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1. Introduction

We continue the study of modules cofinite with respect to an ideal of a (hoetherian
commutative) ring. Hartshorne [8] introduced this class of modules, answering in nega-
tive a question of Grothendieck [6, Exposé XIII, Conjecture 1.1]. He asked if the modules
Hom, (A/a, Hi (M)) always are finitely generated for every ideat A and each finite
A-module M. This is the case when = m, the maximal ideal in a local ring, since
the modules Iﬁl(M) are artinian. Hartshorne defined a modweto be a-cofinite, if
Suppy M C V(a) and Exg(A/a, M) is a finite module for ali. He proved that the lo-
cal cohomology modules HM) arep-cofinite for all finite modules\f over a complete
regular local ringA, whena = p is a prime ideal ofd, such that dind /p = 1. This result
was later extended to more general local rings and one-dimensionaladsakéuneke and
Koh in [9] and by Delfino in [3] until finally Delfino and Marley in [4] and K.-I. Yoshida
in [22] proved that the local cohomology module§ @) are a-cofinite for all finite A-
modulesM, where the idead of a local ringA, satisfies dimd /a = 1.

Instead of requiring the finiteness of the modulesﬂ@ﬁt/a, M) in the definition of
a-cofiniteness, we showed in [16] that one could require the finiteness of the Koszul coho-
mology modules Hx1, ..., x,; M), wherexy, ..., x, are generators far. Our proof used
the change of rings principle of Delfino and Marley [4, Proposition 2]. They proved the
change of rings principle using a spectral sequence argument. We are however avoiding
the use of spectral sequences completely in this work, even if we can show some of our
results with this technique. So we provide an elementary proof of the equivalence of the
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finiteness for alli of the modules EX{(A/a, M), Tor(A/a, M) and H (x1, ..., x,; M)
in Theorem 2.1. This theorem is then used to deduce the change of rings principle
(see 2.6).

In Section 3 we give various conditions for cofiniteness. Very useful, in particular in
induction arguments, is the criterion given in 3.4. We prove there that for a méfiwih
support in a) to bea-cofinite, it is sufficient to find an elemente a, such that Gy x
andM /xM area-cofinite.

In [16] we showed that an artinian modulé with support in a) is a-cofinite if and
only if 0 :js a has finite length. We extend this result to the class of minimax modules
in 4.3. A module is called a minimax module, when it has a finite submodule, such that
the quotient by it is an artinian module [24]. We also show that if dim 1, then each
a-cofinite module is a minimax module and that all submodules and quotiemtsaifnite
modules ara-cofinite.

In Section 5 we study the top local cohomology modu@M) of a moduleM over a
ring of finite Krull dimensiond. We show that it is an artiniam-cofinite module ifM is
finite and whenM is no longer finite but if tﬂ(M) is artinian it must bai-cofinite. In the
proofs of these results we use the theory of asymptotic prime divisors, see [13]. A prime
idealp D a is called a quintasymptotic prime divisor of the idealif there is a minimal
prime idealq inAthe completiorﬁp of the local ringA,, such that its maximal ideaI/Tp is
minimal overaA, + q. If p is a quintasymptotic prime divisor af thenyp is an asymptotic
prime divisor ofa in the sense that it is an associated prime ideal of the integral closure
(a")* of the powerss” for largen and therefore also an associated prime ideahtoior
all largen. There are just a finite number of asymptotic primes of an ideal

In 5.5 we decide when all local conomology modulés(H) are artinian in the range
i <r orforall i, extending a result of Lescot [11], who treated the case whinthe
maximal ideal of a local ring.

In 6.5 we show that ifi is generated by a sequence which is filter-regular on the finite
moduleM, then all local cohomology modules, k) area-cofinite.

In the last section we deal with the problem, when the kernel (hence also the coker-
nel and the image) of a homomorphism betweetpfinite modules is again-cofinite.
Hartshorne [8] showed that this is the case, whéa a one-dimensional prime ideal of
a complete regular local ring. This was later generalized by Delfino and Marley [4] to
the case of a one-dimensional prime ideal in any complete local ring. However it is not
known to hold even for a one-dimensional prime ideal of a local ring which is not com-
plete. After passing to the completion the extended ideal may no longer be prime! Our
efforts to solve this problem for a one-dimensional ideah any local ring has consid-
erably delayed the publication of this paper. Many of our results did we obtain quite a
time ago and have been presented at seminars at various universities and conferences. We
did not succeed to answer the question, but we have succeeded to reduce the question (in
order to get a positive answer) to the study of certain local cohomology modules in 7.12.
Namely isI, (M) (or equivalently I-;}(M)) p-cofinite for all prime idealg minimal over
a wheneverM is an a-cofinite module over a complete local rimg and dimA/a =1
in 7.12. We have also succeeded to prove positive solutions for the cageditnin 7.4
and 7.11.
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2. Equivalent conditionsfor cofiniteness with respect to an ideal

Theorem 2.1. Leta = (x1, ..., x,) be anideal inA and letM be anA-module. Then the
following conditions are equivalent

(i) Ext,(A/a, M) is a finite A-module for alli.
(i) TorA(A/a, M) is a finite A-module for alli.
(i) The Koszul cohomology module(x, ..., x,; M) are finite A-modules fori =
O,...,n.

Definition 2.2. An A-module M, such that Supp(M) C V(a), and which satisfies the
equivalent conditions in the above theorem is called cofinite with respect to thezideal
shortera-cofinite.

For the proof of our theorem we need two lemmata. In proving these we use the obser-
vation that if 0:y; a is a finite A-module, then so is Q, a™ for eachn. Similarly if M/aM
is a finite A-module, then alsa//a" M is finite for alln.

Lemma 2.3. Let C be a class ofA-modules and: an ideal such that the following condi-
tions are fulfilled

1) f 0> M - M— M’ — 0is exact, whereM’ and M are in C, then alsoM” is
in C.

(2) 0:j7 ais afinite A-module for everys in C.

(3) Every finiteA-moduleM such thatSuppM C V(a) isin C.

LetX*:0— X°— x! - X2 — ... be a cochain complex with modules@n such
that for eachi there isn with o H (X*) = 0. ThenH! (X*) is a finite A-module for each.

Proof. Let B!, respectivelyZ’, be the modules of coboundaries and cocycles, so the co-
homology modules arél’ = Z/B’. Assume that3’ belongs toC for a certaini. Then

C' = X'/B' also belongs t&® by (1). Taken such thata” H' = 0. ThenH' C 0:; a",
which is finite by (2) and therefor#! is finite and thus belongs @, by (3). By (1) again

and the exact sequence

0—> H' - C' > Bt >0,
we get thatB’+1 is also in@ and we can continue by induction
The second lemma is dual to the previous one.

Lemma 2.4. Leta be an ideal ofA and suppos€ is a class ofA-modules with the follow-
ing properties
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(1) f0—-> M —- M — M” — Ois exact and both4 and M” are in C, then alsoM’ is
in C.

(2) M/aM is a finite A-module for eachM in C.

(3) Every finiteA-moduleM such thatSuppM C V(a) isin C.

LetnowX,:---— X> — X3 — Xo— 0be achain complex of modules@such that
for eachi there isn such thata” H; (X,) = 0. ThenH; (X,) is a finite A-module for each.

Proof. Let Z;, respectivelyB;, be the modules of cycles and boundariesfHse= Z;/ B;
is theith homology module. Put als6; = X;/Z;. Assume tha¥; is in € for a certain.
Taken such that" H; = 0. Consider the exact sequencex0C; 11 — Z; — H; — 0.

First we conclude thatf; is a homomorphic image of; /a" Z;, which is a finiteA-
module by (2). HenceH; is finite and therefore ir® by (3). The exact sequence above
and (1) implies thatC; ;1 is in € and by (1) again so i¥; .1 and we can proceed by
induction. O

Proof of Theorem 2.1. Let F, — A/a be a resolution ofA/a consisting of finite free
A-modules. We apply 2.3 and 2.4 to the complexes

Homy (Fe, M), Fe@®@a M, K*(x1,....x5; M), Ko(x1,...,x0;M).
In addition we use that Hx1, ..., x,; M) =H,_;(x1,...,x,; M) foreveryi. O

Corollary 2.5. If M satisfies the conditions 02.1 and N is a finite A-module with
Supp, (N) C V(a), thenExt), (N, M) andTor,A(N, M) are finite A-modules for alk.

Proof. Apply 2.3 and 2.4 to the complexes HaliF,, M), andF, ® 4 M, whereF, — N
is a resolution ofV consisting of finite free modules.O

Coroallary 2.6 (Change of rings principlelL.etg : A — B be a homomorphism between
noetherian rings and suppose thais an ideal ofA such thatB/aB is a finite A-module.
Then aB-moduleM is cofinite with respect to the extended ided if and only if M
considered as ad-module is cofinite with respect to

Proof. Leta= (x1,...,x,), SOaB = (¢ (x1), ..., ¢(x,)). The B-module H(¢(x1),...,

¢ (x,); M) is annihilated byaB and considered as a module owkrit is isomorphic to
Hi(x1, ..., x,; M). Therefore the assertion follows from our hypothesis BaiB is a
finite A-module. O

Submodules od-cofinite modules are seldosncofinite. Direct summands are of course
and more generally:

Proposition 2.7. If M is a-cofinite andV is a pure submodule @, thenN andM/N are
alsoa-cofinite.
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Proof. In fact, P.M. Cohns characterization of purity (see [17, Theorem 3.65]) can be
restated as follows.

N Cc M is pure if and only if for any chain compleK, consisting of finite free mod-
ules, the induced cochain map: Homy (F,, N) — Homy (F,, M) has the property that
if f e Homy(F,, N) is taken byx to a coboundary in Hop(F,, M), then f already
is a coboundary in Hom(F,, N). Equivalently the maps o) : H (Homy (F,, N)) —
Hi (Homyu (F,, M)) are injective for all. Let now F, be a resolution oft /a consisting of
finite free modules. ConsequentlyNf is a pure submodule d#f, then

0— Ext,(A/a, N) — Ext,(A/a, M) — Ext,(A/a, M/N) — 0

is exact for all:. Hence ifM is a-cofinite, then so ar&/ andM/N. 0O

3. Criteriafor cofiniteness

We begin with a homological lemma.
Lemma 3.1. Let S and T be additive functors between the abelian categodeand B
and letS be a Serre subcategory @, i.e., S is closed under taking subobjects, quotients
and extensions.

Suppose that every exact sequefce X' — X — X” — 0 gives rise to an exact
sequence

Sx' 34 gx 5 sx” — 7X I Tx 1Y TX

If f: M — N is a morphism inA such thatT Ker f and S Cokerf are in 8, then also
KerTf and CokerSf are in 8. If in addition Tf = O (respectivelySf = 0), thenT M
(respectivel\§N) is in 8.

Proof. We have two exact sequences

0>K->M35150 and 0515 N—>C—0,

whereK =Kerf, I =Im f,C=Cokerfandf =hog.
We get exact sequences

SK — SM 2% ST > TK - TM 25 T1,
S1 38 SN > sc—-T1 2 TN - TC.

Hence Cokefg is a subobject of’ K and thus inS and KerTg is a quotient off K and
therefore also irS. In a similar way, we use the second exact sequence to deduce that
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KerTh and CokeSh are in8. SinceTf =Tho Tg andSf = Sh o Sg, there are exact
sequences

0— KerTg — KerTf — KerTh
and
CokerSg — CokerSf — CokerSh — 0.
Hence Kefl f and CokeSf are in§. O

Corollary 3.2. Let (T?) be a connected sequence of functors betwéeand B and let
f : M — N be amorphism itd. If for a certaini, T Cokerf andT*+1Ker f both belong
to 8, thenCokerT" f andKerT:*1 f also belong tc. If for all i, T? Ker f and T’ Cokerf
belong to§ and T’ f =0, thenT? M and T' N belong to$ for all i.

Corollary 3.3. Let f: M — N be an A-linear map. If for all i, the A-modules
Ext,(A/a,Ker f) and Ext,(A/a,Cokerf) are finite, then KerExt,(A/a, f) and
CokerExt, (A/a, f) are also finite for alli.

The following corollary is a very useful criterion in order to decide whether a module is
cofinite, especially in induction arguments.

Corollary 3.4. Supposer € a and Supp, M C V(a). If 0:3 x and M/xM are botha-
cofinite, themM must also ba-cofinite.

Proof. Apply 3.3 to the mapf = x1y. Sincex € a, Ext,(A/a, f)=0foralli. O
Here is a generalization to a matrix situation.

Corollary 3.5. Letu : F — G be a homomorphism between nonzero finite free modules,
suchthat«(F) C aG, i.e., after choosing bases mand F, the matrix ofx has its elements

in a. Put f = Hom(u, M), and suppose tha&8upp, M C V(a). If Ker f and Cokerf are
botha-cofinite, thenM must also be am-cofinite module.

Proof. We can writef =}, a;fj«x With some elementg;, € a and some maps
fik:Homy (G, M) — Homy (F, M). Hence for all;,

Exty(A/a, f)=Y a;Ext,(A/a, fj1) =0,
Jok
sincea;; eaforall j, k. O
Corollary 3.6. Let M be an A-module withSupp, (M) C V(a). Suppose the endomor-

phismf € Ends (M), satisfies a polynomial equatioft + a1 f*~1 +--- +a, =0, where
aj €a, 1< j<n.lIfbothKer f andCokerf are a-cofinite, themV/ is a-cofinite.
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Proof. Ext,(A/a, f") = Yo1—a; Ext,(A/a, f"~/) =0 for all i. Note also that ifs is

an endomorphism on some modlethen Ket is finite if and only if Keru” is finite for

all n, if and only if Keru" is finite for somen. There is an analogous statement concerning
the cokernels of and its powers. O

Proposition 3.7. If Supp (M) C V(a), b C a and ExtiA(A/b, M) is a-cofinite for all i,
thenM is a-cofinite.

Proof. Let a be the image ofi in A = A/b. By the change of rings principle 2.6, the
modules EX{ (A /b, M) are cofinite with respect ta. Let now 0— M — E° O, pro,

E2 %, ... be an injective resolution of tha-module M. We split this into short exact
sequences & M! — E' — Mt1 - 0, whereM! =Kerd',i =0,1,2,....
Observe that for each> 0,

Ext(A/a, M) = Exti (A/a, M") and
Ext;™(A/b, M) = Ext} (A/b, M').

We first show by induction o, that Extg(A/a,O ;)i b) is a finite A-module for
all j > 1. SinceM® = M and 0:; b is an a-cofinite A-module, this is evidently true
for i = 0. Suppose that this is true for a certdinConsider theA-module homomor-
phism f; : 0:5i b — 0:y,i11 b. Since Kerf; = 0:,, b and Cokerf; = Ext} (A/b, M') =
Ext’:l(A/b, M), the A-modules EX}+1(A/EL, Kerf,») and Exf&(,&/a, Cokerf;) are finite
for all j > 0. Therefore 3.2 implies that Coker %)(t&/a, ;) is a finite A-module for all
Jj = 0. Forj =0, we get that E>§;(A/a, M= Extijl(A/a, M) is finite. Since Qg b is
an injectiveA-module, Ext(A/a,0:: b) =0 for j > 1. Hence Coker EX(A/d, f;) =
Extii(fi/a, 0:,+1 b) whenj > 1. The induction argument is ready and at the same time

the proof shows that EX(A/a, M) is finite for all j > 1. For j = 0O this is clear, since
Homy (A/a, M) =Z=Homy (A/a, Homy (A/b, M)). HenceM is a-cofinite. O

Corollary 3.8. Letxy, ..., x, be elements i and letM be anA-module with support in
V(a). If for all i the module#t’ (x4, ..., x,; M) are a-cofinite, thenM must bea-cofinite.

Proof. We apply the change of rings principle 2.6 to the surjective homomorphism
¢:B — A, whereB = A[X4,..., X,], defined byp(X;) =x; fori =1,...,r. M be-
comes aB-module with support irnB + (X1, ..., X,) and this ideal is mapped onto

by ¢. Since the sequencéy, ..., X, is regular onB, we get for alli that

H (e, ooy M) EH (X1, .., X M) ZEXG (B/ (X1, ..., X)), M), O

Proposition 3.9. LetS be a full subcategory of the categoryAfmodules closed under tak-
ing kernels, cokernels and extensions ana:lbe a natural number. 1M is an A-module,
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such thatExtf;‘(A/a, Hi (M)) belongs toS for all i and all j (respectively for <n and
all j), thenExt‘A(A/a, M) belongs tcS for all i (respectively for ali < n).

Proof. The case: =0 is clear, so lez > 0 and we dq induction on. We first reduce to
the casel',(M) = 0. This is possible, since if we léf = M/I,(M), we have the long
exact sequence

- — Ext N(A/a, M)
— Ext, (A/a, [o(M)) — Ext,(A/a, M) — Ext,(A/a, M)
— Ext{™(A/a, Ta(M)) — ---

and isomorphisms

. _ (o ifi=0
1 ~ ’ L]
Ha (M) = { Hi (M), if i > 0.

So let us assume that, (M) = 0. Let E be an injective hull o/ and putL = E/M. Then
also I'y(E) = 0 and Homy (A/a, E) = 0, and we therefore get isomorphism§(H) =
HiL(M) and Ext, (A/a, L) = Ext, ™ (A/a, M) foralli >0. O

Corollary 3.10. If Hi (M) is a-cofinite for all i (respectively for alli < n), then
Ext,(A/a, M) is a finite A-module for eachi (respectively foi < n).

The next result has been shown using a spectral sequence argument by T. Marley and
J. Vassilev in [12, Proposition 2.5] under the assumption Mhas finite. We give a direct
proof with a weaker assumption @d which is needed in our applications.

Proposition 3.11. Let M be a module, such thﬁxt"A (A/a, M) is a finite A-module for
everyi, for exampleM might be a finitedA-module. Ifs is a number, such that, (M) is
a-cofinite for alli # s, then this is the case also whee: s.

Proof. We use induction om. Let M = M/I'y(M). Then

. _ (o ifi=0
1 ~ ’ L]
Ha (M) = { Hi (M), if i > 0.

If s =0, then H,(M) is a-cofinite for alli, so by 3.10, EX{(A/a, M) is a finite
A-module for evenyi. Therefore the exactness of-9 I';(M) - M — M — 0 implies
that Ex’g;‘(A/a, Io(M)) is finite for all i, that is, I'q(M) is a-cofinite. Suppose then that
s > 0 and the case — 1 is settled. Sincd, (M) is a-cofinite, Exg(A/a, I'y(M)) is fi-
nite and by hypothesis ExtA/a, M) is finite. Hence EX{(A/a, M) is finite for alli. We
may therefore assume thay (M) = 0. Let E be an injective hull ofM and putM; =
E/M. Then alsol,(E) = 0 and Hom (A/a, E) = 0. Consequently EXt(A/a, M1) =
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Ext,F1(A/a, M) and H,(M1) = Hi+Y(M) for all i > 0 (including the casé= 0). The in-
duction hypothesis applied 1, yields thea-cofiniteness of Igrl(Ml). Hence H (M)
which is isomorphic to it isi-cofinite. O

Corollary 3.12. If M is a finite module such th&ti, (M) = Ofor all i # s, i.e.,depth, M =
cd(a, M) = s, thenH? (M) is a-cofinite.

Corollary 3.13. If M is finite anda is generated by aiM -regular sequence, thdﬂg(M)
is a-cofinite for alli.

Corollary 3.14. If cda = 1, thenH’ (M) is a-cofinite for alli and every finitet-moduleM .

Proposition 3.15. Supposecdb =1 and a C b and let M be a finite A-module. Then
Hi, (H% (M) is b-cofinite for alli and ;.

Proof. Since cth = 1, the ring 0, (A) is noetherian and D, (A) = Dy (A), [19] or [2,

p. 112]. Hence K(N) = Hjp 4,,(N) =0 for all i and every Q(A)-moduleN. Since

L = I'y(M) is finite, H, (L) is b-cofinite for alli by 3.14. Moreover H(M) = H. (M/L)
fori > 0. We may therefore assume that(M) = 0 and therefore alsdy, (M) = 0. Con-
sider the exact sequence-® M — Dy (M) — H%(M) — 0. We get the exact sequence
0— Lo — HI (M) — HY(M) — L1 — 0 and isomorphisms HM) = L; for all i > 2,
whereL; = Hg(Db(M)), i=0,12,.... HoweverL; is amodule over the ring {XA) and
therefore as remarked abové ;) =0foralli andj. Now we easily get that

i (i ~|HL M), ifj=0i=1
HJ HY (M) = b s s ’

o(Ha(3)) {O, otherwise.
Since I-t(M) is b-cofinite by 3.14, we are finished.O

Corollary 3.16. If cdb = 1 anda C b, then for every finiteA-moduleM and every finite
A-moduleN, such thatSupp, N C V(b), the moduIeExt"A(N, H.(M)) are finite for alli
andj.

Proof. Apply 3.10 and 2.5. O

Remark 3.17. Kawasaki [10] showed the conclusion in 3.16 assuming that the ideal
satisfies the stronger condition that it is (up to radical) principal.

4. Minimax modules

Proposition 4.1. Let M be a module with support ¥ (a). M is artinian anda-cofinite if

and only if0:y, a has finite length. If there is an elemenk a, such thaD :, x is artinian
and a-cofinite, thenM is artinian anda-cofinite.
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Proof. If 0 :js a is artinian and SuppM C V(a), thenM is artinian [14, Theorem 1.3].
The first assertion follows from the local case [16, Theorem 1.6]. There is also a direct
proof in [15, Theorem 5.1].

If L =0:3 x isa-cofinite,then Qy; a=0:; aisfinite. O

The same applies to a bigger class of modules, namely the class of minimax modules.

Definition 4.2 (see Zdschinger [24])The A-moduleM is a minimax module, if there is a
finite submoduleV of M, such thatM /N is artinian.

The class of minimax modules thus includes all finite and all artinian modules. More-
over, it is closed under taking submodules, quotients and extensions, i.e., it is a Serre
subcategory of the category dfmodules. Zdschinger has in [24,25] given many equiv-
alent conditions for a module to be a minimax module. See also [18]. It was shown by
T. Zink [23] and by Enochs [5] that a module over a complete local ring is minimax if and
only if it is Matlis reflexive.

Proposition 4.3. Let M be a minimax module with supportifa). ThenM is a-cofinite
if and only if0:y; a is finite. Moreover, if there is an elemente a, such that0 :j; x is
a-cofinite, thenM is a-cofinite.

Proof. Let N be a finite submodule a¥f, such that. = M/ N is artinian and suppose that
0:y aisfinite.
The exactness of

0—-0:ya—0:ya—>0:p a— Ext}x(A/a,N)

implies that @, a is finite. Hence we get from 4.1 thétis a-cofinite, and therefor@/ is
alsoa-cofinite. The second statement is proved as in Proposition 421.

Corollary 4.4. The class ofi-cofinite minimax modules is closed under taking submodules,
guotients and extensions, i.e., it is a Serre subcategory of the categarynafdules.

If Aisalocaldomain of dimension one with quotient fiédldthenk is a minimax mod-
ule, sincek /A is artinian. Hence if is local andp is a prime ideal, such that dify/p = 1,
thenk(p), the quotient field of the domaia/p is a minimax module oveA. Moreover, if
E{p} is the injective hull of theA-moduleA /p, then 0: gy p"/0:g(py p" 1 is @ minimax
module for eacl > 1, since itis a finite-dimensional vectorspace ou@). Hence in this
case the modules:@p) p" are minimax. IfA is a one-dimensional local ring, théi{p} is
a minimax module for each minimal prime idgabf A. E{p} is namely as am,-module
isomorphic to the injective hull of the residue fidltp) of the artinian local ringA, and
thereforeE {p} = 0:gp) p” for somen. It follows that if A is a one-dimensional local ring,
then the class of minimax modules coincides with the class of modules of finite Goldie
dimension. Wher is an arbitrary noetherian ring, local or not, a module is minimax if
and only if each of its quotients has finite Goldie dimension, [23] or [25, Anhang].
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If dim A = 0, then eachu-cofinite moduleM is finite. In fact, if we taken such that
a" = a"t1 thenM =0:) a".
We next describe the-cofinite modules over a one-dimensional ring.

Proposition 4.5. Let A be a noetherian ring of dimension one. Anmodule M with
support inV(a) is a-cofinite if and only if0:3; a is a finite A-module. Eachu-cofinite
A-module is a minimax module. The classaefofinite modules is closed under taking
submodules, quotients and extensions.

Proof. If a is nilpotent, saw” =0, thenM = 0:y, o, whenever SuppM C V(a). Sup-
pose therefore that is not nilpotent. Take such that G4 a" = I'4(A). ThenM /0y a”
is a module over the ring = A/T4(A). Leta be the image ofi in A. Thena contains an
A-regular element and therefore dityia = 0. Suppose SuppM C V(a) and that Qy a
is finite. Then also Oy a =0:y a"*t1/0:), o is finite. HenceM is ana-cofinite artinian
A-module and therefore also arcofinite artinianA-module. Since 0y a” is finite, M is
a-cofinite and a minimax module.

5. Artinian local cohomology modules
For another proof of the next result in the local case see [4, Theorem 3].

Proposition 5.1. Let M be a finite module of dimensiahover the noetherian ringi.
For every ideala of A, the top local cohomology modu}ﬁ(M) is an a-cofinite artinian
module.

Proof. This is clear ifd = 0. So let us assume that > 0. As usual, replacingy
with M/, (M), we may assume that there is ad-regular elementx € a. Since
dimM/xM < d, we have that Bi(M /x M) = 0 and by induction K~1(M /x M) is artinian
anda-cofinite. From the exact sequence

-1 d d
HE-Y(M/xM) — HL(M) 2 HE(M) — 0,
4.1 and 4.4 implies thatHM) is a-cofinite and artinian. O

Theorem 5.2. Let A be a noetherian ring of finite Krull dimensiath and let M be a
module over. If for each maximal ideah of A, the moduIeHﬁ{(M)m is an artinianA -
module, theng(M) is an artinian A-module, cofinite with respect to Moreover, each
m e Suppy H‘;(M) is a (quint) asymptotic prime divisor of the ideal

Proof. We first assume that is a complete local ring and suppose thﬁt(M) #0. Let

p be a coassociated prime ideal of (), so in particular 4(M)/pH?(M) # 0. But
H (M) /p HE (M) = HE (M /pM) = HE, +p/p(M/pM). By the local Hartshorne-Lichten-
baum vanishing theorem [7] or [2, Chapter 8], the complete local sifyghas dimension

d and the ideaf + p is m-primary. Hence it follows from [16, 1.6] that the artinian module



660 L. Melkersson / Journal of Algebra 285 (2005) 649-668

HZ (M) must bea-cofinite and by [13, p. 1i is a quintasymptotic prime divisor af For
the general case use [13, (1.1)a and (1.9)] to deduce that,$iffyp/) is contained in the
set of quintasymptotic primes af Since this set is finite, SumHﬁ(M) consists of fi-
nitely many maximal ideals and for each such maximal ideahe A.,,-module I-ﬁ(M)m
is artinian and cofinite with respect #0l,,. The assertion follows. O

Proposition 5.3. Let b be an ideal of a noetherian ring, such thatA /b has finite Krull
dimensiond and letM be anA-module cofinite with respect to Then for each ideal > b
the moduIeH‘C{(M) is artinian and for eachm € Supp, H% (M), m/b is an asymptotic prime
divisor of the ideal/b in the ring A /b.

Proof. We first assume thatd, m) is local. If d = 0, thenM is artinian, so let us assume
thatd > 0 and that we know the result fat — 1. By [16, Corollary 1.8],L = I'h (M)

is artinian andb-cofinite. Since lﬂ(M) = Hﬁ(M/L) and M/ L is b-cofinite, we may as-
sume thain ¢ AssM. Since the set Asg M) is finite, we can by prime avoidance take an
element

xem\( U o U )

peAssM peMin A/b

If we putc=b+ xA, then dimA/c = d — 1. From the exact sequenced M = M —
M/xM — 0, we getthai /x M is b-cofinite and therefore by the change of rings principle
applied twice also cofinite with respectde= b + xA. Since dimA/c =d — 1, we get by
induction that §~1(M /x M) is artinian. From the exactness of

HI=L (M /x M) — HE(M) 2> HI (M) — 0

we obtain that Q44 x is artinian and therefore HM) is artinian [14]. In order to
a

show thatm/b is an asymptotic prime divisor af/b in case (M) # 0, we may as-
sume thatd is complete. NowM = | J{°0:) b", becauseM is assumed to be-cofinite
and therefore SuppM C V(b). Since local cohomology commutes with direct limits we
thus get 4 (M) = lim HZ(0:) b"). Hence H (0:) b") # O for somen. The Hartshorne—

Lichtenbaum vanishing theorem implies that there is a prime igealb”, such that
dimA/p =d anda + p is m-primary. Hencem/b is a quintasymptotic prime ideal over
a/b. If A is not necessarily local, it follows that for each maximal ideabf A that
Hﬁ,{(M)m is an artinian module oved,, and if nonzero, thatn/b is a quintasymptotic
prime ofa/b. Since there are just finitely many quintasymptotic primes over an ideal, the
support of I-ﬁ(M) consists of finitely many maximal ideals and for each such maximal
ideal m the A,-module Hh’(M)m is artinian. Consequentlyﬂ-ﬂM) must be an artinian
A-module. O

1f 0 :y a is artinian, then so id7(M), see [14]. In [15] we also investigated when
H! (M) is artinian in the range < r, wherer is fixed and the modul#/ is finite. Next we
will consider this problem for an arbitrary modulé.
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We first recall some basic facts about essential extensions.

If f:E — F is a homomorphism, such that Kgris an essential submodule &f,
then KerHomy (A/q, f) is an essential submodule of Hait /a, E) and Kerl, (f) is an
essential submodule @, (E).

If M C N is essential, theM is artinian if and only ifN is artinian.

By induction this last fact is extended to a situation involving complexes:

Lemma 5.4. Let0 — X° — X' — X? — ... be a cochain complex with cocycl&,
coboundariess’ and cohomology?' = Z'/B". If Z' is an essential submodule &f for
eachi, thenH' is artinian for all i < r if and only if X* is artinian for all i < r.

Proof. By induction onr. If H" and X"~ are artinian, therB” is artinian, henceZ’” is
artinian and therefore also its essential extendi6iis artinian. If X" is artinian, then so is
its subquotienH”. O

Theorem 5.5. Leta = (x4, ..., x,) be an ideal of a noetherian ring and let0 - M —
E% — El —» E? — ... be a minimal injective resolution of thé&-moduleM . The follow-
ing conditions are equivalent

(i) Hi (M) is artinian fori <r.

(if) Ext);(A/a, M) is artinian fori <r.

(i) I'q(E")is artinian fori <r.

(iv) The setA of those prime idealg D a, such that the Bass numbgf (p, M) # 0O for
somei < r is a finite subset okMaxA and for all m € A, ! (m, M) is finite when
i<r.

(V) Hi(x1,...,x,; M) is artinian fori <r.

Proof. The equivalence of the first three conditions follows from 5.4 applied to the com-
plexes

0— Ia(E®) — Ia(EY) — Ia(E?) — -~

and

0— Hom,(A/a, E®) — Homy (A/a, EY) — Hom, (A/a, E?) — ---,
making use of the remarks above about essential extensions. Condition (iv) is more or less
a restatement of (iii). In order to show the equivalence of (v) with the other conditions, we
consider the surjectivd-algebra homomorphism: B — A, whereB = A[X1, ..., X,]
and g is defined byp(X;) = x; fori =1, ...,n. Every A-module becomes in a natural
way a B-module and as such it is artinian if and only if it is artinian asAsmodule.

FurthermoreXy, ..., X, is aB-regular sequence. Hencebit= (X1, ..., X,), then

Exty(B/b, M) =H (X1,..., Xy M) ZH (x1,..., x,; M)
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for all i. This shows that (v) is equivalent to (i). Note tha‘g(lM) = HL(M) for all i since
@ mapsb ontoa. O

Corollary 5.6. Let (A, m) be a local ring. The following conditions are equivalent for an
A-moduleM:

(i) Hi, (M) is artinian for all i.
(i) The Bass numbeys (m, M) with respect to the maximal ideal are finite.
(i) The Koszul cohomology moduleé(xy, ..., x,; M), i =0,...,r, wherexy, ..., x,
are generators ofn, are finite-dimensional vectorspaces over the residue fi¢ld.

Remark 5.7. Belshoff and Wickham showed in [1], that # is a complete local ring,
that all Bass numberg’ (m, M) are finite for a modul&/ if and only if M satisfies local
duality.

6. Filter-regular sequences

We first give an appropriate extension of the notion of a sequence filter-regular on a
moduleM to the case whel is not necessarily finitely generated. For filter-regularity on
finite modules, see [20,21].

Definition 6.1. The element is filter-regular onM, if 0 :3; x has finite length. The se-
guencexy, ..., x, is filter-regular onM, if x; is filter-regular onM/ (x4, ..., x;_1)M, for
j=1...,n.

Remark 6.2. Since O:)y x =0:1, (m) x, the element is filter-regular onM if and only
if I'y4(M) is artinian and cofinite with respect to the ideal, by 4.1.

We first state some elementary properties of filter-regular sequences.
Proposition 6.3. Letxy, ..., x, be a sequence of elementsdrand M an A-module.

(a) Letl< s <n.Thesequence,..., x, isfilter-regular onM ifand only ifxy, ..., x;_1
is filter-regular onM andxs, ..., x, is filter-reqular onM /(x1, ..., xs_1)M.

(b) The sequences, ..., x, is filter-regular on M if and only if it is filter-regular on
M/, 4(M). More generally, letV be an artinian andcq A-cofinite submodule a¥/.
Then the sequenas, ..., x, is filter-regular onM, if and only if it is filter-regular on
M/N.

Proof. Put My = M/(x1,...,xs_1)M. Then (a) follows directly from the definition of
filter-reqularity, if we note thatM,/(xs,...,x;—0)M; = M/(x1,...,x;—0)M for s <
j<n.

In order to prove the last assertion in (b), we use the exact sequence

0—0:yx1—0:y x1— 0:pyv x1— N/x1N,
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whose endterms have finite length, becal¥sis assumed to be artinian and cofinite with
respect taxr; A. Consequently 6y x1 has finite length if and only if Gy, x1 has finite
length. O

Theorem 6.4. If the sequencey, ..., x, in the ideala is filter-regular onM, thean(M)
is ana-cofinite artinian module for < n.

If in addition a is generated by, ..., x,, then the modul&l’; (M), too, isa-cofinite
precisely wherM /aM is finite.

Proof. Since H,(0:) x1) = 0 for all i > 0, we can put together the two long exact
sequences we get when we apply local cohomology to the two short exact sequences
0—>0:pyx1>M—>x3M — 0and 0 x1M - M — M/x1M — 0. Thus we get the

long exact sequence

0— I3(0:4 x1) = Ta(M) 22 To(M) — Ta(M/x1M)
— H (M) 25 HE (M) — HE(M/x1M)
— HZ(M) 2 HE2(M) — HZ(M/xiM) — - -

Hence O:,a) x1 has finite length, and thereforE, (M) is artinian anda-cofinite,
by 4.1. Nowxa, ..., x, is filter-regular onM /x1 M. We use induction and we suppose that
Hi (M /x1M) is ana-cofinite artinian module foi < n — 1. From the long exact sequence
above, we get that Qi ) X1 is a-cofinite artinian fori < n. Hence again 4.1 implies

that H, (M) is a-cofinite artinian fori < n. Consider next the case whers generated by
x1, ..., x,. Use induction, our criterion in 3.4 and the exact sequence

0— H Y (M) /x1 HI7Y (M) — HE (M /xy M) — HE (M) 22 HE (M) — 0,
Observe thatf /aM = M1/aMy, whereM1 = M /x1M. O

Corollary 6.5. Let M be an finite module. If the idealis generated by a sequence, which
is filter-regular onM, thenH:, (M) is a-cofinite for alli.

7. When isthe category of a-cofinite modules abelian?

Let f : M — N be a homomorphism betweercofinite modules. If one of the modules
Ker f, Cokerf and Imf is a-cofinite, then all of them are-cofinite. If this is the case, we
say thatf is a-good. In order to decide whethgris a-good, it is often useful to reduce
to the case that contains anA-regular element. This is done by takingso large that
a(A)=0:4 o". If ais the image ofiin A = A/0:4 a", then depth A > 0. Replacef
by the induced homomorphisif between thei-cofinite A-modulesM = M /0y, a” and
N =N/O:y a”". Then f is a-good if and only if f is a-good. There is namely an exact
sequence

0— Ker fo — Ker f — Ker f — Cokerfy — Cokerf — Cokerf — 0,
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where fo: 0:) " — 0:y a” is obtained fromyf by restriction. We get this exact sequence
by applying the snake lemma to the commutative diagram

0—0iyad" —— M — M/0O:ya" ——0

d

0——=0:yda"* ——= N —— N/O:ya" —— 0.

Proposition 7.1. Let M be a-cofinite,a=b + xA andb = (x1, ..., x,). Then for each,
the moduleH’ (x4, ..., x,; M) is a-cofinite.

Proof. In the exact sequence

H (x4, .oy, X M) = Hi(x1, oo xn; M) 3 Hi(xa, . x0; M)

— Hi+l(x1, e Xy, X M)

the outer terms are finite, sindé is a-cofinite. Hence 0, x andL/xL are finite, where
L=H'(x1,...,x,; M). It follows from our criterion, 3.4 that. is a-cofinite. O

Lemma 7.2. LetM be a-cofinite,x € a, b = (x1,...,x,), c=b + XA, and suppose that
dmA/c=121.If H'(x1,...,x,,x; M) is a-cofinite for alli, thenH' (x1, ..., x,; M) is a-
cofinite for alli.

Proof. Let a be the image ofi in A = A/c. As a module oved, H (x1, ..., x,, x; M)

is cofinite with respect ta. Since submodules and quotientsastofinite modules over
the one-dimensional ring are againi-cofinite by 4.5, we can use the same long exact
sequence as in the proof of 7.1. Thus the modulgsx0and L /x L are a-cofinite, where

L =Hi(x1,...,x; M). Hence again by our criterion 3.4,is a-cofinite. O

Lemma 7.3. Let M be a-cofinite and suppose that= (x1, ..., x,) is an ideal such that
dimA/(b+ xA) < 1 for somex € a. ThenH! (x4, ..., x,; M) is a-cofinite for alli.

Proof. Take elements; 1, ..., x, in a, such thaty,.1 = x anda+ b = (x1, ..., xp).
Now use 7.2 repeatedly.O

Theorem 7.4. Let A be a noetherian ring witldim A < 2 and leta be an ideal ofA.

If f:M — N is a homomorphism between thecofinite modules and N, then
Ker f, Cokerf andIm f are a-cofinite, i.e., in our terminology is a-good.

More generally all(co)homology modules of éo)chain complex consisting af-
cofinite modules are-cofinite.

In particular if M is a-cofinite, thenH! (x1, ..., x,; M) is a-cofinite for alli and any
elementsy, ..., x, of A.
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Proof. The other statements follows from the first one. As we remarked before, we may
assume, that there is arregular element € a. The modules\f/xM and O:y x area-
cofinite by 7.3. Hence they are by 2aB(x)-cofinite modules over the ring = A/(x),
which has dimension at most one. Llet= Im f. Now //xI is a homomorphic image of
M/xM and 0:; x is a submodule of &y x. These modules are therefareofinite by 4.5

and 2.6. Hence by the criterion in 3.4js a-cofinite. Then also Kef and Cokerf must
bea-cofinite. O

Proposition 7.5. For an ideala of a noetherian ring4, letJo(a), respectively; (a), be the
set of ideals of A, such tha:, b, respectivelyM /b M, is a-cofinite for every-cofinite
moduleM. The setd;(a), i =0, 1, have the properties

(@) (0) €J;(a) and (1) € J;(a) and more generallye) € J; (a) for every idempotent ele-
mente € A.

(b) If b, c€J;(a), thenbc € J;(a) andb + ¢ € J; (a).

(c) fe¢Db,bed;(a) andc € J;(a), wherea and¢ are the images of the ideadsand b in
the ring A/b, thenc € J; (a).

(d) If dmA/b < 2, thenb € J;(a).

Proof. (a) If e? = ¢, thenf = ey, is an idempotent endomorphism dh Hence Kerf =
0:y e and Imf = eM are direct summands af .

(b) In order to prove the assertions concerriig@) use the equalities Gy bc/0:p b=
0:z c,whereL =M /0:p band 0:p7 (b +¢) =0:y ¢, whereN = 0:, b. In order to prove
the assertions concernifdg(a), use that an ideal belongs tdJ1(a) if and only if oM is
a-cofinite and note tha/ /(b + ¢c)M = P /cP, whereP = M /bM.

(c) LetL =0:) b andN = M/bM, which area-cofinite modules oveA = A/b. Use
that 0:py c=0:7 candcM/bM =cN.

(d) Since there are (not necessarily distinct) prime ideals. ., p,, such thatb >
p1---p, and dimA/p; <2 for j=1,...,r, we are by (b), (c), and 7.4, reduced to the
caseb = p, wherep is a prime ideal with dind/p < 2. If a C p, then O:3y p and M /pM
are finite modules. It Z p, take an element € a \ p. Then dimA/(p + xA) < 1, so we
may apply 7.3. O

Proposition 7.6. Let f : M — N be a homomorphism betweestofinite modules. If there
is an idealb, such thadim A /b < 2 andbKer f =0 or b Cokerf =0, then f is a-good.

Proof. Let K = Ker f andC = Cokerf. If bK =0, we get the exact sequence0K —
0:p 66— 0:xbandifbC =0, we get the exact sequente/b M — N/bN — C — 0.
Our assertion therefore follows from 7.5 and 7.4

Corollary 7.7. Let X* : 0— X0 %% x1 %, x2 . ... pe a cochain complex consisting of
modules cofinite with respect#oSuppose there is an idealc A, withdim A/b < 2, such
thatb H (X*) = 0fori =0, ...,n. ThenH!(X*) is a-cofinite fori =0, ...,n. A similar
statement holds for the homology of chain complexes.
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Proof. Consider the exact sequences
0— H(X*) — Cokerd;,_1 — X't — Cokerd; — 0
and use induction. O
We are now able to strengthen 7.3.

Coroallary 7.8. Let M be a-cofinite, and suppose that the iddak (x4, ..., x,) satisfies
dimA/b < 2. Then the Koszul cohomology modulésx, ..., x,; M),i =0,...,r, are
a-cofinite.

In the proof of the next theorem, we need the lemma below, which for completeness we
prove.

Lemma 7.9. If I',(M) =0, thenHomy (A/a, HL(M)) = Ext} (A/a, M).

Proof. Let E be an injective hull ofM and put N = E/M. Since I';(M) = 0,
also I';(E) = 0 and Homy(A/a, E) = 0. Therefore from the exact sequence-0
M — E — N — 0, we get the isomorphismg, (N) = Hﬁ(M) and Homy(A/a, N) =
Ext(A/a, M). O

Theorem 7.10. Let A be a noetherian ring witllim A < 2 and leta C A be an ideal and
M an A-module. The following conditions are equivalent

(i) HL (M) is a-cofinite for alli.
(i) Ext’_A(A/a, M) is finite for all ;.
(i) Ext',(A/a, M) is finite fori < 2.

Proof. We need by 3.10 just show that (i) follows from (iii). Suppose thasatisfies (iii).

If a is nilpotent, theru-cofiniteness is the same as finitenesst i§ nonnilpotent, take
such that 04 a” = I';(A). There isx € a which is regular oA = A/I';(A), and therefore
dimA/xA < 1. The moduleM = M/0:y o" has a natural structure as a module oxer
Since 0y, a” is finite, M must also satisfy (iii). The exact sequence>@:y; a” — M —

M — 0 yields the exact sequence-9 0:y " — I'y(M) — I'x(M) — 0 and isomor-
phismsH! (M) = Hi (M) for i > 1. Thus replacing/ by M, we may assume thaf is a
module overA. Let L = I',(N), whereN =0:); x C M. Since 07 a = 0:) a, which is
finite, 4.5 implies that. is a-cofinite and therefore satisfies (ii). From the exact sequence
0— N—> M — xM — 0, we get that EX{(A/a, N) is finite. Hence EX{(A/a, N/L)

is finite. By 7.9 Ex} (A/a, N/L) = Homs(A/a, HL(N/L)). Also HL(N) = H1(N/L),
so Homy(A/a, HL(N)) is finite. Hence by 4.5 the modulelfV) is a-cofinite. Since
HQ(N) =0 fori > 1, 3.10 implies thatvV = 0:j; x satisfies (ii). From the exactness of
0— N— M — xM — 0, we therefore get that ExtA/a, xM) and Ext (A/a, xM)
are finite. Hence from the exactness of OxM — M — M/xM — 0 we get that
Homg4 (A/a, P) and Exg(A/a, P), whereP = M /xM, are finite modules. An argument
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similar to that one, we used to show thd'c[(W) is a-cofinite for alli, shows that I{;I(P) is
a-cofinite for alli.

Consider the homomorphisni = x1;;, so N = Ker f and P = Cokerf. We have
shown that H(Ker f) and H,(Cokerf) are cofinite with respect te for eachi. By 4.5
the class ofa-cofinite modules, which are modules owérannihilated byx constitute a
Serre subcategory of the categoryAfmodules. Hence it follows from 3.2 that for all
the modules Ker lgl(f) and Cokerfﬂ(f) belong to the same category. Since a our
criterion 3.4 implies that Ei(M) is a-cofinite for alli. O

Corollary 7.11. If M is a finite A-module or more generally-cofinite for some ideal
b C a, thenH, (M) is a-cofinite for alli.

Proof. If M is b-cofinite anda D b, then 3.10 and [4, Proposition 1] implies that (ii) is
satisfied byM. O

Proposition 7.12. Let A be a complete local ring andi C A an ideal, such that
dimA/a=1
Consider the conditions

(x) For everya-cofinite A-moduleL and each prime idegd minimal overa the modules
Iy(L) andH3 (L) are p-cofinite.
(x*) For any homomorphisnf : M — N betweeru-cofinite module&er f, Cokerf and
Im f are a-cofinite.

Then(x) = (x).

Proof. Assume that %) holds. LetK = Kerf, I = Im f and C = Cokerf, where
fiM — N is a homomorphism between thecofinite modulesM and N. We show
that H, (K) is p-cofinite for alli and every prime idegl minimal overa. Then we get

from 3.10 that EX}(A/p, K) is a finite A-module for alli and therefore we get from [4,
Corollary 1] thatK is a-cofinite and then so are and C. Since by our assumptios),
the moduled, (M) and I, (N) arep-cofinite, I'; (K) = Ker I', (f) is p-cofinite, sincep is

a one-dimensional prime in a complete local ring and therefore the categprgadinite
modules is an abelian subcategory of the category-aiodules as shown by Delfino and
Marley in [4]. We have the exact sequence

0— IW(K) = Tp(M) — (1) & H(K) — HY (M) — HL (1) — 0.

Sincel, (K) andl, (M) arep-cofinite, Kers is p-cofinite, again by [4]. Also Cokeris
p-cofinite, since it is isomorphic to a submodule oy(IM), which isp-cofinite by assump-
tion and artinian by 5.3. Hence by 3.3 the cokernel of the map Hewp, I, (1)) —
Homy (A/p, H%(K)) is finite. But Homy (A/p, I', (1)) =0y p C 0:y p, which is finite.
Hence Hom (A/p, Hj (K)) is finite. But Supp H (K) C V(m). Consequently E(K) is
artinian andp-cofinite. Note that I'LDI(K) =0 for all i > 1, sinceK has support in the
one-dimensional set(d). O
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