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1. Introduction

We continue the study of modules cofinite with respect to an ideal of a (noeth
commutative) ring. Hartshorne [8] introduced this class of modules, answering in
tive a question of Grothendieck [6, Exposé XIII, Conjecture 1.1]. He asked if the mo
HomA(A/a,Hi

a(M)) always are finitely generated for every ideala ⊂ A and each finite
A-module M . This is the case whena = m, the maximal ideal in a local ring, sinc
the modules Him(M) are artinian. Hartshorne defined a moduleM to be a-cofinite, if
SuppA M ⊂ V(a) and ExtiA(A/a,M) is a finite module for alli. He proved that the lo
cal cohomology modules Hip(M) arep-cofinite for all finite modulesM over a complete
regular local ringA, whena = p is a prime ideal ofA, such that dimA/p = 1. This result
was later extended to more general local rings and one-dimensional idealsa by Huneke and
Koh in [9] and by Delfino in [3] until finally Delfino and Marley in [4] and K.-I. Yoshid
in [22] proved that the local cohomology modules Hi

a(M) area-cofinite for all finiteA-
modulesM , where the ideala of a local ringA, satisfies dimA/a = 1.

Instead of requiring the finiteness of the modules Exti
A(A/a,M) in the definition of

a-cofiniteness, we showed in [16] that one could require the finiteness of the Koszul
mology modules Hi (x1, . . . , xn;M), wherex1, . . . , xn are generators fora. Our proof used
the change of rings principle of Delfino and Marley [4, Proposition 2]. They proved
change of rings principle using a spectral sequence argument. We are however a
the use of spectral sequences completely in this work, even if we can show some
results with this technique. So we provide an elementary proof of the equivalence
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finiteness for alli of the modules ExtiA(A/a,M), TorAi (A/a,M) and Hi (x1, . . . , xn;M)

in Theorem 2.1. This theorem is then used to deduce the change of rings pri
(see 2.6).

In Section 3 we give various conditions for cofiniteness. Very useful, in particul
induction arguments, is the criterion given in 3.4. We prove there that for a moduleM with
support in V(a) to bea-cofinite, it is sufficient to find an elementx ∈ a, such that 0:M x

andM/xM area-cofinite.
In [16] we showed that an artinian moduleM with support in V(a) is a-cofinite if and

only if 0 :M a has finite length. We extend this result to the class of minimax mod
in 4.3. A module is called a minimax module, when it has a finite submodule, such
the quotient by it is an artinian module [24]. We also show that if dimA = 1, then each
a-cofinite module is a minimax module and that all submodules and quotients ofa-cofinite
modules area-cofinite.

In Section 5 we study the top local cohomology module Hd
a(M) of a moduleM over a

ring of finite Krull dimensiond . We show that it is an artiniana-cofinite module ifM is
finite and whenM is no longer finite but if Hda(M) is artinian it must bea-cofinite. In the
proofs of these results we use the theory of asymptotic prime divisors, see [13]. A
idealp ⊃ a is called a quintasymptotic prime divisor of the ideala, if there is a minimal
prime idealq in the completion̂Ap of the local ringAp, such that its maximal idealpÂp is
minimal overaÂp + q. If p is a quintasymptotic prime divisor ofa, thenp is an asymptotic
prime divisor ofa in the sense that it is an associated prime ideal of the integral clo
(an)∗ of the powersan for largen and therefore also an associated prime ideal foran for
all largen. There are just a finite number of asymptotic primes of an ideala.

In 5.5 we decide when all local cohomology modules Hi
a(M) are artinian in the rang

i � r or for all i, extending a result of Lescot [11], who treated the case whena is the
maximal ideal of a local ring.

In 6.5 we show that ifa is generated by a sequence which is filter-regular on the fi
moduleM , then all local cohomology modules Hi

a(M) area-cofinite.
In the last section we deal with the problem, when the kernel (hence also the

nel and the image) of a homomorphism betweena-cofinite modules is againa-cofinite.
Hartshorne [8] showed that this is the case, whena is a one-dimensional prime ideal
a complete regular local ring. This was later generalized by Delfino and Marley [
the case of a one-dimensional prime ideal in any complete local ring. However it
known to hold even for a one-dimensional prime ideal of a local ring which is not c
plete. After passing to the completion the extended ideal may no longer be prime
efforts to solve this problem for a one-dimensional ideala in any local ring has consid
erably delayed the publication of this paper. Many of our results did we obtain qu
time ago and have been presented at seminars at various universities and conferen
did not succeed to answer the question, but we have succeeded to reduce the que
order to get a positive answer) to the study of certain local cohomology modules in
Namely isΓp(M) (or equivalently H1p(M)) p-cofinite for all prime idealsp minimal over
a wheneverM is an a-cofinite module over a complete local ringA and dimA/a = 1
in 7.12. We have also succeeded to prove positive solutions for the case dimA � 2 in 7.4
and 7.11.
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2. Equivalent conditions for cofiniteness with respect to an ideal

Theorem 2.1. Let a = (x1, . . . , xn) be an ideal inA and letM be anA-module. Then the
following conditions are equivalent:

(i) ExtiA(A/a,M) is a finiteA-module for alli.
(ii) TorA

i (A/a,M) is a finiteA-module for alli.
(iii) The Koszul cohomology modulesHi (x1, . . . , xn;M) are finite A-modules fori =

0, . . . , n.

Definition 2.2. An A-moduleM , such that SuppA(M) ⊂ V(a), and which satisfies th
equivalent conditions in the above theorem is called cofinite with respect to the ideaa or
shortera-cofinite.

For the proof of our theorem we need two lemmata. In proving these we use the
vation that if 0:M a is a finiteA-module, then so is 0:M an for eachn. Similarly if M/aM

is a finiteA-module, then alsoM/anM is finite for alln.

Lemma 2.3. Let C be a class ofA-modules anda an ideal such that the following cond
tions are fulfilled:

(1) If 0 → M ′ → M → M ′′ → 0 is exact, whereM ′ and M are in C, then alsoM ′′ is
in C.

(2) 0 :M a is a finiteA-module for everyM in C.
(3) Every finiteA-moduleM such thatSuppM ⊂ V(a) is in C.

Let X• : 0 → X0 → X1 → X2 → ·· · be a cochain complex with modules inC, such
that for eachi there isn with an Hi (X•) = 0. ThenHi (X•) is a finiteA-module for eachi.

Proof. Let Bi , respectivelyZi , be the modules of coboundaries and cocycles, so the
homology modules areHi = Zi/Bi . Assume thatBi belongs toC for a certaini. Then
Ci = Xi/Bi also belongs toC by (1). Taken such thatanH i = 0. ThenHi ⊂ 0 :Ci an,
which is finite by (2) and thereforeHi is finite and thus belongs toC, by (3). By (1) again
and the exact sequence

0→ Hi → Ci → Bi+1 → 0,

we get thatBi+1 is also inC and we can continue by induction.�
The second lemma is dual to the previous one.

Lemma 2.4. Leta be an ideal ofA and supposeC is a class ofA-modules with the follow
ing properties:
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(1) If 0 → M ′ → M → M ′′ → 0 is exact and bothM andM ′′ are in C, then alsoM ′ is
in C.

(2) M/aM is a finiteA-module for eachM in C.
(3) Every finiteA-moduleM such thatSuppM ⊂ V(a) is in C.

Let nowX• : · · · → X2 → X1 → X0 → 0 be a chain complex of modules inC, such that
for eachi there isn such thatan Hi (X•) = 0. ThenHi (X•) is a finiteA-module for eachi.

Proof. Let Zi , respectivelyBi , be the modules of cycles and boundaries, soHi = Zi/Bi

is theith homology module. Put alsoCi = Xi/Zi . Assume thatZi is in C for a certaini.
Taken such thatanHi = 0. Consider the exact sequence 0→ Ci+1 → Zi → Hi → 0.

First we conclude thatHi is a homomorphic image ofZi/a
nZi , which is a finiteA-

module by (2). HenceHi is finite and therefore inC by (3). The exact sequence abo
and (1) implies thatCi+1 is in C and by (1) again so isZi+1 and we can proceed b
induction. �
Proof of Theorem 2.1. Let F• → A/a be a resolution ofA/a consisting of finite free
A-modules. We apply 2.3 and 2.4 to the complexes

HomA (F•,M), F• ⊗A M, K•(x1, . . . , xn;M), K•(x1, . . . , xn;M).

In addition we use that Hi (x1, . . . , xn;M) ∼= Hn−i (x1, . . . , xn;M) for everyi. �
Corollary 2.5. If M satisfies the conditions of2.1 and N is a finite A-module with
SuppA(N) ⊂ V(a), thenExtiA(N,M) andTorAi (N,M) are finiteA-modules for alli.

Proof. Apply 2.3 and 2.4 to the complexes HomA(F•,M), andF• ⊗A M , whereF• → N

is a resolution ofN consisting of finite free modules.�
Corollary 2.6 (Change of rings principle). Let ϕ : A → B be a homomorphism betwee
noetherian rings and suppose thata is an ideal ofA such thatB/aB is a finiteA-module.
Then aB-moduleM is cofinite with respect to the extended idealaB if and only if M
considered as anA-module is cofinite with respect toa.

Proof. Let a = (x1, . . . , xn), soaB = (φ(x1), . . . , φ(xn)). TheB-module Hi (φ(x1), . . . ,

φ(xn);M) is annihilated byaB and considered as a module overA it is isomorphic to
Hi (x1, . . . , xn;M). Therefore the assertion follows from our hypothesis thatB/aB is a
finite A-module. �

Submodules ofa-cofinite modules are seldoma-cofinite. Direct summands are of cour
and more generally:

Proposition 2.7. If M is a-cofinite andN is a pure submodule ofM , thenN andM/N are
alsoa-cofinite.
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Proof. In fact, P.M. Cohns characterization of purity (see [17, Theorem 3.65]) ca
restated as follows.

N ⊂ M is pure if and only if for any chain complexF• consisting of finite free mod
ules, the induced cochain mapα : HomA(F•,N) → HomA(F•,M) has the property tha
if f ∈ HomA(F•,N) is taken byα to a coboundary in HomA(F•,M), thenf already
is a coboundary in HomA(F•,N). Equivalently the maps Hi (α) : Hi (HomA(F•,N)) →
Hi (HomA(F•,M)) are injective for alli. Let nowF• be a resolution ofA/a consisting of
finite free modules. Consequently, ifN is a pure submodule ofM , then

0→ ExtiA(A/a,N) → ExtiA(A/a,M) → ExtiA(A/a,M/N) → 0

is exact for alli. Hence ifM is a-cofinite, then so areN andM/N . �

3. Criteria for cofiniteness

We begin with a homological lemma.

Lemma 3.1. Let S and T be additive functors between the abelian categoriesA and B

and letS be a Serre subcategory ofB, i.e.,S is closed under taking subobjects, quotie
and extensions.

Suppose that every exact sequence0 → X′ u→ X
v→ X′′ → 0 gives rise to an exac

sequence

SX′ Su−→ SX
Sv−→ SX′′ → T X′ T u−−→ T X

T v−−→ T X′′.

If f : M → N is a morphism inA such thatT Kerf and S Cokerf are in S, then also
KerTf and CokerSf are in S. If in addition Tf = 0 (respectivelySf = 0), thenT M

(respectivelySN ) is in S.

Proof. We have two exact sequences

0→ K → M
g→ I → 0 and 0→ I

h→ N → C → 0,

whereK = Kerf , I = Imf , C = Cokerf andf = h ◦ g.
We get exact sequences

SK → SM
Sg−→ SI → T K → T M

Tg−−→ T I,

SI
Sh−→ SN → SC → T I

T h−−→ T N → T C.

Hence CokerSg is a subobject ofT K and thus inS and KerT g is a quotient ofT K and
therefore also inS. In a similar way, we use the second exact sequence to deduc
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KerT h and CokerSh are inS. SinceTf = T h ◦ T g andSf = Sh ◦ Sg, there are exac
sequences

0→ KerT g → KerTf → KerT h

and

CokerSg → CokerSf → CokerSh → 0.

Hence KerTf and CokerSf are inS. �
Corollary 3.2. Let (T i) be a connected sequence of functors betweenA and B and let
f : M → N be a morphism inA. If for a certaini, T i Cokerf andT i+1 Kerf both belong
to S, thenCokerT if andKerT i+1f also belong toS. If for all i, T i Kerf andT i Cokerf
belong toS andT if = 0, thenT iM andT iN belong toS for all i.

Corollary 3.3. Let f : M → N be an A-linear map. If for all i, the A-modules
ExtiA(A/a,Kerf ) and ExtiA(A/a,Cokerf ) are finite, then KerExtiA(A/a, f ) and
CokerExtiA(A/a, f ) are also finite for alli.

The following corollary is a very useful criterion in order to decide whether a modu
cofinite, especially in induction arguments.

Corollary 3.4. Supposex ∈ a and SuppA M ⊂ V(a). If 0 :M x and M/xM are botha-
cofinite, thenM must also bea-cofinite.

Proof. Apply 3.3 to the mapf = x1M . Sincex ∈ a, ExtiA(A/a, f ) = 0 for all i. �
Here is a generalization to a matrix situation.

Corollary 3.5. Let u : F → G be a homomorphism between nonzero finite free mod
such thatu(F ) ⊂ aG, i.e., after choosing bases inE andF , the matrix ofu has its element
in a. Put f = Hom(u,M), and suppose thatSuppA M ⊂ V(a). If Kerf andCokerf are
botha-cofinite, thenM must also be ana-cofinite module.

Proof. We can writef = ∑
j,k aj,kfj,k with some elementsaj,k ∈ a and some map

fj,k : HomA(G,M) → HomA(F,M). Hence for alli,

ExtiA(A/a, f ) =
∑
j,k

aj,k ExtiA(A/a, fj,k) = 0,

sinceaj,k ∈ a for all j, k. �
Corollary 3.6. Let M be anA-module withSuppA(M) ⊂ V(a). Suppose the endomo
phismf ∈ EndA(M), satisfies a polynomial equationf n + a1f

n−1 + · · · + an = 0, where
aj ∈ a, 1� j � n. If bothKerf andCokerf area-cofinite, thenM is a-cofinite.
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Proof. ExtiA(A/a, f n) = ∑n
j=1 −aj ExtiA(A/a, f n−j ) = 0 for all i. Note also that ifu is

an endomorphism on some moduleX, then Keru is finite if and only if Kerun is finite for
all n, if and only if Kerun is finite for somen. There is an analogous statement concern
the cokernels ofu and its powers. �
Proposition 3.7. If SuppA(M) ⊂ V(a), b ⊂ a and ExtiA(A/b,M) is a-cofinite for all i,
thenM is a-cofinite.

Proof. Let ā be the image ofa in Ā = A/b. By the change of rings principle 2.6, thēA-

modules ExtiA(A/b,M) are cofinite with respect tōa. Let now 0→ M → E0 ∂0−→ E1 ∂1−→
E2 ∂2−→ · · · be an injective resolution of theA-moduleM . We split this into short exac
sequences 0→ Mi → Ei → Mi+1 → 0, whereMi = Ker∂i , i = 0,1,2, . . . .

Observe that for eachi � 0,

Exti+1
A (A/a,M) ∼= Ext1A

(
A/a,Mi

)
and

Exti+1
A (A/b,M) ∼= Ext1A

(
A/b,Mi

)
.

We first show by induction oni, that Extj
Ā
(Ā/ā,0 :Mi b) is a finite Ā-module for

all j � 1. SinceM0 ∼= M and 0:M b is an ā-cofinite Ā-module, this is evidently tru
for i = 0. Suppose that this is true for a certaini. Consider theĀ-module homomor-
phismfi : 0 :Ei b → 0 :Mi+1 b. Since Kerfi = 0 :Mi b and Cokerfi

∼= Ext1A(A/b,Mi) ∼=
Exti+1

A (A/b,M), the Ā-modules Extj+1
Ā

(Ā/ā,Kerfi) and Extj
Ā
(Ā/ā,Cokerfi) are finite

for all j � 0. Therefore 3.2 implies that CokerExtj

Ā
(Ā/ā, fi) is a finiteĀ-module for all

j � 0. Forj = 0, we get that Ext1A(A/a,Mi) ∼= Exti+1
A (A/a,M) is finite. Since 0:Ei b is

an injectiveĀ-module, Extj
Ā
(Ā/ā,0 :Ei b) = 0 for j � 1. Hence CokerExtj

Ā
(Ā/ā, fi) ∼=

Extj
Ā
(Ā/ā,0 :Mi+1 b) whenj � 1. The induction argument is ready and at the same

the proof shows that Extj
A(A/a,M) is finite for all j � 1. For j = 0 this is clear, since

HomA(A/a,M) ∼= HomA(A/a,HomA(A/b,M)). HenceM is a-cofinite. �
Corollary 3.8. Let x1, . . . , xr be elements ina and letM be anA-module with support in
V(a). If for all i the modulesHi (x1, . . . , xr ;M) area-cofinite, thenM must bea-cofinite.

Proof. We apply the change of rings principle 2.6 to the surjective homomorp
ϕ :B → A, whereB = A[X1, . . . ,Xr ], defined byϕ(Xi) = xi for i = 1, . . . , r . M be-
comes aB-module with support inaB + (X1, . . . ,Xr) and this ideal is mapped ontoa
by ϕ. Since the sequenceX1, . . . ,Xr is regular onB, we get for alli that

Hi (x1, . . . , xr ;M) ∼= Hi (X1, . . . ,Xr ;M) ∼= ExtiB
(
B/(X1, . . . ,Xr),M

)
. �

Proposition 3.9. LetS be a full subcategory of the category ofA-modules closed under tak
ing kernels, cokernels and extensions and letn be a natural number. IfM is anA-module,
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a(M)) belongs toS for all i and all j (respectively fori � n and

all j ), thenExtiA(A/a,M) belongs toS for all i (respectively for alli � n).

Proof. The casen = 0 is clear, so letn > 0 and we do induction onn. We first reduce to
the caseΓa(M) = 0. This is possible, since if we let̄M = M/Γa(M), we have the long
exact sequence

· · · → Exti−1
A (A/a, M̄)

→ ExtiA
(
A/a,Γa(M)

) → ExtiA(A/a,M) → ExtiA(A/a, M̄)

→ Exti+1
A

(
A/a,Γa(M)

) → ·· ·

and isomorphisms

Hi
a(M̄) ∼=

{
0, if i = 0,
Hi

a(M), if i > 0.

So let us assume thatΓa(M) = 0. LetE be an injective hull ofM and putL = E/M . Then
alsoΓa(E) = 0 and HomA(A/a,E) = 0, and we therefore get isomorphisms Hi

a(L) ∼=
Hi+1

a (M) and ExtiA(A/a,L) ∼= Exti+1
A (A/a,M) for all i � 0. �

Corollary 3.10. If Hi
a(M) is a-cofinite for all i (respectively for all i � n), then

ExtiA(A/a,M) is a finiteA-module for eachi (respectively fori � n).

The next result has been shown using a spectral sequence argument by T. Mar
J. Vassilev in [12, Proposition 2.5] under the assumption thatM is finite. We give a direc
proof with a weaker assumption onM which is needed in our applications.

Proposition 3.11. Let M be a module, such thatExtiA(A/a,M) is a finiteA-module for
everyi, for exampleM might be a finiteA-module. Ifs is a number, such thatHi

a(M) is
a-cofinite for alli 
= s, then this is the case also wheni = s.

Proof. We use induction ons. Let M̄ = M/Γa(M). Then

Hi
a(M̄) ∼=

{
0, if i = 0,
Hi

a(M), if i > 0.

If s = 0, then Hi
a(M̄) is a-cofinite for all i, so by 3.10, ExtiA(A/a, M̄) is a finite

A-module for everyi. Therefore the exactness of 0→ Γa(M) → M → M̄ → 0 implies
that ExtiA(A/a,Γa(M)) is finite for all i, that is,Γa(M) is a-cofinite. Suppose then th
s > 0 and the cases − 1 is settled. SinceΓa(M) is a-cofinite, ExtiA(A/a,Γa(M)) is fi-
nite and by hypothesis Exti

A(A/a,M) is finite. Hence ExtiA(A/a, M̄) is finite for all i. We
may therefore assume thatΓa(M) = 0. Let E be an injective hull ofM and putM1 =
E/M . Then alsoΓa(E) = 0 and HomA(A/a,E) = 0. Consequently Exti (A/a,M1) ∼=
A
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a(M1) ∼= Hi+1
a (M) for all i � 0 (including the casei = 0). The in-

duction hypothesis applied toM1, yields thea-cofiniteness of Hs−1
a (M1). Hence Hsa(M)

which is isomorphic to it isa-cofinite. �
Corollary 3.12. If M is a finite module such thatHi

a(M) = 0 for all i 
= s, i.e.,deptha M =
cd(a,M) = s, thenHs

a(M) is a-cofinite.

Corollary 3.13. If M is finite anda is generated by anM-regular sequence, thenHi
a(M)

is a-cofinite for alli.

Corollary 3.14. If cda = 1, thenHi
a(M) is a-cofinite for alli and every finiteA-moduleM .

Proposition 3.15. Supposecdb = 1 and a ⊂ b and let M be a finiteA-module. Then
Hi

b
(Hj

a(M)) is b-cofinite for alli andj .

Proof. Since cdb = 1, the ring Db(A) is noetherian andbDb(A) = Db(A), [19] or [2,
p. 112]. Hence Hi

b
(N) ∼= Hi

bDb(A)
(N) = 0 for all i and every Db(A)-moduleN . Since

L = Γa(M) is finite, Hi
b
(L) is b-cofinite for all i by 3.14. Moreover Hia(M) ∼= Hi

a(M/L)

for i > 0. We may therefore assume thatΓa(M) = 0 and therefore alsoΓb(M) = 0. Con-
sider the exact sequence 0→ M → Db(M) → H1

b
(M) → 0. We get the exact sequen

0 → L0 → H1
b
(M) → H1

a(M) → L1 → 0 and isomorphisms Hia(M) ∼= Li for all i � 2,
whereLi = Hi

a(Db(M)), i = 0,1,2, . . . . HoweverLi is a module over the ring Db(A) and

therefore as remarked above Hj

b
(Li) = 0 for all i andj . Now we easily get that

Hj

b

(
Hi

a(M)
) ∼=

{
H1

b
(M), if j = 0, i = 1,

0, otherwise.

Since H1
b
(M) is b-cofinite by 3.14, we are finished.�

Corollary 3.16. If cdb = 1 anda ⊂ b, then for every finiteA-moduleM and every finite
A-moduleN , such thatSuppA N ⊂ V(b), the modulesExtiA(N,Hj

a(M)) are finite for alli
andj .

Proof. Apply 3.10 and 2.5. �
Remark 3.17. Kawasaki [10] showed the conclusion in 3.16 assuming that the ideb

satisfies the stronger condition that it is (up to radical) principal.

4. Minimax modules

Proposition 4.1. Let M be a module with support inV(a). M is artinian anda-cofinite if
and only if0 :M a has finite length. If there is an elementx ∈ a, such that0 :M x is artinian
anda-cofinite, thenM is artinian anda-cofinite.
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Proof. If 0 :M a is artinian and SuppA M ⊂ V(a), thenM is artinian [14, Theorem 1.3
The first assertion follows from the local case [16, Theorem 1.6]. There is also a
proof in [15, Theorem 5.1].

If L = 0 :M x is a-cofinite, then 0:M a = 0 :L a is finite. �
The same applies to a bigger class of modules, namely the class of minimax mod

Definition 4.2 (see Zöschinger [24]). TheA-moduleM is a minimax module, if there is
finite submoduleN of M , such thatM/N is artinian.

The class of minimax modules thus includes all finite and all artinian modules. M
over, it is closed under taking submodules, quotients and extensions, i.e., it is a
subcategory of the category ofA-modules. Zöschinger has in [24,25] given many equ
alent conditions for a module to be a minimax module. See also [18]. It was show
T. Zink [23] and by Enochs [5] that a module over a complete local ring is minimax if
only if it is Matlis reflexive.

Proposition 4.3. Let M be a minimax module with support inV(a). ThenM is a-cofinite
if and only if 0 :M a is finite. Moreover, if there is an elementx ∈ a, such that0 :M x is
a-cofinite, thenM is a-cofinite.

Proof. Let N be a finite submodule ofM , such thatL = M/N is artinian and suppose th
0 :M a is finite.

The exactness of

0→ 0 :N a → 0 :M a → 0 :L a → Ext1A(A/a,N)

implies that 0:L a is finite. Hence we get from 4.1 thatL is a-cofinite, and thereforeM is
alsoa-cofinite. The second statement is proved as in Proposition 4.1.�
Corollary 4.4. The class ofa-cofinite minimax modules is closed under taking submod
quotients and extensions, i.e., it is a Serre subcategory of the category ofA-modules.

If A is a local domain of dimension one with quotient fieldK , thenK is a minimax mod-
ule, sinceK/A is artinian. Hence ifA is local andp is a prime ideal, such that dimA/p = 1,
thenk(p), the quotient field of the domainA/p is a minimax module overA. Moreover, if
E{p} is the injective hull of theA-moduleA/p, then 0:E{p} pn/0 :E{p} pn−1 is a minimax
module for eachn � 1, since it is a finite-dimensional vectorspace overk(p). Hence in this
case the modules 0:E{p} pn are minimax. IfA is a one-dimensional local ring, thenE{p} is
a minimax module for each minimal prime idealp of A. E{p} is namely as anAp-module
isomorphic to the injective hull of the residue fieldk(p) of the artinian local ringAp and
thereforeE{p} = 0 :E{p} pn for somen. It follows that if A is a one-dimensional local ring
then the class of minimax modules coincides with the class of modules of finite G
dimension. WhenA is an arbitrary noetherian ring, local or not, a module is minima
and only if each of its quotients has finite Goldie dimension, [23] or [25, Anhang].
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If dim A = 0, then eacha-cofinite moduleM is finite. In fact, if we taken such that
an = an+1, thenM = 0 :M an.

We next describe thea-cofinite modules over a one-dimensional ring.

Proposition 4.5. Let A be a noetherian ring of dimension one. AnA-moduleM with
support inV(a) is a-cofinite if and only if0 :M a is a finiteA-module. Eacha-cofinite
A-module is a minimax module. The class ofa-cofinite modules is closed under taki
submodules, quotients and extensions.

Proof. If a is nilpotent, sayan = 0, thenM = 0 :M an, whenever SuppA M ⊂ V(a). Sup-
pose therefore thata is not nilpotent. Taken such that 0:A an = Γa(A). ThenM/0 :M an

is a module over the rinḡA = A/Γa(A). Let ā be the image ofa in Ā. Thenā contains an
Ā-regular element and therefore dim̄A/ā = 0. Suppose SuppA M ⊂ V(a) and that 0:M a

is finite. Then also 0:M̄ ā = 0 :M an+1/0 :M an is finite. HenceM̄ is anā-cofinite artinian
Ā-module and therefore also ana-cofinite artinianA-module. Since 0:M an is finite,M is
a-cofinite and a minimax module.�

5. Artinian local cohomology modules

For another proof of the next result in the local case see [4, Theorem 3].

Proposition 5.1. Let M be a finite module of dimensiond over the noetherian ringA.
For every ideala of A, the top local cohomology moduleHd

a(M) is ana-cofinite artinian
module.

Proof. This is clear if d = 0. So let us assume thatd > 0. As usual, replacingM
with M/Γa(M), we may assume that there is anM-regular elementx ∈ a. Since
dimM/xM < d , we have that Hda(M/xM) = 0 and by induction Hd−1

a (M/xM) is artinian
anda-cofinite. From the exact sequence

Hd−1
a (M/xM) → Hd

a(M)
x−→ Hd

a(M) → 0,

4.1 and 4.4 implies that Hda(M) is a-cofinite and artinian. �
Theorem 5.2. Let A be a noetherian ring of finite Krull dimensiond and let M be a
module overA. If for each maximal idealm of A, the moduleHd

a(M)m is an artinianAm-
module, thenHd

a(M) is an artinianA-module, cofinite with respect toa. Moreover, each
m ∈ SuppA Hd

a(M) is a (quint) asymptotic prime divisor of the ideala.

Proof. We first assume thatA is a complete local ring and suppose that Hd
a(M) 
= 0. Let

p be a coassociated prime ideal of Hd
a(M), so in particular Hda(M)/pHd

a(M) 
= 0. But
Hd

a(M)/pHd
a(M) ∼= Hd

a(M/pM) ∼= Hd
a+p/p(M/pM). By the local Hartshorne–Lichten

baum vanishing theorem [7] or [2, Chapter 8], the complete local ringA/p has dimension
d and the ideala+p is m-primary. Hence it follows from [16, 1.6] that the artinian modu
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a(M) must bea-cofinite and by [13, p. 1]m is a quintasymptotic prime divisor ofa. For

the general case use [13, (1.1)a and (1.9)] to deduce that SuppA Hd
a(M) is contained in the

set of quintasymptotic primes ofa. Since this set is finite, SuppA Hd
a(M) consists of fi-

nitely many maximal ideals and for each such maximal idealm, theAm-module Hd
a(M)m

is artinian and cofinite with respect toaAm. The assertion follows. �
Proposition 5.3. Let b be an ideal of a noetherian ringA, such thatA/b has finite Krull
dimensiond and letM be anA-module cofinite with respect tob. Then for each ideala ⊃ b

the moduleHd
a(M) is artinian and for eachm ∈ SuppA Hd

a(M), m/b is an asymptotic prime
divisor of the ideala/b in the ringA/b.

Proof. We first assume that(A,m) is local. If d = 0, thenM is artinian, so let us assum
that d > 0 and that we know the result ford − 1. By [16, Corollary 1.8],L = Γm(M)

is artinian andb-cofinite. Since Hda(M) ∼= Hd
a(M/L) andM/L is b-cofinite, we may as

sume thatm /∈ AssM . Since the set AssA(M) is finite, we can by prime avoidance take
element

x ∈ m

∖( ⋃
p∈AssM

p ∪
⋃

p∈Min A/b

)
.

If we put c = b + xA, then dimA/c = d − 1. From the exact sequence 0→ M
x−→ M →

M/xM → 0, we get thatM/xM is b-cofinite and therefore by the change of rings princi
applied twice also cofinite with respect toc = b + xA. Since dimA/c = d − 1, we get by
induction that Hd−1

a (M/xM) is artinian. From the exactness of

Hd−1
a (M/xM) → Hd

a(M)
x−→ Hd

a(M) → 0

we obtain that 0:Hd
a(M) x is artinian and therefore Hda(M) is artinian [14]. In order to

show thatm/b is an asymptotic prime divisor ofa/b in case Hda(M) 
= 0, we may as-
sume thatA is complete. NowM = ⋃∞

1 0 :M bn, becauseM is assumed to beb-cofinite
and therefore SuppA M ⊂ V(b). Since local cohomology commutes with direct limits
thus get Hda(M) ∼= lim−→ Hd

a(0 :M bn). Hence Hda(0 :M bn) 
= 0 for somen. The Hartshorne–

Lichtenbaum vanishing theorem implies that there is a prime idealp ⊃ bn, such that
dimA/p = d anda + p is m-primary. Hencem/b is a quintasymptotic prime ideal ove
a/b. If A is not necessarily local, it follows that for each maximal idealm of A that
Hd

a(M)m is an artinian module overAm and if nonzero, thatm/b is a quintasymptotic
prime ofa/b. Since there are just finitely many quintasymptotic primes over an idea
support of Hda(M) consists of finitely many maximal ideals and for each such max
ideal m the Am-module Hd

a(M)m is artinian. Consequently Hda(M) must be an artinian
A-module. �

If 0 :M a is artinian, then so isΓa(M), see [14]. In [15] we also investigated wh
Hi

a(M) is artinian in the rangei � r , wherer is fixed and the moduleM is finite. Next we
will consider this problem for an arbitrary moduleM .
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We first recall some basic facts about essential extensions.
If f : E → F is a homomorphism, such that Kerf is an essential submodule ofE,

then KerHomA(A/a, f ) is an essential submodule of HomA(A/a,E) and KerΓa(f ) is an
essential submodule ofΓa(E).

If M ⊂ N is essential, thenM is artinian if and only ifN is artinian.
By induction this last fact is extended to a situation involving complexes:

Lemma 5.4. Let 0 → X0 → X1 → X2 → ·· · be a cochain complex with cocyclesZi ,
coboundariesBi and cohomologyHi = Zi/Bi . If Zi is an essential submodule ofXi for
eachi, thenHi is artinian for all i � r if and only ifXi is artinian for all i � r .

Proof. By induction onr . If Hr andXr−1 are artinian, thenBr is artinian, henceZr is
artinian and therefore also its essential extensionXr is artinian. IfXr is artinian, then so is
its subquotientHr . �
Theorem 5.5. Let a = (x1, . . . , xn) be an ideal of a noetherian ringA and let0 → M →
E0 → E1 → E2 → ·· · be a minimal injective resolution of theA-moduleM . The follow-
ing conditions are equivalent:

(i) Hi
a(M) is artinian for i � r .

(ii) ExtiA(A/a,M) is artinian for i � r .
(iii) Γa(Ei) is artinian for i � r .
(iv) The setΛ of those prime idealsp ⊃ a, such that the Bass numberµi(p,M) 
= 0 for

somei � r is a finite subset ofMaxA and for all m ∈ Λ, µi(m,M) is finite when
i � r .

(v) Hi (x1, . . . , xn;M) is artinian for i � r .

Proof. The equivalence of the first three conditions follows from 5.4 applied to the c
plexes

0→ Γa

(
E0) → Γa

(
E1) → Γa

(
E2) → ·· ·

and

0→ Homa

(
A/a,E0) → HomA

(
A/a,E1) → HomA

(
A/a,E2) → ·· · ,

making use of the remarks above about essential extensions. Condition (iv) is more
a restatement of (iii). In order to show the equivalence of (v) with the other condition
consider the surjectiveA-algebra homomorphismϕ :B → A, whereB = A[X1, . . . ,Xn]
andϕ is defined byϕ(Xi) = xi for i = 1, . . . , n. Every A-module becomes in a natur
way aB-module and as such it is artinian if and only if it is artinian as anA-module.
FurthermoreX1, . . . ,Xn is aB-regular sequence. Hence ifb = (X1, . . . ,Xn), then

ExtiB(B/b,M) ∼= Hi (X1, . . . ,Xn;M) ∼= Hi (x1, . . . , xn;M)
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for all i. This shows that (v) is equivalent to (i). Note that Hi
b
(M) ∼= Hi

a(M) for all i since
ϕ mapsb ontoa. �
Corollary 5.6. Let (A,m) be a local ring. The following conditions are equivalent for
A-moduleM :

(i) Hi
m(M) is artinian for all i.

(ii) The Bass numbersµi(m,M) with respect to the maximal ideal are finite.
(iii) The Koszul cohomology modulesHi (x1, . . . , xr ;M), i = 0, . . . , r , wherex1, . . . , xr

are generators ofm, are finite-dimensional vectorspaces over the residue fieldA/m.

Remark 5.7. Belshoff and Wickham showed in [1], that ifA is a complete local ring
that all Bass numbersµi(m,M) are finite for a moduleM if and only if M satisfies loca
duality.

6. Filter-regular sequences

We first give an appropriate extension of the notion of a sequence filter-regula
moduleM to the case whenM is not necessarily finitely generated. For filter-regularity
finite modules, see [20,21].

Definition 6.1. The elementx is filter-regular onM , if 0 :M x has finite length. The se
quencex1, . . . , xn is filter-regular onM , if xj is filter-regular onM/(x1, . . . , xj−1)M , for
j = 1, . . . , n.

Remark 6.2. Since 0:M x = 0 :ΓxA(M) x, the elementx is filter-regular onM if and only
if ΓxA(M) is artinian and cofinite with respect to the idealxA, by 4.1.

We first state some elementary properties of filter-regular sequences.

Proposition 6.3. Letx1, . . . , xn be a sequence of elements inA andM anA-module.

(a) Let1� s � n. The sequencex1, . . . , xn is filter-regular onM if and only ifx1, . . . , xs−1
is filter-regular onM andxs, . . . , xn is filter-regular onM/(x1, . . . , xs−1)M .

(b) The sequencex1, . . . , xn is filter-regular onM if and only if it is filter-regular on
M/Γx1A(M). More generally, letN be an artinian andx1A-cofinite submodule ofM .
Then the sequencex1, . . . , xn is filter-regular onM , if and only if it is filter-regular on
M/N .

Proof. Put Ms = M/(x1, . . . , xs−1)M . Then (a) follows directly from the definition o
filter-regularity, if we note thatMs/(xs, . . . , xj−1)Ms

∼= M/(x1, . . . , xj−1)M for s �
j � n.

In order to prove the last assertion in (b), we use the exact sequence

0→ 0 :N x1 → 0 :M x1 → 0 :M/N x1 → N/x1N,
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whose endterms have finite length, becauseN is assumed to be artinian and cofinite w
respect tox1A. Consequently 0:M x1 has finite length if and only if 0:M/N x1 has finite
length. �
Theorem 6.4. If the sequencex1, . . . , xn in the ideala is filter-regular onM , thenHi

a(M)

is ana-cofinite artinian module fori < n.
If in addition a is generated byx1, . . . , xn, then the moduleHn

a(M), too, isa-cofinite
precisely whenM/aM is finite.

Proof. Since Hi
a(0 :M x1) = 0 for all i > 0, we can put together the two long exa

sequences we get when we apply local cohomology to the two short exact seq
0 → 0 :M x1 → M → x1M → 0 and 0→ x1M → M → M/x1M → 0. Thus we get the
long exact sequence

0→ Γa(0 :M x1) → Γa(M)
x1−→ Γa(M) → Γa(M/x1M)

→ H1
a(M)

x1−→ H1
a(M) → H1

a(M/x1M)

→ H2
a(M)

x1−→ H2
a(M) → H2

a(M/x1M) → ·· · .
Hence 0:Γa(M) x1 has finite length, and thereforeΓa(M) is artinian anda-cofinite,
by 4.1. Nowx2, . . . , xn is filter-regular onM/x1M . We use induction and we suppose t
Hi

a(M/x1M) is ana-cofinite artinian module fori < n − 1. From the long exact sequen
above, we get that 0:Hi

a(M) x1 is a-cofinite artinian fori < n. Hence again 4.1 implie

that Hi
a(M) is a-cofinite artinian fori < n. Consider next the case whena is generated by

x1, . . . , xn. Use induction, our criterion in 3.4 and the exact sequence

0→ Hn−1
a (M)/x1 Hn−1

a (M) → Hn−1
a (M/x1M) → Hn

a(M)
x1−→ Hn

a(M) → 0.

Observe thatM/aM ∼= M1/aM1, whereM1 = M/x1M . �
Corollary 6.5. LetM be an finite module. If the ideala is generated by a sequence, wh
is filter-regular onM , thenHi

a(M) is a-cofinite for alli.

7. When is the category of a-cofinite modules abelian?

Let f : M → N be a homomorphism betweena-cofinite modules. If one of the module
Kerf , Cokerf and Imf is a-cofinite, then all of them area-cofinite. If this is the case, w
say thatf is a-good. In order to decide whetherf is a-good, it is often useful to reduc
to the case thata contains anA-regular element. This is done by takingn so large that
Γa(A) = 0 :A an. If ā is the image ofa in Ā = A/0 :A an, then depth̄a Ā > 0. Replacef
by the induced homomorphism̄f between thēa-cofiniteĀ-modulesM̄ = M/0 :M an and
N̄ = N/0 :N an. Thenf is a-good if and only iff̄ is ā-good. There is namely an exa
sequence

0→ Kerf0 → Kerf → Ker f̄ → Cokerf0 → Cokerf → Cokerf̄ → 0,



664 L. Melkersson / Journal of Algebra 285 (2005) 649–668

ce

t

r
act

t

wheref0 : 0 :M an → 0 :N an is obtained fromf by restriction. We get this exact sequen
by applying the snake lemma to the commutative diagram

0 0 :M an

f0

M

f

M/0 :M an

f̄

0

0 0 :N an N N/0 :N an 0.

Proposition 7.1. Let M bea-cofinite,a = b + xA andb = (x1, . . . , xn). Then for eachi,
the moduleHi (x1, . . . , xn;M) is a-cofinite.

Proof. In the exact sequence

Hi (x1, . . . , xn, x;M) → Hi (x1, . . . , xn;M)
x−→ Hi (x1, . . . , xn;M)

→ Hi+1(x1, . . . , xn, x;M)

the outer terms are finite, sinceM is a-cofinite. Hence 0:L x andL/xL are finite, where
L = Hi(x1, . . . , xn;M). It follows from our criterion, 3.4 thatL is a-cofinite. �
Lemma 7.2. Let M be a-cofinite,x ∈ a, b = (x1, . . . , xn), c = b + xA, and suppose tha
dimA/c = 1. If Hi (x1, . . . , xn, x;M) is a-cofinite for all i, thenHi (x1, . . . , xn;M) is a-
cofinite for alli.

Proof. Let ā be the image ofa in Ā = A/c. As a module overĀ, Hi (x1, . . . , xn, x;M)

is cofinite with respect tōa. Since submodules and quotients ofā-cofinite modules ove
the one-dimensional rinḡA are againā-cofinite by 4.5, we can use the same long ex
sequence as in the proof of 7.1. Thus the modules 0:L x andL/xL area-cofinite, where
L = Hi (x1, . . . , xr ;M). Hence again by our criterion 3.4,L is a-cofinite. �
Lemma 7.3. Let M bea-cofinite and suppose thatb = (x1, . . . , xn) is an ideal such tha
dimA/(b + xA) � 1 for somex ∈ a. ThenHi (x1, . . . , xn;M) is a-cofinite for alli.

Proof. Take elementsxn+1, . . . , xm in a, such thatxn+1 = x anda + b = (x1, . . . , xm).
Now use 7.2 repeatedly.�
Theorem 7.4. LetA be a noetherian ring withdimA � 2 and leta be an ideal ofA.

If f : M → N is a homomorphism between thea-cofinite modulesM and N , then
Kerf , Cokerf and Imf area-cofinite, i.e., in our terminologyf is a-good.

More generally all (co)homology modules of a(co)chain complex consisting ofa-
cofinite modules area-cofinite.

In particular if M is a-cofinite, thenHi (x1, . . . , xr ;M) is a-cofinite for all i and any
elementsx1, . . . , xr of A.
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Proof. The other statements follows from the first one. As we remarked before, we
assume, that there is anA-regular elementx ∈ a. The modulesM/xM and 0:N x area-
cofinite by 7.3. Hence they are by 2.6a/(x)-cofinite modules over the rinḡA = A/(x),
which has dimension at most one. LetI = Imf . Now I/xI is a homomorphic image o
M/xM and 0:I x is a submodule of 0:N x. These modules are thereforea-cofinite by 4.5
and 2.6. Hence by the criterion in 3.4,I is a-cofinite. Then also Kerf and Cokerf must
bea-cofinite. �
Proposition 7.5. For an ideala of a noetherian ringA, let I0(a), respectivelyI1(a), be the
set of idealsb of A, such that0 :M b, respectivelyM/bM , is a-cofinite for everya-cofinite
moduleM . The setsIi (a), i = 0,1, have the properties:

(a) (0) ∈ Ii (a) and (1) ∈ Ii (a) and more generally(e) ∈ Ii (a) for every idempotent ele
mente ∈ A.

(b) If b, c ∈ Ii (a), thenbc ∈ Ii (a) andb + c ∈ Ii (a).
(c) If c ⊃ b, b ∈ Ii (a) and c̄ ∈ Ii (ā), whereā and c̄ are the images of the idealsa andb in

the ringA/b, thenc ∈ Ii (a).
(d) If dimA/b � 2, thenb ∈ Ii (a).

Proof. (a) If e2 = e, thenf = e1M is an idempotent endomorphism onM . Hence Kerf =
0 :M e and Imf = eM are direct summands ofM .

(b) In order to prove the assertions concerningI0(a) use the equalities 0:M bc/0 :M b =
0 :L c, whereL = M/0 :M b and 0:M (b + c) = 0 :N c, whereN = 0 :M b. In order to prove
the assertions concerningI1(a), use that an ideald belongs toI1(a) if and only if dM is
a-cofinite and note thatM/(b + c)M ∼= P/cP , whereP = M/bM .

(c) Let L = 0 :M b andN = M/bM , which areā-cofinite modules over̄A = A/b. Use
that 0:M c = 0 :L c̄ andcM/bM = c̄N .

(d) Since there are (not necessarily distinct) prime idealsp1, . . . ,pr , such thatb ⊃
p1 · · ·pr and dimA/pj � 2 for j = 1, . . . , r , we are by (b), (c), and 7.4, reduced to t
caseb = p, wherep is a prime ideal with dimA/p � 2. If a ⊂ p, then 0:M p andM/pM

are finite modules. Ifa � p, take an elementx ∈ a \ p. Then dimA/(p + xA) � 1, so we
may apply 7.3. �
Proposition 7.6. Letf : M → N be a homomorphism betweena-cofinite modules. If ther
is an idealb, such thatdimA/b � 2 andbKerf = 0 or bCokerf = 0, thenf is a-good.

Proof. Let K = Kerf andC = Cokerf . If bK = 0, we get the exact sequence 0→ K →
0 :M b → 0 :N b and if bC = 0, we get the exact sequenceM/bM → N/bN → C → 0.
Our assertion therefore follows from 7.5 and 7.4�
Corollary 7.7. Let X• : 0 → X0 ∂0−→ X1 ∂1−→ X2 → ·· · be a cochain complex consisting
modules cofinite with respect toa. Suppose there is an idealb ⊂ A, withdimA/b � 2, such
that bHi (X•) = 0 for i = 0, . . . , n. ThenHi (X•) is a-cofinite for i = 0, . . . , n. A similar
statement holds for the homology of chain complexes.
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Proof. Consider the exact sequences

0→ Hi (X•) → Coker∂i−1 → Xi+1 → Coker∂i → 0

and use induction. �
We are now able to strengthen 7.3.

Corollary 7.8. Let M be a-cofinite, and suppose that the idealb = (x1, . . . , xr ) satisfies
dimA/b � 2. Then the Koszul cohomology modulesHi (x1, . . . , xr ;M), i = 0, . . . , r , are
a-cofinite.

In the proof of the next theorem, we need the lemma below, which for completene
prove.

Lemma 7.9. If Γa(M) = 0, thenHomA(A/a,H1
a(M)) ∼= Ext1A(A/a,M).

Proof. Let E be an injective hull ofM and put N = E/M . Since Γa(M) = 0,
also Γa(E) = 0 and HomA(A/a,E) = 0. Therefore from the exact sequence 0→
M → E → N → 0, we get the isomorphismsΓa(N) ∼= H1

a(M) and HomA(A/a,N) ∼=
Ext1A(A/a,M). �
Theorem 7.10. Let A be a noetherian ring withdimA � 2 and leta ⊂ A be an ideal and
M anA-module. The following conditions are equivalent:

(i) Hi
a(M) is a-cofinite for alli.

(ii) ExtiA(A/a,M) is finite for all i.
(iii) Ext i

A(A/a,M) is finite for i � 2.

Proof. We need by 3.10 just show that (i) follows from (iii). Suppose thatM satisfies (iii).
If a is nilpotent, thena-cofiniteness is the same as finiteness. Ifa is nonnilpotent, taken
such that 0:A an = Γa(A). There isx ∈ a which is regular onĀ = A/Γa(A), and therefore
dimĀ/xĀ � 1. The moduleM̄ = M/0 :M an has a natural structure as a module overĀ.
Since 0:M an is finite,M̄ must also satisfy (iii). The exact sequence 0→ 0 :M an → M →
M̄ → 0 yields the exact sequence 0→ 0 :M an → Γa(M) → Γa(M̄) → 0 and isomor-
phismsHi

a(M) ∼= Hi
a(M̄) for i � 1. Thus replacingM by M̄ , we may assume thatM is a

module overĀ. Let L = Γa(N), whereN = 0 :M x ⊂ M . Since 0:L a = 0 :M a, which is
finite, 4.5 implies thatL is a-cofinite and therefore satisfies (ii). From the exact seque
0 → N → M → xM → 0, we get that Ext1A(A/a,N) is finite. Hence Ext1A(A/a,N/L)

is finite. By 7.9 Ext1A(A/a,N/L) ∼= HomA(A/a,H1
a(N/L)). Also H1

a(N) ∼= H1
a(N/L),

so HomA(A/a,H1
a(N)) is finite. Hence by 4.5 the module H1

a(N) is a-cofinite. Since
Hi

a(N) = 0 for i > 1, 3.10 implies thatN = 0 :M x satisfies (ii). From the exactness
0 → N → M → xM → 0, we therefore get that Ext1

A(A/a, xM) and Ext2A(A/a, xM)

are finite. Hence from the exactness of 0→ xM → M → M/xM → 0 we get that
HomA(A/a,P ) and Ext1 (A/a,P ), whereP = M/xM , are finite modules. An argume
A



L. Melkersson / Journal of Algebra 285 (2005) 649–668 667

l

is

t

,

d

-

similar to that one, we used to show that Hi
a(N) is a-cofinite for alli, shows that Hia(P ) is

a-cofinite for alli.
Consider the homomorphismf = x1M , so N = Kerf and P = Cokerf . We have

shown that Hia(Kerf ) and Hi
a(Cokerf ) are cofinite with respect toa for eachi. By 4.5

the class ofa-cofinite modules, which are modules overĀ annihilated byx constitute a
Serre subcategory of the category ofA-modules. Hence it follows from 3.2 that for alli

the modules KerHia(f ) and CokerHia(f ) belong to the same category. Sincex ∈ a our
criterion 3.4 implies that Hia(M) is a-cofinite for alli. �
Corollary 7.11. If M is a finite A-module or more generallyb-cofinite for some idea
b ⊂ a, thenHi

a(M) is a-cofinite for alli.

Proof. If M is b-cofinite anda ⊃ b, then 3.10 and [4, Proposition 1] implies that (ii)
satisfied byM . �
Proposition 7.12. Let A be a complete local ring anda ⊂ A an ideal, such tha
dimA/a = 1.

Consider the conditions:

(∗) For everya-cofiniteA-moduleL and each prime idealp minimal overa the modules
Γp(L) andH1

p(L) arep-cofinite.
(∗∗) For any homomorphismf : M → N betweena-cofinite modulesKerf , Cokerf and

Imf area-cofinite.

Then(∗) ⇒ (∗).

Proof. Assume that (∗) holds. Let K = Kerf , I = Imf and C = Cokerf , where
f :M → N is a homomorphism between thea-cofinite modulesM and N . We show
that Hi

p(K) is p-cofinite for all i and every prime idealp minimal overa. Then we get

from 3.10 that ExtiA(A/p,K) is a finiteA-module for alli and therefore we get from [4
Corollary 1] thatK is a-cofinite and then so areI andC. Since by our assumption (∗),
the modulesΓp(M) andΓp(N) arep-cofinite,Γp(K) = KerΓp(f ) is p-cofinite, sincep is
a one-dimensional prime in a complete local ring and therefore the category ofp-cofinite
modules is an abelian subcategory of the category ofA-modules as shown by Delfino an
Marley in [4]. We have the exact sequence

0→ Γp(K) → Γp(M) → Γp(I )
δ−→ H1

p(K) → H1
p(M) → H1

p(I ) → 0.

SinceΓp(K) andΓp(M) arep-cofinite, Kerδ is p-cofinite, again by [4]. Also Cokerδ is
p-cofinite, since it is isomorphic to a submodule of H1

p(M), which isp-cofinite by assump
tion and artinian by 5.3. Hence by 3.3 the cokernel of the map HomA(A/p,Γp(I )) →
HomA(A/p,H1

p(K)) is finite. But HomA(A/p,Γp(I )) ∼= 0 :I p ⊂ 0 :N p, which is finite.
Hence HomA(A/p,H1

p(K)) is finite. But SuppA H1
p(K) ⊂ V(m). Consequently H1p(K) is

artinian andp-cofinite. Note that Hip(K) = 0 for all i > 1, sinceK has support in the
one-dimensional set V(a). �
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