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Introduction 

A ringoid is a small (pre) additive category. A ring can be viewed as a ringoid with 
only one object. Many facts about rings generalize to yield facts about ringoids. The 
advantage of working in the general case is that there are techniques and construc- 
tions available which are not available for rings. One such construction is the notion 
of an idempotent completion, due to Freyd, discussed in Section 1. The idempotent 
completion of a ring, while still a ringoid, is a ring only for the zero ring. 

If  R is a commutative ring, then an R-algebra A is R-separable if A is projective 
as an A e = A ®n A °P-module (i.e., as a two-sided A-module).  In this paper we con- 
sider not only the Z-separability of a monoid ring ZG, but we also define and con- 
sider that of a ringoid ZC where C is a small category. Since separability is preserved 
by Morita equivalence, it turns out that  we can pass to the case where C is skeletal 
and idempotent complete. 

A small category C is splintered if it satisfies four conditions: 
(i) C(p, q) is finite for all p, q ~ ob C. 

(ii) All isomorphisms in C are identities. 

(iii) Every morphism in C factors as a retraction (split epimorphism) followed by 
a coretraction (split monomorphism).  

(iv) Let p, q ~ ob C with p a retract of  q. Let a~, . . . ,  o~ m be the coretractions from 
p to q and let ~1,-.-, fin be the retractions from q to p. Let M(p, q) be the matrix 
with 1 in position (i, j )  if fliaj = lp ,  and 0 otherwise. Then m = n and M(p, q) is in- 
vertible over Z. 

In this paper we show that for a small idempotent complete skeletal category C, 
ZC is Z-separable if and only if C is splintered, and equivalently, that Abc is equi- 
valent to a product of  copies of Ab. As a corollary we have proven a conjecture of 
B. Mitchell that ZC is Z-separable if and only if it is Morita equivalent to 2eD for 
some discrete category D. 

In Section 1 we give definitions and constructions. In Section 2 we show some 
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general results on separability. Section 3 contains lemmas necessary for the main 
result, Section 4 has a short discussion about semigroups, and Section 5 is on 
splintered categories. The main results are in Section 6. 

1. Definitions and constructions 

Let R be a commutative ring with identity. An R-category ~ is a category equip- 
ped with an R-module structure on each Horn set so that composition is R-bilinear. 
An  R-algebroid is a small R-category. If ~ and ~ are R-categories, then a functor 
T: g~ ~ ~ is an R-functor if the map g~(p, q)-, 6A(Tp, Tq) is R-linear for each p and 
q in ob ~. 

If ~' is an R-algebroid, then its enveloping algebroid is ~ e=  ~®R ~op. There is 
an epimorphism (multiplication) 

/z: (~) (~(p,  ")®R ~ ( ' , P ) ) ~  ~ ( ' , ' )  
p~ob z 

of ~e-modules given on basis elements by 

p( lp®  lp) = lpl 

The R-Hochschild dimension of ~, dimR ~, is the projective dimension of ~ =  
~ ( . , . )  as a %~e-module. 

Let C be a small category. We denote by RC the R-algebroid whose objects are 
those of C,'and where RC(p,q) is the free R-module on C(p, q), with the obvious 
laws of composition. We will denote direr RC by direr C. 

Two R-algebroids ~ and ~ are R-Morita equivalent i f  there is an R-equivalence 
of categories 

Mod R ~= Mod R ~. : 

This can be shown to be equivalent to the existence of bimodules 

~P~¢ and ~¢Q~, 

where the action of R is the same on the left and right sides, with 

P ® ~ t Q = ~  and Q ® g P =  ~°j 

as bimodules. Then 

M°d  R ~¢®R ~°P P®~--- ' Mod R ~®~ ~°P • ®~t- ~ Mod R ~®R ~°P, 

and the composite takes the bimodule ~J to 

Therefore, if  ~ and ~ are R-Morita equivalent, then dim R g~ = dim n ~. 
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Example 1. A category is idempotent complete if every idempotent 0 splits, that is 
if 0 = aft with fla an identity. A category C is an idempotent completion for a sub- 
category C of C if C is idempotent complete and if every object of C is a retract 
of one in C. It is shown in section 1 of [6] that the inclusion functor C--, C induces 
an equivalence of categories 

A C ~ A C, 

for any idempotent complete category A, when C is small, and that idempotent 
completions are unique up to equivalence. Given a category C, let C be the category 
whose objects are idempotents 0 in C, and where a morphism 0 - 0 '  is a triple 
(0', x, 0), where x is a morphism of C satisfying O'x = x = xO. Composition is inherited 
from C. Then C is an idempotent completion of C. (This construction, due to Freyd, 
can also be found in section 1 of [6].) Therefore, if @ is an idempotent completion 
of ~, then dim R ~ =  dimR @. If C is a small category, then the category of R- 
functors (Mod R)Rc is equivalent to the category of all functors (Mod R) c. There- 
fore, if C is an idempotent completion of C, then RC and RC are R-Morita equi- 
valent, and so dime C = dimR C. 

Example 2. Let ~ be an R-algebroid with only a finite number of objects. Define 
[f:] to be the set of matrices (aqp) with ~qpE ~(p, q). These can be added and 
multiplied using addition and composition in T to make [ T] into an R-algebra. It 
is shown in section 7 of [6] that f: and [ T] are R-Morita equivalent, so dim k T = 
dime [ ~]. 

It is easily shown (see section 12 of [6]) that if T is an R-algebroid, then 
dime T = dim e pop. Also if T is the coproduct of R-algebroids Ti (disjoint union 
with 0 morphisms added between objects of different categories), then dime T=  
suPi dim R ~i. 

An R-algebroid ~ is R-separable if ~ is projective as a ~e-module. When 
= RC we shall simply say that C is an R-separable category. This is, of  course, 

equivalent to dime ~ = 0 and also to the splitting of the multiplication map ~t as a 
map of ~e-modules. If 2 is a splitting for g, set eq = 2 ( l q )  for each q ~ ob ~. This 
gives a family 

I eqEp~ob (~ f¢ ~(P'q)®R~(q 'P) lqe°b~" 

Conversely, given such a family, define ;t by ~.q,r(y)=(y~lq)eq f o r  y E T(q,r). 
Then naturality of 2 is equivalent to 

(1) (yt~ lq)eq=(lr@Y)er, 

and the condition that 2 split/z is equivalent to 

(2) #eq=lq 
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using naturality of/:. Therefore ~' is R-separable if and only if there is such a family 
{eq } satisfying (1) and (2). We call such a family an R-separability set for ~'. When 
the ring R is apparent we shall omit it from the notation and simply say separable 
and separability set. If ~' is an algebra, the element e e ~,e is then idempotent and 
is called a separability idempotent for ~' (see page 40 of [4]). When ~' = RC, the 
categories (ModR) Rc®RRc°° and (ModR) Rccxc°p) of R-functors are equivalent 
(each is equivalent to the category of all functors (ModR)C×C°~), so the family 
{eq } takes on the form 

eq= ~ rqh(g,h), 

where the sum is indexed by all composable pairs (g, h) with dom h = cod g = q. Then 
(1) and (2) above become 

(1') ~ r~,h(Ag, h)= ~ rPh(g, hA) 

where y: q--,p in C, and 

(2') E rg hg h = lq 

with rgh e R. We shall use this notation in the remainder of this paper. 

2. General results 

Let ~ be an R-algebroid. An R-functor M: ~--, Mod R is R-projective (resp. R- 
finitely generated) if M(p) is a projective (resp. finitely generated) R-module for all 
p ~ ob ~. ~ is an R-projective (resp. R-finitely generated) R-algebroid if it is R- 
projective (resp. R-finitely generated) as a functor ~ e - ' M o d R  (i.e., if ~(p,q) is 
a projective (resp. finitely generated) R-module for all p, q ~ ob ~). The proof of 
the result of ViUamayor and Zelinski on page 47 of [4] can be generalized to show 
that if ~ is an R-projective separable R-algebroid, then it is R-finitely generated. 
However, we will only prove and use a special case. 

Proposition 2.1 Suppose C is a small R-separable category. Then for each p and p'  
in C, C(p,p ' )  is finite. 

Proof. Let {eq} be a separability set for RC and let ? e C ( p , p ' ) .  Then 

But 

y=y~(ep)---~((~,~) 1)ep)= E rPhYg h -  E E rPhg 'h. 
(g,h) (g;h) ~gffig" 

E r~,h(Yg, h)= E rP~h'(g'h'~) • 

Deleting superscripts, if Y~s=s' r~, h~O for a pair (g" h), then there is a term on the 
right hand side with rg, h, ~e 0 for some h'. Therefore the sum in the first equation 
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can be viewed as being over the fixed finite set 

{(g;h)lrg.h,~O and rg, h~#O for some g and h '} ,  

so C(p, p ' )  is finite. 

Lemma 2.2. If  ~ is a separable R-algebroid and S is a commutative R-algebra, then 
T ®R S is S-separable. 

Proof. The diagram 

O) (*(p,-) ®R s) ®s (*(., p) ®R s) 
p 

( V ( p , . ) ® g  ~((-, p)) ®R S 

V(-, 

---'~u~, ® Is 

commutes by associativity of the tensor product, so i f / t ~  splits, then so does 
//~J®R s- 

Note that the above shows that if C is Z-separable, then C is R-separable for any 
commutative ring R. 

Lemma 2.3. I f  V is a separable R-algebroid and M e  (Mod R) ~ is R-projective, 
then M is projective as a T-module. 

Proof. V ( p , ' ) ® R : M o d R ~ ( M o d R )  ~ is left adjoint to the exact functor 
M ~  M(p). Since M(p) is a projective R-module, the V-module 

V(p, . )®e T(., p ) ® ~ M =  V(p, . )®R M(p) 

is projective for all p. Hence the V-module 

(o(~) V(p, ")®R V ( . , p ) ) ® ~ M  

is projective. But V(., • ) is a retract of @ ( V(p, • ) ®R V(-, p)) as a ve-module, so 
M -  V ( . , . ) ® ~  M is a projective V-module. 

Proposition 2.4. Let A be an R-algebra, finltely generated as an R-module. Then 
the following are equivalent: 

(a) A is R-separable. 

(b) A ®R K is K-separable for  all commutative R-algebras K. 
(c) A ®R K is semisimple for  all fields K which are R-algebras. 
(d) A/m,4 is R/m-separable for  all maximal ideals m o f  R. 
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Proof. (a)~ (b) follows from Lemma 2.2. 
(b) ~ (c) follows from Lemma 2.3. 
(c)~(d). With K = R / m  in (c) we see that A / m A = A ® R / m  is 

separable, and so (d) holds by Theorem 2.5 in [4, p. 50]. 
(d) ~ (a). See Theorem 7.1 in [4, p. 72]. 

classically 

Corollary 2.5. Let ~ be a separable R-finitely generated R-algebroid. I f  ~ is a full  
subalgebroid o f  ~ with only a finite number o f  objects, then ~ is R-separable. 

Proof. By Lemmas 2.2 and 2.3, ~®RK is semisimple for all fields K which are R- 
algebras. By [6, section 4] any full subalgebroid of a semisimple algebroid is semi- 
simple, so Y ®R K is semisimple. Since Y has only a finite number of objects, the 
ring [Y ] ®R K =  [Y ®R K] is semisimple. Therefore, by the above proposition, 
[ Y ], and hence Y, is R-separable. 

3. Lemmas 

The following lemma is well known and was shown by E.H. Moore in [8]. 

Lemma 3.1. Let G be a finite monoid. Then every element o f  G has an idempotent 
power. 

Proof. If g ~ G ,  then gr=gr+S for some r and s. Then 

g r = g r + S = g r + 2 s =  ... =g2r+t 

for some t. Therefore 

gr  + t = g2r + 2t = (gr + t)2. 

Lemma 3.2. Let C be a category and let q ~ ob C with C(q, q) finite. Then any mon~ 
morphism (epimorphism) in C(q, q) is an automorphism. In particular, any elemen~ 
o f  a finite monoid which is either left or right invertible has a two-sided inverse. 

Proof. Let a ~ C(q, q) be a monomorphism. Then the sets {ag]g ~ C(q, q)} anc 
C(q, q) have the same number of elements, so they are equal. Therefore, there is 
g with ag = lq. Then a is both a retraction and a monomorphism, hence an isomor 
phism. 

Lemma 3.3. Suppose G is an R-separable monoid. Let H be a submonoid o f  G clo.~ 
ed to factors (that is, i f  gh ~ H with g and h in G, then g and h are in H). Then 1 
is R-separable. 
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Proof. Let e=  ~ rg, h(g, h) be a separability idempotent for RG. Since gh e H i f  and 
only if g e H and h ~ H, the right hand side of 

1= ~ rg, hgh 

splits into two sums, one over {(g, h) ]g ~ H and h e H} and one over {(g, h) [g ~ H 
and h ~ H}.  Since 1 e l l ,  the second sum is zero. 

Next, let k e H. Consider the equation 

rg, h(kg, h)= ~ rg, h(g, hk). 

Since kg ~ H if and only if g e H and hk e H if and only if h e H, the only terms of 
the form r(hl, h2) with h I and h 2 in H occur with both g and h in H. Therefore, the 
above equation holds when the sums are over (g, h )e  H x H. As a result 

rg, h(g,h) 
(g,h)~HxH 

is a separability idempotent for RH. 

The next lemma is a well-known generalization of Maschke's Theorem and can 
easily be proven using 2.1 and separability idempotents. 

Lemma 3.4. Let G be a group. The RG is R-separable i f  and only i f  G is finite and 
]G], the order of  (3, is invertible in R. 

Corollary 3.5. Let G be an R-separable monoid and let H be the subgroup o f  inverti- 
ble elements o f  G. Then ]HI is invertible in R. 

Proof. If gh ~ H, then g has a right inverse and h has a left inverse. Since G is finite 
by Proposition 2.1, by Lemma 3.2 g and h are invertible and hence in H. By Lemma 
3.3, H is then R-separable and the result follows from Lemma 3.4. 

Corollary 3.6. I f  ZC is a separable ringoid, then the only automorphisms o f  C are 
identities. 

Proof. By Corollary 2.5, for each q eob  C, ZC(q, q) is a separable monoid ring. The 
rest follows from Corollary 3.5. 

In [5], an argument by B. Mitchell following Corollary 7.3, p. 880, showed the 
following result as a corollary to a theorem of Laudal. 

Proposition 3.7. Let C be a smafl connected Z-separable idempotent complete cate- 
gory. Then C has a zero object. 
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4. Rees semigroups 

Let G be a group. Let G O be the semigroup obtained by adjoining a zero element 
to G. Let P be an n x m matrix with entries in G °. The Rees matrix semigroup 

~ ' ° (G;  m , n , P )  is the set of  all m x n  matrices over G o with at most one non-zero 
entry, with multiplication 

A . B = A P B .  

Let R be a ring and S be a semigroup with zero dement  z. Set 

R o S = R S / R z .  

If  S = d l° (G;  m, n, P) ,  then RoS consists of all m x n matrices with entries in RG, 

with the above multiplication. The following result was intrinsic in the proof of 
Theorem 4.7 in [9] and can be found, with R a field, as Lemma 5.18 in [3]. 

Lemma 4.1. Let  S = ~ ' ° (G;  m, n, P).  Then RoS has an identity i f  and only i f  m = n 
and P is invertible over RG.  

Proof. Let E be an identity in RoS. Then for any matrix A in RoS we have 
E P A  = A and A P E  = A .  It is easily seen that as a result E P  = I m and P E  = In. There- 
fore m = n and P is invertible over RG.  Conversely, it is clear that if  m = n and P 
is invertible over RG,  then P-~ is an identity in RoS. 

5. Splintered categories 

Recall the definition of  a splintered category from the introduction. 
First we note that (ii) is equivalent to C being skeletal with only identities as auto- 

morphisms. Also if  0 is an idempotent in a category C satisfying (iii), then, writing 
0 = a f  as in (iii), we have that a f a r  = aft. Since a is a monomorphism and fl is an 
epimorphism, f a  is an identity. Therefore, 0 splits and hence C is idempotent com- 
plete. 

Lemma 5.1. I f  C is a skeletal category with C(q, q) finite, then the set o f  retract,. 

o f  q is finite. 

Proof. Let { P i } i e l  be the set of  retracts of  q and choose oti:Pi--~q and Pi: q -"P  

with picti = l p~. If otiPi = airy, then 

~iOlj f jOli "- f io~if io~i = l pi , 

so Pi is a retract of  pj .  By symmetry pj is a retract of  p/, so i = j .  Since C(q, q) i 
finite, there can only be a finite number of distinct a i f i ,  so I is finite. 
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Recall that Lemma 3.2 says that if C(q, q) is finite, then any monomorphism or 
epimorphism R in C(q, q) is an automorphism. Therefore, if (ii) also holds, a = lq. 

Proposition 5.2. I f  a small skeletal category C satisfies (iii) and i f  all retractions 
which are endomorphisms are identities, then the factorization in (iii) is unique. 

Proof. Suppose al and R 2 are coretractions and ]~l and fiE are retractions with 
Rift  I :-REfl  2. Choose fl with flal the identity. Then flR2]~ 2 -----flRl fl  I : i l l "  Write ]~R 2 : 
t~]~ as in (iii). Then t~Bfl2 =il l ,  so t~ is both a retraction and a coretraction, and 
hence an isomorphism. Then by the hypotheses t~ is an identity, so dom R 1 is a 
retract of dom RE. By symmetry, dom R E is a retract of dom R1, SO they are equal. 
Then ,/~ is an endomorphism, and hence an identity, so fll =fiE, and hence al = RE. 

If C is any category, we may preorder ob C by p_< q if p is a retract of q. If C 
is a splintered category, then this is a partial order. For q eob  C, we define the 
height o f q  to be the sup of lengths n of chains po<pl <. . .  <Pn = q of retracts of q. 

Example 1. Let C be the category with objects z, p, and q with z a zero object, and 
with morphisms defined as follows. Let M be an n x m matrix with entries mij 
{0,1}. We take the free pointed category with generators R1, . . . ,Rm:p~q  and 
ill, ... ,fin: q ~ P ,  subject to relations fliaj=mij (viewing 1 as lp). It can be shown 
using only these relations that the morphisms aiflj are distinct endomorphisms of 
q. If fact, C is the skeletalization of the idempotent completion of the monoid ob- 
tained by adding an identity to the Rees semigroup ~° (1 ;  m, n, M). If m = n and M 
is invertible over Z, then C is splintered. 

Example 2. Let P be a poset in which, for each q e P, the set {p]p<_q} forms a 
lower semilattice (i.e., each pair of  elements {r, s}, with r_< q and s _  q, has an inf). 
Let P be the category whose objects are the elements of P and where P(p, q )=  
{rqplr<-p and r<_q}. Composition is given by Srqtqp= Urp where u=inf(s,  t). Then 
P satisfies (ii), (iii), and (iv), and each Hom set has at most one retraction and at 
most one coretraction. We note that if C is a small skeletal category satisfying (iii) 
in which each Hom set has at most one retraction and at most one coretraction, then 
C is of the above form. If P is downward finite, then P is splintered. 

Example 3. Let A .  be the category whose objects are finite totally ordered sets [n] = 
{0< 1 < . . -<n},  n>0 ,  and where a morphism from In] to [m] is a non-decreasing 
function taking n to m. When [p] is a retract of [q], the set of coretractions from 
[p] to [q] and the set of retractions from [q] to [p] can each be ordered so that the 
matrix M([p], [q]) is upper triangular, with diagonal entries 1. Since (i) to (iii) are 
also satisfied, A .  is splintered. 
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6. Main results 

Let C be a small category and let q eob  C. Denote by c(q) the set of coretractions 
(split monomorphisms) with codomain q, and by r(q) the set of retractions (split epi- 
morphisms) with domain q. If A is any pointed category with coproducts, then there 
is a functor 

T: X A--,A c 
peobC 

given on objects by 

T ( A p ) ( q ) -  ~ Adoma. 
aec(¢) 

If y: q-+q' in C, then 

r(Ap)(y): Adorns'-* 
a E c(q) 

is defined by 

T(Ap)(y)u a = uy a 

=0 

(~ Adoma 
aEc(¢') 

if ya is a coretraction, 

otherwise 

where the ua are the coproduct injections. That T(Ap) is a functor is verified by 
? 

noting that if ya is not a coretraction, then neither is y'ya. If (fp): (Ap)~(Ap) is 
in Xp~obcA, then T(fp) is defined by 

T(fp)q= ~ fdoma- 
aec(#) 

This is easily seen to be a natural transformation. Note that the functor T is always 
faithful. (This functor was described by M. Andr6 and mentioned by B. Mitchell 
in [6]). 

Theorem 6.1. Let C be a small idempotent complete skeletal category. Then the 
following are equivalent: 

(a) C is splintered. 
(b) The functor T: Xp~obC ~ c  defined above is an equivalence for all idem- 

potent complete additive categories d.  
(c) Abc is equivalent to a product o f  copies o f  Ab. 
(d) C is Z-separable. 

We immediately obtain the following results for any small category C. 

Corollary 6.2. C is Z-separable i f  and only i f  the skeletalization o f  its idempotent 
completion is splintered. 
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Corollary 6.3. C is Z-separable if and only if ZC is Morita equivalent to ZD for some 
discrete category D. 

Proof of Theorem 6.1. (a)=(b).  Let B • s ¢  c. By induction on height q we define 
an object Aq • d and morphisms 

/rq 
B(q) ~ Aq 

Uq 

such that ttqUq is the identity, B(fl)Uq=O for non-identity retractions ,6, and 
rtqB(Ct) =0  for non-identity coretractions a. If q has height O, set rtq= Uq= IB(q). 
Assume Ap, rrp, and up have been defined for all p < q as above. Define 

aq ~q 
(~ Adorn a 'B(q) ' X AcodB 

a e c(q) fl E r(q) 
ff--# lq ~ lq 

by 

UqU~t = B(ot)Udorn a a n d  ~fl~'q'--/rcod#B(fl ). 

If a e c(q) and fl • r(q) are not identities, then we have that 

~,8 7~q/4q Ua = 7~co d #B(fl)B(a)Udo m a .  

If/3a is an identity, then this is 1. If not, write fla = ~/~ as in (iii). The above becomes 

ncod afl(a)B(B)Udom Z 

which, since either 0 or/~ is not an identity, is 0 by induction. Therefore, gq~q is 
the matrix whose non-zero entries are in blocks on the diagonal which are the 
matrices M(p, q) of condition (iv), and hence is invertible. Define Uq and rtq so that 
we have a coproduct decomposition 

(~ Adom a 
a ~ c(q) 
Ct~ lq 

(~ Acod # 
f l  ~ r(q) 
~ e  lq 

B(q) ~ Aq 
Uq 

To see that ~qB(O~)= 0 for all non-identity coretractions a, note that B(ot)Udom a and 
B(a)adom ~ factor through tTq. Dually B(fl)Uq= 0 for all non-identity retractions ft. 
Finally, using these and (iii), it is easy to see that the coproduct decomposition gives 
a natural transformation B =  T(Ap). 

As we noted earlier T is always faithful, so all that remains is to show that it is 
also full. Suppose that g: B-*B' is a natural transformation between functors in 
d c. We define inductively morphisms fq: Aq~Aq  so that the diagram 
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Uq 

Aq ~ ' B(q) ". 1 
~q 

A:, , ,B'(q) 
ltq 

commutes in the obvious sense. Then g = T(fp). Assume the diagram commutes for 
p < q and consider the cube 

Adom a 
Ua~Udom a 

fdoma (~) 
a ¢ c(q) 
a~l¢ 

A r --dora a Udoma 

dora 0t I~q /g(dom or) 

[ (~)fdoma ~, I 
I , B'tdom a) l 

' B(dom a) 

, B(q) 

(~) A~oma _, ,B'(q) 
a ~ c(q) Uq 
a¢lq 

g(q) 

where a¢ is def'med earlier. All faces commute save possibly the f ront  face, so that 
face must also commute by the universal property of the coproduct. Dually we get 
commutativity with the projections ~q and ~q, so ~)fdoma splits off from g(q), 
defining fq. 

(b) = (c) = (d) is obvious. 
(d) = (a). (i) This follows from Proposition 2.1 (Villamayor-Zelinski). 
(ii) This is Corollary 3.6. 
(iii) By Lemma 5.1, if q e C, then the height of q is finite. By Proposition 3.7, 

each connected component of C has a zero object. Let y : p ~ q .  We proceed by in- 
duction on height p + height q. If this is 0 or 1, then either p or q is the zero object 
in its connected component of  C, and hence y is either a retraction or a coretraction. 
By induction it is sufficient to show that if y is neither a retraction nor a coretrac- 
tion, then it must factor through some object s with s < p  and s < q. Since C is idem- 
potent complete, it is sufficient to f indan idempotent 0 not an identity with either 
@ = y or y0 = Y, since this idempotent then splits. In view of Lemma 3.1 we need 
only do this for endomorphism 0. 

Consider the full subcategory D of  C whose objects are those objects s of C with 
either s a retract of p or s a retract of q. Again, by Lemma 5.1, D has only a finite 
number of objects, so by Corollary 2.5, D is Z-separable. Let 

{es= ~. ~,h(g,h)} 
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be a separability set for ZD. Consider the equation 

rPh()'g,h) = ~ rq h(g, hy). 

If p is not a retract of  q, then there is no h with hy = lp. In order that l~ep = lp by 
(ii) we must have r p = 1 Therefore, comparing coefficients of  (y, lp), we see lp, lp 
that there must be a g :~ lp with yg = y. Similarly if q is not a retract of  p,  then there 

is an h 4: lq  with hy = y. 
(iv) Choose p and q in ob C. Let - be the congruence relation on C generated 

by y -  Ors if y : r ~ s  factors through a proper retract of  p.  Let C be the skeletaliza- 
tion of  the quotient category C / - .  In C the object p has height 1, and the matrix 
of  condition (iv) in C is the matrix M(p,  q) in C. Clearly C is separable, so without 
loss of  generality we may reduce to the case that p has height 1 in C. 

Consider the semigroup S c_ C(q, q) consisting of the morphisms Olifl j together 
with the zero morphism, where al ,  .. . ,  am and ,81, ...,,sn are as in (iv). Then 
S =  ~ ° ( 1 ;  m, n, P)  under the identification 

ai,sj ~ eij 

where e~/is the matrix whose (i , j)  entry is 1 and whose other entries are 0, with 
P = M ( p ,  q). S is closed under left and right multiplication by elements of  C(q, q) 
since p has height 1, so (Z/rT/)S is an ideal of (7//rT/)C(q, q). If r is a prime, then 
the later is semisimple by Proposition 2.4. Therefore, by the Wedderburn-Art in  
structure theorem, so are (7 / /r~S,  and hence (7//r7/)oS. As a result (7//r7/)oS has an 
identity, so by Lemma 4.1, m = n and P is invertible over Z/rT/. This is true for all 
primes r, so d e t P  is not divisible by any prime, hence it is +_1. Therefore, 
P = M ( p ,  q) is invertible over 7/. 

In [12] J. Shapiro proved for a finite semigroup S that S is separable if and only 

if there is a chain of ideals ( P = S o C S 1 C . . . C S n = S  with 7//pT/(Si/Si+l) 7//pT/- 
separable for each prime p and each i, 0 <_ i < n. C. Cheng obtained this as Corollary 
12 to Theorem B in [2], which stated that if  S is a semigroup with a zero element 
such that ZS has an identity, then the following are equivalent .  

(1) 7/S is separable. 
(2) S is finite with a principal series 0--S0C SI C . . - C  S,, = S such that Si /S  i_ 1 ~" 

J 0 ( 1 ;  mi, mi, Pi) where Pi is invertible over 7/. 

( X i  = 1 Mmi(7/)) X 7/. (3) 7/S= n-1 
We proceed to show the connection between this and our main result by showing 
that Corollary 6.2 yields (1)=(2). 

Let S be separable and let M be the monoid obtained by adjoining an identity to 
S. Then M is separable, so the skeletalization C of its idempotent completion is 
splintered with a maximal element q. Let Pl,P2, " . ,Pn+ l = q  be the objects of  C 
with ht Pl < ht P2-<"" < ht Pn + 1- Let Sk be the set of all endomorphisms of q which 
factor through some pj with j _  k. Then 0 = So C S~ C--- CS~ = S (M= Sn + 1 = 
S U { 1 }) are all subsemigroups of  S. As in the proof of  condition (iv) above it is easy 
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to see that 

Therefore Sk/Sk _ 1 is isomorphic to J’(l; m, m,P) with P the matrix M(pk, q) of 
condition (iv), hence invertible over Z. 

It should be noted that Cheng’s Theorem B requires the notion of O-simple 
semigroups and a Theorem of Rees characterizing such, which our result does not 
use. However, Theorem B does allow for coefficient rings other than ,Z. A 
generalization of’our results to coefficient rings other than Z will form part of a 
forthcoming paper by B. Mitchell, [7], and will use techniques similar to those in 
this paper rather than results of Rees. 
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