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Introduction

A ringoid is a small (pre) additive category. A ring can be viewed as a ringoid with
only one object. Many facts about rings generalize to yield facts about ringoids. The
advantage of working in the general case is that there are techniques and construc-
tions available which are not available for rings. One such construction is the notion
of an idempotent completion, due to Freyd, discussed in Section 1. The idempotent
completion of a ring, while still a ringoid, is a ring only for the zero ring.

If R is a commutative ring, then an R-algebra A is R-separable if A is projective
as an A°=A®z A°P-module (i.e., as a two-sided .4-module). In this paper we con-
sider not only the Z-separability of a monoid ring ZG, but we also define and con-
sider that of a ringoid ZC where C is a small category. Since separability is preserved
by Morita equivalence, it turns out that we can pass to the case where C is skeletal
and idempotent complete.

A small category C is splintered if it satisfies four conditions:

(1) C(p, g) is finite for all p,geob C.
(i) All isomorphisms in C are identities.

(iii) Every morphism in C factors as a retraction (split epimorphism) followed by
a coretraction (split monomorphism).

(iv) Let p,geob C with p a retract of g. Let ;, ..., @, be the coretractions from
pto g and let By,..., B, be the retractions from g to p. Let M(p, g) be the matrix
with 1 in position (i, j) if Bia;=1,, and 0 otherwise. Then m =n and M(p, g) is in-
vertible over Z.

In this paper we show that for a small idempotent complete skeletal category C,
ZC is Z-separable if and only if C is splintered, and equivalently, that Ab® is equi-
valent to a product of copies of Ab. As a corollary we have proven a conjecture of
B. Mitchell that ZC is Z-separable if and only if it is Morita equivalent to ZD for
some discrete category D.

In Section 1 we give definitions and constructions. In Section 2 we show some
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general results on separability. Section 3 contains lemmas necessary for the main
result, Section 4 has a short discussion about semigroups, and Section S is on
splintered categories. The main results are in Section 6.

1. Definitions and constructions

Let R be a commutative ring with identity. An R-category ¢ is a category equip-
ped with an R-module structure on each Hom set so that composition is R-bilinear.
An R-algebroid is a small R-category. If ¢ and 9 are R-categories, then a functor
T: ¢ 9 is an R-functor if the map %(p,q)— 2(Tp, Tq) is R-linear for each p and
q in ob ¢.

If ¢ is an R-algebroid, then its enveloping algebroidis = ¢ ®y ¢°P. There is
an epimorphism (multiplication)

u: @ (¢(p,)®r ¢, PN~ %(-,*)

peob
of ¢°-modules given on basis elements by
u(1,®1,)=1,.

The R-Hochschild dimension of %, dimg %, is the projective dimension of ¢ =
%(-,-) as a #°-module.

Let C be a small category. We denote by RC the R-algebroid whose objects are
those of C, and where RC(p, g) is the free R-module on C(p, q), with the obvious
laws of composition. We will denote dimg RC by dimg C.

Two R-algebroids ¢ and 9 are R-Morita equivalent if there is an R-equivalence
of categories '

Mod R “=Mod R?.

This can be shown to be equivalent to the existence of bimodules
aP¢ and ¢Qy,

where the action of R is the same on the left and right sides, with
PReQ=2 and Qg P=¢%

as bimodules. Then

L

Qg €P__~ FQr €°F IR FP
Mod R ?5;—’ Mod R WMOd R s

and the composite takes the bimodule % to
PR¢ Q¢ Q=PRQ¢ Q= 2.

Therefore, if ¢ and % are R-Morita equivalent, then dimg ¥ =dimg %.
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Example 1. A category is idempotent complete if every idempotent 8 splits, that is
if 8=ap with Ba an identity. A category C is an idempotent completion for a sub-
category C of C if C is idempotent complete and if every object of C is a retract
of one in C. It is shown in section 1 of [6] that the inclusion functor C— C induces
an equivalence of categories

A¢-AC

for any idempotent complete category A, when C is small, and that idempotent
completions are unique up to equivalence. Given a category C, let C be the category
whose objects are idempotents § in C, and where a morphism -6’ is a triple
(0, x, ), where x is a morphism of C satisfying 8’x = x = x. Composition is inherited
from C. Then C is an idempotent completion of C. (This construction, due to Freyd,
can also be found in section 1 of [6].) Therefore, if ¢ is an idempotent completion
of ¢, then dimy ¢#=dimg €. If C is a small category, then the category of R-
functors (Mod R)®€ is equivalent to the category of all functors (Mod R)C. There-
fore, if C is an idempotent completion of C, then RC and RC are R-Morita equi-
valent, and so dimy C=dimg C.

Example 2. Let ¢ be an R-algebroid with only a finite number of objects. Define
[#] to be the set of matrices (e ,) with Qg€ ¢(p,q). These can be added and
multiplied using addition and composition in ¢ to make [ #] into an R-algebra. It
is shown in section 7 of [6] that ¢ and [#] are R-Morita equivalent, so dimy ¥ =
dimg [ #].

It is easily shown (see section 12 of [6]) that if ¢ is an R-algebroid, then
dimg ¢=dimg ¥°P. Also if ¢ is the coproduct of R-algebroids %; (disjoint union
with 0 morphisms added between objects of different categories), then dimy ¢ =
sup; dimy %;.

An R-algebroid ¢ is R-separable if ¢ is projective as a #°-module. When
¢ =RC we shall simply say that C is an R-separable category. This is, of course,
equivalent to dimg ¢ =0 and also to the splitting of the multiplication map u as a
map of #°-modules. If 1is a splitting for u, set e,=A(1,) for each geob ¢ This
gives a family

{eqe @ g(p,Q)®Rg(qap)}qeob?'

peob ¥

Conversely, given such a family, define A by e r(M)=(y®1,)e, for ye #(q,r).
Then naturality of A is equivalent to

1) (r®1ye;=(1,7)e,,
and the condition that A split u is equivalent to

2 pey=1,
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using naturality of u. Therefore ¢ is R-separable if and only if there is such a family
{e,} satisfying (1) and (2). We call such a family an R-separability set for €. When
the ring R is apparent we shall omit it from the notation and simply say separable
and separability set. If ¢ is an algebra, the element ee ¢° is then idempotent and
is called a separability idempotent for ¢ (see page 40 of [4]). When ¢ =RC, the
categories (Mod R)RC®RRC™ and (Mod RYRC*C™ of R-functors are equivalent
(each is equivalent to the category of all functors (Mod R)©*€™), so the family
{e,} takes on the form

eq= Z rgq,h(g9h)9

where the sum is indexed by all composable pairs (g, 4) with dom A =cod g=gq. Then
(1) and (2) above become

1) Y ris(Agh)=Y rfu(g hi)
where y: ¢—p in C, and
2 Y riygh=1,

with 77, e R. We shall use this notation in the remainder of this paper.

2. General results

- Let ¢ be an R-algebroid. An R-functor M: #—>Mod R is R-projective (resp. R-
Sinitely generated) if M(p) is a projective (resp. finitely generated) R-module for all
peob €. ¥ is an R-projective (resp. R-finitely generated) R-algebroid if it is R-
projective (resp. R-finitely generated) as a functor #°“>Mod R (i.e., if ¢(p,q) is
a projective (resp. finitely generated) R-module for all p,geob ). The proof of
the result of Villamayor and Zelinski on page 47 of [4] can be generalized to show
that if ¢ is an R-projective separable R-algebroid, then it is R-finitely generated.
However, we will only prove and use a special case.

Proposition 2.1 Suppose C is a small R-separable category. Then for each p and p’
in C, C(p, p’) is finite.

Proof. Let {e,} be a separability set for RC and let y € C(p,p’). Then
y=yule,) =u((y®1e,) = (gZ,I') rEnygh=Y Y ring'h

@.h vg=¢
But
Y r2y(ya i)=Y 2 y(g’\h'y).

Deleting superscripts, if ¥_._.. re,»#0 for a pair (g', ), then there is a term on the
right hand side with r,, ,-#0 for some h’. Therefore the sum in the first equation
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can be viewed as being over the fixed finite set
{(g" h)|ry,y+0 and r, ,#0 for some g and h’},
so C(p, p’) is finite.
Lemma 2.2. If ¢ is a separable R-algebroid and S is a commutative R-algebra, then
¢ ®gr S is S-separable.
Proof. The diagram
D (40, ) B S)®s (4. H®RS) _ .
y 4 » &R

€, )®rS
@15

l

(69 (4, )@ %(-,p») ®x S

commutes by associativity of the tensor product, so if u, splits, then so does
ﬂz’®RS-

Note that the above shows that if C is Z-separable, then C is R-separable for any
commutative ring R.

Lemma 2.3. If ¢ is a separable R-algebroid and M e (Mod R)? is R-projective,
then M is projective as a ¢-module.

Proof. %(p,-)®gr:ModR—Mod R)® is left adjoint to the exact functor
M~ M(p). Since M(p) is a projective R-module, the #-module

¢(p, - )®r (-, D)@ ¢M= %(p, -) R M(p)

is projective for all p. Hence the #-module
(® “w. 18 s«-,p)>®gM
P

is projective. But #(-, -) is a retract of @ (% (p, )X®g %(-, p)) as a ¢°-module, so
M= ¢(-,-)®, M is a projective #-module.

Proposition 2.4. Let A be an R-algebra, finitely generated as an R-module. Then
the following are equivalent:

(@) A is R-separable.

(b) A®y K is K-separable for all commutative R-algebras K.

() AQRgK is semisimple for all fields K which are R-algebras.

(d) A/mA is R/m-separable for all maximal ideals m of R.
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Proof. (a) = (b) follows from Lemma 2.2.
~ (b) = (c) follows from Lemma 2.3.

(©)=(d). With K=R/m in (c) we see that A/mA=AQ@R/m is classically
separable, and so (d) holds by Theorem 2.5 in [4, p. 50].

(d) = (a). See Theorem 7.1 in {4, p. 72].

Corollary 2.5. Let ¢ be a separable R-finitely generated R-algebroid. If 9 is a full
subalgebroid of ¢ with only a finite number of objects, then 9 is R-separable.

Proof. By Lemmas 2.2 and 2.3, #®px K is semisimple for all fields K which are R-
algebras. By [6, section 4] any full subalgebroid of a semisimple algebroid is semi-
simple, so 2 ®; K is semisimple. Since 2 has only a finite number of objects, the
ring [2]1®zr K=[2®x K] is semisimple. Therefore, by the above proposition,
[2], and hence 9, is R-separable.

3. Lemmas
The following lemma is well known and was shown by E.H. Moore in [8].

Lemma 3.1. Let G be a finite monoid. Then every element of G has an idempotent
power.

Proof. If ge G, then g"=g"** for some r and s. Then

r+2s 2r+t

gr___gr+s=g =..=g

for some ¢. Therefore

gr+t=g2r+21= (gr+t)2.

Lemma 3.2. Let C be a category and let q € ob C with C(q, q) finite. Then any mono-
morphism (epimorphism) in C(q, q) is an automorphism. In particular, any elemeni
of a finite monoid which is either left or right invertible has a two-sided inverse.

Proof. Let ¢ eC(g,g) be a monomorphism. Then the sets {ag|geC(g,g)} anc
C(q, q) have the same number of elements, so they are equal. Therefore, there is :
g with ag=1,. Then a is both a retraction and a monomorphism, hence an isomor
phism.

Lemma 3.3. Suppose G is an R-separable monoid. Let H be a submonoid of G clos
ed to factors (that is, if ghe H with g and h in G, then g and h are in H). Then I
is R-separable.
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Proof. Let e= ¥, 7, ,(g, k) be a separability idempotent for RG. Since gh e H if and
only if ge H and h e H, the right hand side of

1=} rppgh

splits into two sums, one over {(g,h)|ge H and he H} and one over {(g,h)|g¢ H
and h¢ H}. Since 1€ H, the second sum is zero.
Next, let k€ H. Consider the equation

Y ronlke,h)=Y r, (g, hk).
Since kg € H if and only if g€ H and hk € H if and only if h € H, the only terms of
the form r(h,, h;) with h; and h, in H occur with both g and 4 in H. Therefore, the
above equation holds when the sums are over (g,h)e HX H. As a result
E rg, h (gs h)

(&.heHxH

is a separability idempotent for RH.

The next lemma is a well-known generalization of Maschke’s Theorem and can
easily be proven using 2.1 and separability idempotents.

Lemma 3.4. Let G be a group. The RG is R-separable if and only if G is finite and
|G|, the order of G, is invertible in R.

Corollary 3.5. Let G be an R-separable monoid and let H be the subgroup of inverti-
ble elements of G. Then |H| is invertible in R.

Proof. If gh e H, then g has a right inverse and 4 has a left inverse. Since G is finite
by Proposition 2.1, by Lemma 3.2 g and 4 are invertible and hence in H. By Lemma
3.3, H is then R-separable and the result follows from Lemma 3.4.

Corollary 3.6. If ZC is a separable ringoid, then the only automorphisms of C are
identities.

Proof. By Corollary 2.5, for each g € ob C, ZC(gq, g) is a separable monoid ring. The
rest follows from Corollary 3.5.

In [5], an argument by B. Mitchell following Corollary 7.3, p. 880, showed the
following result as a corollary to a theorem of Laudal. '

Proposition 3.7. Let C be a small connected Z-separable idempotent compiete cate-
gory. Then C has a zero object.
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4. Rees semigroups

Let G be a group. Let G° be the semigroup obtained by adjoining a zero element
to G. Let P be an n X m matrix with entries in G°. The Rees matrix semigroup
4°%G; myn, P) is the set of all 71X n matrices over G° with at most one non-zero
entry, with multiplication

A-B=APB.
Let R be a ring and S be a semigroup with zero element z. Set
RyS=RS/Rz.

If S=.4%G; m,n, P), then R,S consists of all m X n matrices with entries in RG,
with the above multiplication. The following result was intrinsic in the proof of
Theorem 4.7 in [9] and can be found, with R a field, as Lemma 5.18 in [3].

Lemma 4.1. Let S= M °%G;m,n, P). Then RyS has an identity if and only if m=n
and P is invertible over RG.

Proof. Let E be an identity in RyS. Then for any matrix 4 in R,S we have
EPA =A and APE=A. 1t is easily seen that as a result EP=1,, and PE=1I,. There-
fore m=n and P is invertible over RG. Conversely, it is clear that if m=n and P
is invertible over RG, then P~ ! is an identity in R,S.

5. Splintered categories

Recall the definition of a splintered category from the introduction.

First we note that (ii) is equivalent to C being skeletal with only identities as auto-
morphisms. Also if  is an idempotent in a category C satisfying (iii), then, writing
0=ap as in (iii), we have that ¢fof =ap. Since « is a monomorphism and 8 is an
epimorphism, e is an identity. Therefore, 6 splits and hence C is idempotent com-
plete.

Lemma 5.1. If C is a skeletal category with C(q, q) finite, then the set of retract:
of q is finite.

Proof. Let {p;};cs be the set of retracts of g and choose ¢;: p;—q and B8;:gq—p
with g;a;=1,,. If a;8;=a;B;, then
ia;Bia;=piaifia;=1p,

SO p; is a retract of p;. By symmetry p; is a retract of p;, so i=j. Since C(g,q) i
finite, there can only be a finite number of distinct «;8;, so I is finite.



Separable categories 9

Recall that Lemma 3.2 says that if C(g, g) is finite, then any monomorphism or
epimorphism « in C(g, g) is an automorphism. Therefore, if (ii) also holds, o =1 -

Proposition 5.2. If a small skeletal category C satisfies (iii) and if all retractions
which are endomorphisms are identities, then the factorization in (iii) is unique.

Proof. Suppose ; and a, are coretractions and B8, and B, are retractions with
@ B1=0a2p;. Choose § with S, the identity. Then Sa, 8, =fa,; ;= B, . Write fa, =
aB as in (iii). Then @Bp,=p;, so @ is both a retraction and a coretraction, and
hence an isomorphism. Then by the hypotheses @ is an identity, so dom a, is a
retract of dom @,. By symmetry, dom a, is a retract of dom ¢y, so they are equal.
Then f is an endomorphism, and hence an identity, so Bi=Pp,, and hence ¢, =aq,.

If C is any category, we may preorder ob C by p=<gq if p is a retract of q. If C
is a splintered category, then this is a partial order. For ge ob C, we define the
height of q to be the sup of lengths r of chains py<p; < - < Pn=q of retracts of q.

Example 1. Let C be the category with objects z, p, and g with z a zero object, and
with morphisms defined as follows. Let M be an n X m matrix with entries m;; €
{0,1}. We take the free pointed category with generators Qi ...,y p—q and
Bis---5 Bn: gD, subject to relations Biaj=my; (viewing 1 as 1,). It can be shown
using only these relations that the morphisms a;f; are distinct endomorphisms of
q. If fact, C is the skeletalization of the idempotent completion of the monoid ob-
tained by adding an identity to the Rees semigroup .# °%1; mn,M ). If m=nand M
is invertible over Z, then C is splintered.

Example 2. Let P be a poset in which, for each g e P, the set {p|p=q} forms a
lower semilattice (i.e., each pair of elements {r,s}, with r<qg and s< g, has an inf).
Let P be the category whose objects are the elements of P and where P(p,q)=
{re |r<pand r< q}. Composition is given by Srqlqp = U, Where u=inf(s,¢). Then
P satisfies (ii), (iii), and (iv), and each Hom set has at most one retraction and at
most one coretraction. We note that if C is a small skeletal category satisfying (iii)
in which each Hom set has at most one retraction and at most one coretraction, then
C is of the above form. If P is downward finite, then P is splintered.

Example 3. Let A, be the category whose objects are finite totally ordered sets [n] =
{0<1<---<n}, n=0, and where a morphism from [#] to [m] is a non-decreasing
function taking n to m. When [p] is a retract of [q], the set of coretractions from
[p] to [g] and the set of retractions from [g] to [p] can each be ordered so that the
matrix M([p], [q]) is upper triangular, with diagonal entries 1. Since (1) to (iii) are
also satisfied, A, is splintered.
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6. Main results

Let C be a small category and let g € ob C. Denote by c(g) the set of coretractions
(split monomorphisms) with codomain g, and by r(g) the set of retractions (split epi-
morphisms) with domain g. If A is any pointed category with coproducts, then there
is a functor

T: X A-AC

peobC

given on objects by
T(Ap)(Q)= @ Ajoma-

aec(q)

If y:q—¢q’ in C, then
T(Ap)(y): @ Adoma™ @® Adoma

aec(q) aec(g’)

is defined by
T(Ap)(Pyug=u,, if ya is a coretraction,
=0  otherwise

where the u, are the coproduct injections. That 7(A4,) is a functor is verified by
noting that if pa is not a coretraction, then neither is y'ya. If (f,): (4,)— (4 ,’,) is
in X,eobc A, then T(f,) is defined by
T(fp)q= @ fdoma'
aec(g)
This is easily seen to be a natural transformation. Note that the functor T is always

faithful. (This functor was described by M. André and mentioned by B. Mitchell
in [6]).

Theorem 6.1. Let C be a small idempotent complete skeletal category. Then the
following are equivalent:

(@) C is splintered. 4

(b) The functor T : XpeobC o~ o4 defined above is an equivalence for all idem-
potent complete additive categories .

(©) AbC is equivalent to a product of copies of Ab.

(d) C is Z-separable.

We immediately obtain the following results for any small category C.

Corollary 6.2. C is Z-separable if and only if the skeletalization of its idempotent
completion is splintered.
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Corollary 6.3. C is Z-separable if and only if 7C is Morita equivalent to ZD for some
discrete category D.

Proof of Theorem 6.1. (a) = (b). Let Be # . By induction on height ¢ we define
an object A, € and morphisms

g

A

B(g) g

Ug
such that m,u, is the identity, B(8)u,=0 for non-identity retractions B, and
n,B(e) =0 for non-identity coretractions . If ¢ has height 0, set My=Ug=1lpgy.
Assume A,, 7,, and u, have been defined for all p<q as above. Define

] b4
q 9
@ Adoma ﬁB(q) o X Acodﬂ
aec(q) Ber(g)
a#l, B#1,

by
Hoty=B(QUjome and mgfy=m oq5B(B).
If aec(q) and fer(q) are not identities, then we have that
M glglhq=Tcoq pB(B)B(@)tgom ¢ -
If pa is an identity, then this is 1. If not, write o = @f as in (iii). The above becomes

Teod dﬁ (m)B (B )udom B

which, since either @ or § is not an identity, is 0 by induction. Therefore, 7, i, is
the matrix whose non-zero entries are in blocks on the diagonal which are the
matrices M(p, ) of condition (iv), and hence is invertible. Define u, and 7, so that
we have a coproduct decomposition

C'D()Adoma i,
aec(qg g
a#lq B(q) (————~—————>Aq
2 u,
P
@ Acodﬂ
Ber(g)
B*1,

To see that n,B(a) =0 for all non-identity coretractions a, note that B(a)uy,,, and
B(a)iy,y, , factor through fi,. Dually B(B)u,=0 for all non-identity retractions B.
Finally, using these and (iii), it is easy to see that the coproduct decomposition gives
a natural transformation B= T(Ap).

As we noted earlier T is always faithful, so all that remains is to show that it is
also full. Suppose that g: B~ B’ is a natural transformation between functors in
#€. We define inductively morphisms f,: A, A, so that the diagram
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U,
A, == B(q)
g

Jq $4{0)]

’

Ttq
A, =——=B'(9)
Ug
commutes in the obvious sense. Then g=T(f,,). Assume the diagram commutes for
p<4q and consider the cube

Ajoma i - B(dom a)
B
A l \(a)
f doma G’?q) Adom a 5 > B (q)
a: ‘ 7 | g(dom @)
*le @ f doma l
Adom @y *» B’'(dom a) g9
om a B'(a)
@ Ajome — B'(q)
aec(q) U,

where #, is defined earlier. All faces commute save possibly the front.face, so that
face must also commute by the universal property of the coproduct. Dually we get
commutativity with the projections 7, and 7‘:,}, $0 @ fiome Splits off from g(g),
defining f,.

(b)=(c)=(d) is obvious.

(d)=(a). (i) This follows from Proposition 2.1 (Villamayor-Zelinski).

(ii) This is Corollary 3.6.

(iii) By Lemma 5.1, if g € C, then the height of q is finite. By Proposition 3.7,
each connected component of C has a zero object. Let y: p—q. We proceed by in-
duction on height p + height g. If this is 0 or 1, then either p or q is the zero object
in its connected component of C, and hence y is either a retraction or a coretraction.
By induction it is sufficient to show that if y is neither a retraction nor a coretrac-
tion, then it must factor through some object s with s < p and s <gq. Since C is idem-
potent complete, it is sufficient to find an idempotent 6 not an identity with either
@y =1y or y8=y, since this idempotent then splits. In view of Lemma 3.1 we need
only do this for endomorphism 6. '

Consider the full subcategory D of C whose objects are those objects s of C with
either s a retract of p or s a retract of g. Again, by Lemma 5.1, D has only a finite
number of objects, so by Corollary 2.5, D is Z-separable. Let

{es = Z ré,h(g’ h)}
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be a separability set for ZD. Consider the equation

Y r2u(ve, ) =Y riu(z hy).

If pis not a retract of g, then there is no 4 with hAy=1,,. In order that ue,=1, by
(ii) we must have r{; 1= 1. Therefore, comparing coefficients of (y,1,), we see
that there must be a g # 1, with yg=y. Similarly if g is not a retract of p, then there
is an A#1, with hy=vy.

(iv) Choose p and g in ob C. Let ~ be the congruence relation on C generated
by y ~ 0, if y:r—s factors through a proper retract of p. Let C be the skeletaliza-
tion of the quotient category C/~. In C the object p has height 1, and the matrix
of condition (iv) in C is the matrix M(p, g) in C. Clearly C is separable, so without
loss of generality we may reduce to the case that p has height 1 in C.

Consider the semigroup SC C(q, q) consisting of the morphisms «;8; together
with the zero morphism, where ¢,...,, and f,...,8, are as in (iv). Then
S=.4°1; m,n, P) under the identification

a;Bi<e;

where e;; is the matrix whose (7, /) entry is 1 and whose other entries are 0, with
P=M(p,q). S is closed under left and right multiplication by elements of C(g, q)
since p has height 1, so (Z/rZ)S is an ideal of (Z/rZ)C(q, q). If r is a prime, then
the later is semisimple by Proposition 2.4. Therefore, by the Wedderburn-Artin
structure theorem, so are (Z/rZ)S, and hence (Z/rZ),S. As a result (Z/rZ),S has an
identity, so by Lemma 4.1, m=n and P is invertible over Z/rZ. This is true for all
primes r, so det P is not divisible by any prime, hence it is +1. Therefore,
P=M(p, q) is invertible over Z.

In [12] J. Shapiro proved for a finite semigroup S that S is separable if and only
if there is a chain of ideals ¢ =S,CS,C---CS,=S with Z/pZ(S;/S;.) Z/pZ-
separable for each prime p and each i, 0<i=<n. C. Cheng obtained this as Corollary
12 to Theorem B in [2], which stated that if S is a semigroup with a zero element
such that ZS has an identity, then the following are equivalent.

(1) ZS is separable.

(2) S is finite with a principal series §=S,C S, C---CS, =S such that S;/S;_,=
4 °(1; m;, m;, P;) where P; is invertible over Z.

B3) 2S=(XIZ| M, (D)) X Z.

We proceed to show the connection between this and our main result by showing
that Corollary 6.2 yields (1)=(2).

Let S be separable and let M be the monoid obtained by adjoining an identity to
S. Then M is separable, so the skeletalization C of its idempotent completion is
splintered with a maximal element q. Let p,, p, ..., Pn+1 =q be the objects of C
with ht p; <ht p,<---<ht p,, ;. Let S; be the set of all endomorphisms of g which
factor through some p; with j<k. Then 0=§,CS,C---CS,=§ (M=S§,,,=
SU{1}) are all subsemigroups of S. As in the proof of condition (iv) above it is easy
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to see that

Sk/Sx-1={a:B;|@;: py—q and B;:g—p; are as in (iv)}.

Therefore S;/S_, is isomorphic to .#°(1; m,m, P) with P the matrix M(p, q) of
condition (iv), hence invertible over Z.

It should be noted that Cheng’s Theorem B requires the notion of 0-simple
semigroups and a Theorem of Rees characterizing such, which our result does not
use. However, Theorem B does allow for coefficient rings other than Z. A
generalization of our results to coefficient rings other than Z will form part of a
forthcoming paper by B. Mitchell, [7], and will use techniques similar to those in
this paper rather than results of Rees.
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