaces. We first note that the situation in the univariate case is quite
unique, since the scale of Besov spaces B**(L,) (1/t = « + 1/p) governs all rates of
nonlinear piecewise polynomial approximation (see [18]). Therefore, there is no
reason for introducing B-spaces in dimension ¢ = 1. They would be equivalent to the
corresponding univariate Besov spaces and hence useless. Besov spaces are also used
in dimensions d>1 (see [5,7,11]), but they are not the right smoothness spaces even
for nonlinear piecewise polynomial approximation generated by regular partitions. It
follows by the discussion at the end of Section 2 (see (2.28)) and by Theorems 3.1-3.3
that the Besov spaces B**(L.) can do the job when 0<a<1/p and they fail when
a>1/p. Of course, this range for o is wider when approximating from smoother
piecewise polynomials (see [5,7]). In a nutshell, the Besov spaces are the right
smoothness spaces for characterization of nonlinear piecewise polynomial approx-
imation in dimensions d>1 only for regular partitions and for a limited range of
approximation rates, and they are completely unsuitable in the anisotropic case.

Another important element of our concept is to have, together with the library of
spaces, a companion library of bases which are (unconditional) bases for the spaces
of interest. Such a library of bases should provide an effective tool for nonlinear
approximation. As in this paper, we conveniently have the library of anisotropic
Haar bases {# »}, which are unconditional bases for {I,(#)}, and characterize the
B*1(2)-spaces.

An open problem for bases is to construct libraries of anisotropic bases consisting
of smooth functions.

Next, we pose some more delicate problems about the library of anisotropic Haar
bases H: The ultimate problem is to characterize the approximation spaces generated
by {64(f),}. The difficulty of this problem stems from the highly nonlinear nature of

the approximation from the library H. This problem is intimately connected to the
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problem for existence of a near best (or best) basis: For a given function f € L,, does
there exist a single Haar basis # (f)eH such that

Gl H D), < inf. Galf, ),
for all n=1 with a constant ¢

independent of f and n?

The answer of this question is not known even for p = 2. If the answer of the latter
question is “Yes”, then the approximation of any felL, from the library of
anisotropic Haar bases H could be realized by approximation from a single basis
A (f) and characterized by the interpolation spaces generated by B*(#*), where 2*
is determined from # ,+ = #(f).
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Appendix A
A.1. Proof of Theorems 2.4-2.6
For the proof of Theorem 2.5, we need the following lemma:

Lemma A.1. Suppose {®,,} satisfies conditions (i) and (ii) of Theorem 2.5 and p=1.
Let F =3, |P|, where #.¢,<n, and ||®;||,<A for je 7,. Then

||F||p<cAn1/P with ¢ = ¢(cy).

Proof. Using (i), we have

17, < <cid

3 BT M)

J€Sn

D 19l 15 ()

J€Sn

P P

We define

E = U E; and A(x)=min{|E}]|: je 7, and E;>x}, x€E.
J€Sn
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Evidently, property (ii) yields Z/’e}’n |Ej|_l/P1]E,. (x) <c1/1(x)_1/”7 xeR?. Therefore,
y . 1/p
11, < Al 1L, = ca( [ a0t ax)

1/p
cA< S g / 5 (%) x> =cA(#7,) P <can'?. O

JEIn

Proof of Theorem 2.4. The theorem is trivial if 0<z<1. Let > 1. Then p>1. Let
{@7}Z, be a rearrangement of the sequence {®;} so that ||®}[|,>|®3[|,>-.
Obviously,

1/t
||<D]’."||p<j‘1/f./1/7 where A" = (Z |¢)j|;> . (A1)
J
We define jm = {] 2_InJV<||(Dj||p<2_m+l°/V}' Then U,ugm j,u =

{: \|<1>j||p>2*"1m} and hence, using (A.1),

#fm<#<z fﬂ> <2, (A2)

usm

We denote Fy, =}, ,

S0l < S 1l <e > g, 2N
J ,  m=0 v

|®;]. Using Lemma A.l and (A.2), we obtain

0
—en Y 2 gey O

Proof of Theorem 2.5. Case I: 1<p< oo. We introduce the following abbreviated
notation: T}, = T}y (f), tm = tmy(f), and t; =1, - t,, if I€P,,, meZ (see (2.9)). By
(2.17), we have

1/t
Nt )= <Z el ) = A(f)- (A3)
le?
Clearly, the sequence {f;},., satisfies the conditions of Theorem 2.5 and hence
SOl <er (). (A4)
jez p

We define g(x) = To(x) + 37, 4(x) ), xeR%. By (A.4), > ez |i(x)| < oo for almost
all xeR? and hence ¢ is well defined. Clearly, g == T, + >l 4 €. on RY, for

each meZ, with the series converging absolutely a.e. From this and (A.4), we
infer |lg — Tnll, <|I 222,41 [4()I|,—0 as m— oo. On the other hand, since /'€ L,
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[/ = Tl 1y—0 as m— oo for each /€. Therefore, f = g a.e. and hence

o
f-T,= Z f; ae.on [Rd, meZ, (A.5)
Jj=m+1

where the series converges absolutely a.e., and in addition to this fel, (2, k).
We shall next show that there exists a polynomial PeIl; such that

Tn—P=> 1 inL,(R'), meZ (A.6)

2
Indeed, using Lemma 2.1 and (A.4), we obtain
16112, oy <ell™ 11611y < 2P|,y < 2PN (f),  Te,
and hence [|4], | g < 2P A°(f). Therefore,
Z 4l mey< o0, meZ. (A7)
J=—w

Fix Ie?. If —m is sufficiently large and pu< — 1, then T,, — T},4, is an algebraic
polynomial of degree <k on I and

m m
T = Tl 1) = Z i < Z gl iy =0 as m— — oo,
Jj=mtpu+l L, (I J=m4p+1

where we used (A.7). Therefore, there exists Q; € I1; such that

i ([T = Ol ) = 0.
From this and (A.7), it readily follows that there exists a unique polynomial Pe Il
such that lim,,_ o ||T) — P||LI<R,/) =0. This and (A.7) imply (A.6). In going
further, (A.4)—(A.6) yield

= Z t; ae. on R’ (A.8)

meZ

with the series converging absolutely a.e., and

> l50)]

jez

If - P, < <N iylf, P)< 0. (A.9)

p

Now, since feL,,([Rd) and f — PeL,,([R%“’)7 then P =0, and (A.8) and (A.9) imply
Theorem 2.5 in Case 1.
Case I1: 0< p< 1. Since p<1 and r/p<1 we immediately obtain

r/t
> \fj(') =D 1)l ZHUHP\ (Z ||f1||;> <c|lf [

Jjez Ie? Ie? le?

This replaces (A.4) and everythlng else is the same as in Case 1. We shall skip the
details. [
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Proof of Theorem 2.6. The equivalence of A", ,(-,#) and A", (-,?) can be proved
exactly as Lemma 2.3 was proved and we skip its proof. If 0<#n <, then the
equivalence of || - |[ gu(») and A7,,(-, 2) follows by (2.14).

The estimate ||f|
Hoélder’s inequality. It remains to prove that, for f € B*(2),

N on(fs 2) <N (S, ‘@)%|V||B”fk(y)7 if t<n<p. (A.10)

Since /'€ B**(#), by Theorem 2.4 (with = 1), f can be represented in the form

f:Z t =: Z Z t; a.e. on R? (A.11)

jez jeZ Ie?;

g SN on(f,2), for t<n<p, is immediate by applying

with the series converging absolutely a.e., where Pelly, t; = t;.(f), and t; =1; - t;,
if Ie?;, and

N oo, 2) = 1l
Ie?
Evidently, w/c(tj,J),7 =0 for Je?,, and j<m. We use Lemma 2.1 to obtain, for
Je?, and j>m,
1/n—1/t
ot IN<ellgll}, p<e Do uli<e 0 e,

Ie#;, I1=J Ie#;, I1=]

Set A :=min{n, 1}. Using (A.11), we have, for Je2,,

1/2 AN
& A\Y % AL
oD, < D e )y | <l Do | >0
J=m+1 j=m+1 | 1e?;, I<J
Therefore,
Noalf,2) =3 (U= ’7wk(f I,
Je?
A
—ort-be | N A
<Y Y Soob D el
meZ Je?, j=m+1 Ie?;, IcJ
A /A

00

SO 3N I DU BRI o

meZ JePy |j=m+1 |1€P;, IcJ

i/ T/

—c Z Z Z Z A2

meZ Je?, |j=m+l Ie?;, IcJ

=c > N 1S,

meZ Je?,,
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where A; = |I|"%||#/||, and y == « +%— 1= % f%>0. We now want to shift the order

of summation. So, this is a Hardy inequality type situation. We first estimate S,,, ; by
using Holder’s inequality. Choose y,,7,>0 such that y, +7, =y and set s == 3/,
1/¢ =1—1/s. We obtain

An
mJ— § 2- 71(—m /12 P2 (j—m)7 § A’}
J=m+1 1e?;, IcJ
r sq 1/s
o 1/s o A /
. N Y
< E (2—11(/—"1)4)5 E D=2 (i=m) § : Al
J=m+1 Jj=m+1 IeZ;, IcJ
Al
o0
<c E : 2= 12li=m)n E Al
J=m+1 Ie?;, I<J
At
0
<c § ' 2—nali-m)z E ' A ’
J=m+1 le?;, I<J

where we used that t<x. Combining this result with the previous estimates, we
obtain

Nog,2)<e > Y Z pnlmme N 4G

meZ JeP, j=m+l 1e?;, IcJ
C E E AT E 2 Vz(] T<C g § A} = CJ‘/‘IJ(f7 ‘@)17
JjeZ 1e€Z; m=—o0 JeZ 1€Z;

where we switched the order of summation. Thus (A.10) is proved.
The following simple example shows that the equivalence of || - ||, and

/an( 2) is not valid if y=p. Let f == 1; for some Ie2. It is readily seen that
AT \I|l/p~|V|| and at the same time A", ,(f,?) = o if y=p. O

A.2. Proof of Theorem 3.4
We first prove that, for f e B*, B* := B*(2),
1L <ellf ] - (A.12)

By Theorem 2.6 and (2.17), [[/I[s > Yoy llrlly with 7 = 17,(f) =17 - s (f) i
1e?y, (0<n<p). Therefore, if ||¢,|,>||71,],> -+ is a nonincreasing rearrangement
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of the sequence {||#/|,}, then
o0
N~ D 2Nl
v=0

On the other hand, Theorem 2.4 implies (||f|[,< o)

o0

> lul

Jj=m+1

O-m(fa 9)p<c

p

Evidently, the sequence {#/},., satisfies the conditions of Theorem 2.5 and,
therefore, we can apply Lemma A.1 to obtain

0 21 0
ox(f,2),<c > || > || <> ,, if I<p<oo. (A.13)
J=v | |/=2+1 p J=v
Clearly,
o0
ox(f,20h< > lulh<c Z Ve, |lb, if 0<p<l. (A.14)
/=2"+1

We insert (A.13) or (A.14), respectively, in the definition of ||f]| .. (see (3.6)) and
apply inequality (2.12) to obtain (A.12).
We next prove that if f e A%, then f'e BY and

115 <l 1] (A.15)

Case 1. t<1. We may assume that ¢,,€X¥(#) are such that W = oull, =
om(f,?),. Since f € A7 (L, 2), then 0,y(f,#),—0 and hence

/= 901+Z Py — Q1) i L. (A.16)

v=1

On the other hand, since ||@y — @[], <cop-1(f),,

H o0
<|If1l, +1Ilf = w1IIZ+ZII<pzv = o2l

P

.
1| + Z |02 — @i

<|lf||”+cz ox (f, 2), <II1l, +0202»(fg’ <cllf|[ < o0

with p:=min{p, 1}, where we used that t<u. Therefore, the series in (A.16)
converges absolutely a.e. on R? as well. From this, we readily obtain (< 1)

1] B’+Z |l —

Bi\||§0l
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Applying the Bernstein inequality from Theorem 3.2 to each term above, we get

1/

0
s<dlol+c > 2oy — grall,)
v=1

©
<dlflly+¢ Y 2%, 2),) <|fll%-
v=0

This completes the proof of (A.15) in Case I.

Case 1I: ©>1. Then p>1. This case is more complicated and will require more
careful analysis. We may assume that ¢, e€X* (%) are such that IV = eull, =
om(f, ), Let

O =: Z 17 - Py, where A,,c2?, #A4,,<m, and P, ;ell}.
IeAd,

Set A3, =y Ay. We have

Ay A%, and  #A4%5 < Y=2t"_1 forv=1,2,....

=0

In this part, our construction is quite similar to the one from the proof of Theorem
3.2. Let I,0€ 2 be the smallest box containing all boxes from A% and let 77 be the
minimal binary subtree of 2 containing A%, U {l,o}. The set A3, induces a natural
subdivision of R into a union of disjoint maximal rings. By definition, R is a ring if
R=1J,whereIe?orl =R!and JeZ or J = 0. We say that R = I\J is a maximal
ring generated by A%, if (a) Ie7* or I = R? and JeZ* or J =0, (b) R does not
contain a box smaller than I from A%, and (c) R is maximal with these two
properties. We let p* denote the set of all maximal rings generated by A%,. We have
the following possibilities for a ring Re p* with R =: I\J: (i) I is a final box in ¥
and J = 0; (ii) JeA% or J is a branching box in 77%; (iii) 1 = R? and J = I, .
Therefore, #p* <3445, + 1<6-2". Note that p* is a collection of disjoint rings such
that

R =) R

Rep}

Also, since A3 < A3,.., for each Rep?, |, we have either Rep¥ or R K for some
Kep¥. Thus {p¥} is a sequence of nested rings.

For each ring Re p*, we denote by Ix (the mother box of R) the smallest box from
2 containing R and by I} the largest box from & contained in R. Note that [} is
uniquely determined and is one of the two children of Iz in 2. Also, we define
Prell; by the identity

- PR||LF(11;) = infpep, || — P||L,,(11’Q) =: E(f, I;Z)p'
It is easily seen (using Lemma 2.1) that
[ = PrllL,r) <CE(f, R),- (A.17)
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Now, we set ¢, = ZRGP% 1 - Pg. It follows, from A < A%, and (A.17),
If = o3I, <cllf — o2l = cox(f,2),, (A.18)

By the definition of ¢%,, if Rep¥ and Kep¥* | with Ig = Ix, then RcK and ¢}, =
@5, on R. We let pS (v=1) denote the set of all rlngs from p¥\p¥* | which do not
share mother boxes with rings from p* | and set Po = pg. Note that p‘, is a
collection of disjoint rings. From the above arguments, every two sets from the
sequence {p?}2, are disjoint and

5 — @5 =Y r-Pr= Y ®p, v=l. (A.19)

Repf Rep?

Note that, using (A.18),

Z ¢R = ||(/7>2k‘ - (/73‘“*‘ l |p <o (fa g)‘m vl (AZO)

Repy?
€p P

Let Re U2, p° and R =: I\J with Ie#?, and Je#?,,, for some /€Z and u>1.
For /<m</ + u, there is a unique /*e€2,, such that J<I*cI. We define DR =
1y - @ and set Pr,, =0if m</ or m=¢ + p.

Since [|f — 3|, <c[lf — @»||,—~0 and fe€4)(L,,#), similarly as in Case I (see
(A.16)) we have

Z @3 — @3) in L (A.21)

with the series converging absolutely almost everywhere as well.

We denote by #,, the set of all rings Rep? U‘ o p\, such that Ire2,, and let
Ay be the set of all rings Rep® with R =: I\J such that |J|<27 <|I|. Clearly,
R A 1s a set of disjoint rings. From this, (A.19), and (A.21), it readily follows
that (t>1)

r T

T
o0
-~ \T
E or(f, 1)< ¢ E E dr +c E DRom
le?, u=m+1 ||ReR, ReA ), <

L T
—- T

=c| Y DD @Rl | e D lPrmll:

p=m+1 ReR, Rex',,
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Therefore,
Il =3 27 37 (/. 1);
meZ e,
1 T
© T
<e D27 D0 [ DD NeRll) | He D02 Y lidwall
meZ n=m+1 Re, meZ ReA ),
=21+ 2.

We apply inequality (2.12) to the first sum above to obtain

Di<e 32 S lrlfi<e 3 Il

me”Z ReR,, Rep®

where we used that ||@||, <|Ir|"/*""7||®g||, = 27%"||®kl|,, REZm, by Holder’s
inequality.

We shall estimate 2> by using the inequalities: (a) ||@rm|l, <27*"||@rm||, which
follows by Holder’s inequality as above, and (b) Y°,,..; [|@rmll, <c||@rll,, Rep®
which can be proved exactly as (3.5) was proved. Applying these inequalities, we find

<ed . D NPrmll<e Yo Y NIPrmll<e Y NIkl

meZ ReA Rep® meZ Rep?®

where we switched the order of summation.
Combining the above estimates for 2| and X,, we obtain

Allp<c Y llerlly< CZ > lloxll,

Rep? v=0 Rep?
©/p
. I=t/p
<ed | Do llerlly ) #03)
v=0 Rep?

o0
<dloflly+¢ > 27 lo% — ohall;
v=1

©
<dlflly+¢ Y 2" (f, 2, <cllf %
v=0

where we used (A.20) and Hoélder’s inequality. This completes the proof of (A.15) in
Case II. O
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