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Linear regression models are studied when variables of interest are observed in
the presence of measurement error. Techniques involving Fourier transforms that
lead to simple differential equations with unique solutions are used in the context
of multiple regression. Necessary and sufficient conditions are proven for a random
vector of measurement error of the independent variable to be multivariate normal.
One characterization involves the Fisher score of the observed vector. A second
characterization involves the Hessian matrix of the observed density. � 1999
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1. INTRODUCTION

The standard linear regression model with one independent random
variable is defined by

yi=:+;x i+= i , i=1, 2, ..., n (1.1)

where = i are independent, and N(0, _2
= ). In practice, the measured xi

contain errors. The traditional additive model has wi consisting of two
independent components: xi , the variable of interest, and ui , the measurement
error of xi , i.e., W=X+U.

Measurement error in linear regression has a long history that includes
Adcock (1877, 1878), Lindley (1947), Kendall (1951, 1952), and Rao
(1947, 1975). Cochran (1968), Fuller (1987), and Carroll, Ruppert, and
Stefanski (1995) provide a review of measurement error models.

The work of Lindley and Rao deals with the characterization of the
error-free variable X and the measurement, error U. Their techniques
involve the use of Fourier transforms that lead to unique solutions of
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differential equations involving the characteristic functions of X and U.
Kendall also used similar techniques that are summarized in Kendall,
Stuart, and Ord (1979). Kagan (1983) utilizes similar techniques to prove
necessary and sufficient conditions for the characterization of both X and
U. This paper does not follow the measurement-error paradigm, but a
Bayesian one. In the Kagan paper, X represents a location parameter and
U represents some type of independent error. The equation for the charac-
teristic functions obtained by Kagan are the same as equations obtained by
Laha and Lukacs (1960) and Morris (1982).

Further work in understanding the effect of measurement error as it
relates to conditional expectation and variance leads to an extension of an
observation made by Stefanski and Carroll (1990). They state that if fW

denotes the density of W and U is normally distributed, then

E[U | (W=w)]=&_2
U

f $W (w)
fW (w)

. (1.2)

A substantial amount of literature exists in constructing estimates of the
Fisher score, i.e., f $W (x)� fW (w). This includes Stefanski and Carroll (1985,
1991), Whittemore (1989), Rosner, Willett, and Spiegelman (1989), Carroll
and Stefanski (1990), and Gleser (1990).

This paper shows that if Eq. (1.2) holds for some _, then the measure-
ment error is characterized as normal. It can be shown that the error can
be characterized as normal if Eq. (1.2) holds for all _>0 and w # R.
Stefanski, in personal correspondence with the author, showed this by first
writing W=X+_U, where U has mean 0 and variance 1. Utilizing the
assumption that X and U are independent, the basic identity can be written
in terms of the densities of X and U. The resulting expression depends on
w and _. After some manipulation, the limit of w to infinity and _ to
infinity can be taken in such a way that the ratio w�_ approaches t. Then,
by dominated convergence type arguments, the differential equation

g$(t)=&tg(t)

is obtained where g is the density function of U. The standard normal
density function is the unique solution to this differential equation.

The relaxation of the condition that Eq. (1.2) must hold for all _ allows
investigators to use the results of previous work in estimating f (1)

W �fW to
characterize the distribution of the measurement error. Thus when Eq. (1.2)
is seen to hold, the measurement error distribution is characterized as
normal. The result also provides insight into the nature of the conditional
expectation in the multivariate setting. In fact, Section 2 proves a gene-
ralized version of Eq. (1.2), i.e., if X is a random vector with U the
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associated vector of independent measurement errors, then under general
conditions

E[U | (W=w)]=&7
{fW (w)
fW (w)

iff UtMVN(0, 7), (1.3)

where {fW (w) denotes the gradient vector of fW evaluated at w. This proof
utilizes the techniques of Lindley, Rao, and Kagan, which apply Fourier
transforms to obtain a differential equation involving the characteristic
function of U. It is then shown that the characteristic function of a
multivariate normal distribution is the unique solution of the differential
equation.

Similar techniques used to prove the previous theorem are adapted to
show that the second moment matrix also characterizes the measurement
error as multivariate normal. Spiegelman (1986) examined conditional
variance when variables are measured with error. Under general conditions,
Section 3 proves the following:

E[UU$ | (W=w)]=7
HfW

(w)

fW (w)
7+7, iff UtMVN(0, 7),

where HfW
(w) denotes the Hessian matrix of fW evaluated at w.

2. THE FIRST MOMENT VECTOR

Let fW denote the density of W and f $W denote its derivative. Assume U
is independent of X and U has a second moment. Stefanski and Carroll
(1990) state

E[X | (W=w)]=w+_2
U

f $W (w)
fW (w)

+O(_4
U).

They also state that if UtN(0, _2
U), then O(_4

U)=0.
Under reasonable assumptions it will be shown that

E[X | (W=w)]=w+_2
U

f $W (w)
fW (w)

is a necessary and sufficient condition for UtN(0, _2
U). In fact, the result

will be generalized to n-dimensional random vectors X and U. The following
notation is used throughout this section.
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Let X represent an n-dimensional absolutely continuous random vector
with density function fX . Let U represent independent, absolutely con-
tinuous measurement error for X with density function g. The density of W
is again denoted as fW . Since X and U are independent, W=X+U has
density

fW (w)=|
�

&�
g(w&x) fX (x) dx.

The gradient vector of a density function will be denoted with { and H
will denote its Hessian matrix. Thus

[HfW
(w)] j, k=

�2fW (w)
�wk �wj

.

Lastly, let w[&k] represent the vector w omitting the k th component and
let w[&j, &k] represent the vector w omitting the j and k components.

The following lemmas are necessary to prove the theorem where it is
assumed that X and U are jointly absolutely continuous. The first two
proofs are left to the reader.

Lemma 1. Let X be an n-dimensional random vector with measurement
error U. Assume X and U are independent. Let f * be a matrix-valued
function such that E[ f *(U)] exists. Then for w in the support of fW ,

E[ f *(U) | (W=w)]=
�Rn f *(w&x) g(w&x) fX (x) dx

fW (w)
.

Lemma 2. Assume 7 is positive definite. Let X be a random variable with
measurement error UtMVN(0, 7). Assume X and U are independent. Then

{fW (w) exists and {fW (w)=�Rn {g(w&x) fX (x) dx,

HfW
(w) exists and HfW

(w)=�Rn Hg(w&x) fX (x) dx,

|
Rn }�fW (w)

�wj } dw<�

for almost all w[&j] # Rn&1, and

|
Rn }�

2fW (w)
�wkwj } dw<�

for almost all w[&j, &k] # Rn&2.

The proof follows from the fact that fW is defined by the convolution
involving a normal density. The following lemmas are necessary to show
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that integration by parts can be done in the context of convolution. The
proofs can be found in the appendix.

Lemma 3. If h(w) # L1(Rn) and limwk � \� h(w) exists, taking the limit
in the kth component, then limwk � \� h(w)=0 except on a set of (n&1)
dimensional measure 0 in w[&k] space.

Lemma 4. If

�2fW (w)
�wk �wj

# L1(Rn) for j, k=1, 2, ..., n,

for almost all w[&j, &k] # Rn&2, and

�fW (w)
�wj

# L1(Rn) for j=1, 2, ..., n,

for almost all w[&j] # Rn&1, then

|
Rn

{fW (w) exp(i t$w) dw=&i t |
Rn

fW (w) exp(i t$w) dw (2.4)

and

|
Rn

HfW
(w) exp(i t$w) dw=&tt$ |

Rn
fW (w) exp(i t$w) dw. (2.5)

With these facts, we have the following theorem containing necessary
and sufficient conditions for U to be normal.

Theorem 1. Assume 7 positive definite. UtMVN(0, 7) iff

E[U | (W=w)]=&7
{fW (w)
fW (w)

for w in the support of fW ,

�fW (w)
�wk

# L1(Rn) for k=1, 2, ..., n,

for almost all w[&k] # Rn&1, and U has a finite first-moment vector.
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Proof. Assume U is MVN(0, 7). Then U has a first-moment vector,
indeed E(U)=0. Letting f *(U)=U in Lemma 1 gives

E[U | (W=w)]=
�Rn (w&x) g(w&x) fX (x) dx

fW (w)
.

Since g is the density of a multivariate normal distribution,

{g(w&x)=&7&1(w&x) g(w&x).

This implies

E[(U) | (W=w)]=&
�Rn 7 {g(w&x) fX (x) dx

fW (w)
.

By Lemma 2,

{fW (w)=|
Rn

{g(w&x) fX (x) dx.

Therefore,

E[U | (W=w)]=&7
{fW (w)
fW (w)

.

In Lemma 2 it was shown that

|
Rn } �fW (w)

�wk } dw<�

for almost all w[&k] # Rn&1, and the necessity follows.
Now assume

E[U | (W=w)]=&7
{fW (w)
fW (w)

,

(2.6)

|
R } �fW (w)

�wk } dwk<�

for almost all w[&k] # Rn&1, and U has a finite first-moment vector.
Multiplying each side of Eq. (2.6) by exp(i t$w) generates the Fourier

transform, and taking the expectation yields

E[E[U | (W=w)] exp(i t$w)]=E _&7
{fW (w)
fW (w)

exp(i t$w)& . (2.7)
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Since X and U are independent and U has a finite first moment,

E[E[U | (W=w)] exp(i t$w)]=E[U exp(i t$w)]

=&i {,U (t) ,X (t).

The independence of X and U also gives ,W (t)=,U (t) ,W (t). Since
characteristic functions are equal to 1 at 0 and continuous, there exists
$1>0 such that ,U (t){0 for &t&<$1 (& }& denotes the Euclidean norm).
Thus for &t&<$1 ,

E[E[U | (W=w)] exp(i t$w)]=&
{,U (t)
,U (t)

,W (t). (2.8)

Examining the right-hand side of Eq. (2.7) gives

E \&7
{fW (w)
fW (w)

exp(i t$w)+=&|
Rn

7 {fW (w) exp(i t$w) dw.

Lemma 4 showed that integration by parts yields

&|
Rn

7 {fW (w) exp(i t$w) dw=i7t |
Rn

fW (w) exp(i t$w) dw

=i7t,W (t). (2.9)

Equating the equivalent expressions of both sides of Eq. (2.7) given in
(2.8) and (2.9) yields

&
{,U (t)
,U (t)

,W (t)=7t,W (t).

Take $2<$1 so that for &t&<$2

{ log(,U (t))=&7t.

This implies that

log(,U (t))=&
t$7t

2
+k1 , (2.10)
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where k1 is a constant of integration. Since log(,U (0))=0, k1=0. Thus
Eq. (2.10) gives

,U (t)=exp \&
t$7t

2 + . (2.11)

Thus for t such that &t&<$2 , the characteristic function of U is the charac-
teristic function of a multivariate normal distribution with mean 0 and
variance covariance matrix 7. This implies that UtMVN(0, 7). Q.E.D

Proving the normality of the error involved a simple differential equation
of the characteristic function of the measurement error. Since this equation
has a unique solution, the normality of the measurement error is proved.

This result can now be utilized to estimate f $W �fW . In the one-dimen-
sional case, density smoothing methods for W are used to estimate f $W � fW

(Sepanski, Carroll, and Knickerbocker, 1994; Stefanski and Carroll, 1990,
1991). Estimation of E[U | (W=w)] in the multivariate setting has
received little attention in the literature.

3. THE SECOND MOMENT MATRIX

From a mathematical standpoint, it is interesting that the conditional
expectation of the second moment matrix of U characterizes normality as
well. The proof of the following theorem requires a different approach than
the one utilized for Theorem 1. In this proof, a second-order differential
equation involving the characteristic function of the measurement error is
obtained. This differential equation has a unique solution because it is
linear, ,U (0)=1 and {,U (0)=0. With these facts and the condition that

H,(t)=,(t)(7tt$7&7),

where H,(t) is the Hessian matrix of ,(t) and 7 is a matrix of constants,
using standard differential equations techniques (for a reference see Ford,
1955) it is easily shown that ,(t) is unique.

Theorem 2. Assume 7 is positive definite. UtMVN(0, 7), iff

E[UU$ | (W=w)]=7
HfW

(w)

fW (w)
7+7 (3.12)

for w in the support of fW ,

�fW (w)
�wj

# L1(Rn) \j # 1, 2, ..., n,
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and almost all w[&j] # Rn&1,

�2fW (w)
�wj �wk

# L1(Rn) \j, k # 1, 2, ..., n,

and almost all w[&j, &k] # Rn&2, and U has a finite second moment matrix.

Proof. Assume UtMVN(0, 7). Then U has a second moment matrix.
In fact, E(UU$)=7. Lemma 1 ( f *(U)=UU$), implies

E[UU$ | (W=w)]=
�Rn [(w&x)(w&x)$] g(w&x) fX(x) dx

fW (w)
. (3.13)

Since g is the density of a multivariate normal distribution,

{g(w&x)=&g(w&x)[7&1(w&x)].

The Hessian of g is Hg={({g)$, which implies

Hg(w&x)=&g(w&x) 7&1+ g(w&x)[7&1(w&x)(w&x)$ 7&1].

Thus

7Hg(w&x) 7=&g(w&x) 7+ g(w&x)[(w&x)(w&x)$].

Utilizing this result in Eq. (3.13) gives

E[UU$ | (W=w)]

=
1

fW (w) |Rn

[7Hg(w&x) 7+ g(w&x) 7] fX (x) dx. (3.14)

=
1

fW (w)
7 _|Rn

Hg(w&x) fX (x) dx& 7+7. (3.15)

By Lemma 2,

HfW
(w)=|

Rn
Hg(w&x) fX (x) dx.

So Eq. (3.15) may be rewritten as

E[UU$ | (W=w)]=
7HfW

(w) 7

fW (w)
+7,
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which is Eq. (3.12) in the statement of the theorem. Lemma 2 showed that

�2fW (w)
�wj �wk

# L1(Rn) \r, s # 1, 2, ..., n.

Conversely, assume U is such that for w on the support of fW ,

E[UU$ | (W=w)]=7
HfW

(w)

fW (w)
7+7, (3.16)

and assume the regularity conditions listed in the statement of the theorem.
Taking the Fourier transforms as in Theorem 1 of both sides of Eq. (3.16)
yields

E[E[UU$ | (W=w)] exp(i t$w)]=E _\7
HfW

(w)

fW (w)
7+7+ exp(i t$w)& .

(3.17)

Since X and U are independent and U has a finite second moment matrix,

E[E[UU$ | (W=w)] exp(i t$w)]=E[UU$ exp(i t$w)]

= &H,U
(t) ,X (t).

The independence of X and U also gives ,W (t)=,U (t),X (t). Since
characteristic functions are equal to 1 at 0 and continuous, there exists
$1>0 such that ,U (t){0 for &t&<$1 . Thus for &t&<$1 ,

E[E[UU$ | (W=w)] exp(i t$w)]=&
H,U

(t)

,U (t)
,W (t). (3.18)

Examining the right-hand side of Eq. (3.17) gives

E _\7
HfW

(w)

fW (w)
7+7+ exp(i t$w)&

=7 _|Rn

HfW
(w)

fW (w)
exp(i t$w) fW (w) dw& 7+7 |

Rn
exp(i t$w) fW (w) dw

=7 _|Rn
HfW

(w) exp(i t$w) dw& 7+7,W (t).
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Lemma 4 showed that performing integration by parts twice yields

|
Rn

HfW
(w) exp(i t$w) dw=&tt$ |

Rn
fW (w) exp(i t$w) dw

=&tt$,W (t). (3.19)

Equating the equivalent expressions of both sides of Eq. (3.17) given in
(3.18) and (3.19) and dividing both sides by ,W (t){0 yields

H,U
(t)

,U (t)
=7tt$7&7. (3.20)

Note that

,U (t)=exp \&
t$7t

2 + (3.21)

is a solution to the differential equation given in Eq. (3.20). Since ,U (t) is
a characteristic function,

,U (0)=1 and {,U (0)=0,

which implies that the expression for ,U (t) given in Eq. (3.21) is unique.
Thus for t such that &t&<$ the characteristic function of U is the charac-
teristic function of a multivariate normal distribution with mean 0 and
variance covariance matrix 7. Therefore, UtMVN(0, 7). Q.E.D

4. DISCUSSION

Using techniques requiring the Fourier transform and knowledge of
differential equations has defined the necessary and sufficient conditions for
the measurement error to be characterized as normal. Initially, the author
wished to show that

E[X | (W=w)]=w+_2 f $W (w)
fW (w)

characterized the distribution of the measurement error. This is indeed true,
but as Section 2 demonstrated the result holds in the multivariate setting as
well. Further research may lead to using this result as a diagnostic tool in
determining when an assumption of the normality of the measurement
error is reasonable in a multivariate setting.
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The techniques used in proving the first theorem were also applied to
investigating the second moment matrix of the measurement error. Thus
knowledge of the covariance structure conditioned on the observed vector
can also characterize the distribution of the measurement error.

APPENDIX

Proof of Lemma 3. By assumption,

lim
wk � &�

h(w)

exists. Let m be an integer and M a negative-valued constant. Define the
set

Am={w[&k] : |h(w)|>
1
m

and wk<M= .

Since h(w) # L1(Rn), there exists positive constant c so that invoking
Tonnelli's Theorem to permute the order of integration yields

c=|
Rn

|h(w)| dw�|
M

&�
|

Am

|h(w)| dw. (5.22)

Since |h(w)|>1�m on Am , Eq. (5.22) implies

c�|
M

&�

1
m

&(Am) dwk , (5.23)

where & denotes (n&1)-dimensional Lebesgue measure. As the integrand is
not a function of wk , &(Am)=0 in order that the integral in Eq. (5.23) be
finite. This implies that

& \.
m

Am+=0.

Define

Bl={w[&k] : lim
m � &�

|h(w)|<
1
l= .

Note that

Bl /.
m

Am \l,
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and so

&(Bl)=0 \l,

implying &(�l Bl)=0. Therefore, limwk � &� h(w)=0 except on a set of
(n&1)-dimensional Lebesgue measure 0 in w[&k] space.

Using a similar argument, limwk � � h(w)=0 except on a set of measure 0.
Q.E.D

Proof of Lemma 4. To prove Eq. (2.4), it suffices to show that for
1� j�n,

|
Rn

�fW (w)
�wj

exp(i t$w) dw=&itj |
Rn

fW (w) exp(i t$w) dw.

Since

�fW (w)
�wj

# L1(Rn)

by assumption, Fubini's Theorem can be invoked to permute the order of
integration. This yields

|
Rn

�fW (w)
�wj

exp(i t$w) dw=|
Rn&1 |

R

�fW (w)
�wj

exp(i t$w) dwj dw[&j] .

Performing integration by parts on the inner integral yields

|
b

a

�fW (w)
�wj

exp(i t$w) dwj= fW (w) exp(i t$w)| b
a&itj |

b

a
fW (w) exp(i t$w) dw j .

(5.24)

Now hold b fixed and take lima � &� of both sides of Eq. (5.24). Since
both

�fW (w)
�wj

and fW (w)

are elements of L1(Rn), the

lim
a � &�

fW (w) exp(i t$w)| b
wj=a (5.25)

exists and is less than infinity.
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Thus Lemma 3 can be invoked to conclude

lim
wj � &�

f (w)=0.

Similarly, hold a fixed and take the limb � � of both sides of Eq. (5.24).
An identical argument using Lemma 3 can be invoked to show

lim
wj � �

f (w)=0.

Thus

f (w) exp(i t$w)| �
&�=0

and

|
Rn

�fW (w)
�wj

exp(i t$w) dw=0&itk |
Rn

fW (w) exp(i t$w) dw. (5.26)

To prove Eq. (2.5), it suffices to show for j and k less than or equal n,

|
Rn

�2fW (w)
�wk �wj

exp(i t$w) dw=tk tj |
Rn

fW (w) exp(i t$w) dw.

Since

�2fW (w)
�wk �wj

# L1(Rn),

the order of integration may again he permuted by Fubini's Theorem, and
integration by parts of

|
R

�2fW (w)
�wk �wj

exp(i t$w) dwk

implies that

|
b

a

�2fW (w)
�wk �wj

exp(i t$w) dwk

=
�fW (w)

�wj
exp(i t$w)| b

a&itk |
b

a

�fW (w)
�wj

exp(i t$w) dwk . (5.27)
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Since both

�2fW (w)
�wk �wj

# L1(Rn) and
�fW (w)

�wj
# L1(Rn),

(5.28)
lim

a � &�
fW (w) exp(i t$w)| b

wk=a

exists and is less than infinity. Thus Lemma 3 can be invoked to conclude

lim
wk � &�

=
�f (w)
�wj

=0.

Similarly, hold a fixed and take the limb � � of both sides of Eq. (5.27).
An identical argument using Lemma 3 can be invoked to show

lim
wk � �

�f (w)
�wj

=0.

Thus

|
�

&�

�2fW (w)
�wk �w j

exp(i t$w) dw=&itk |
�

&�

�fW (w)
�wj

exp(i t$w) dw.

Using vector notation to summarize,

|
Rn

HfW
(w) exp(i t$w) dw=&i t |

Rn
{fW (w) exp(i t$w) dw.

Now it remains only to invoke the result of Eq. (5.26) to obtain

|
Rn

HfW
(w) exp(i t$w) dw=&tt$ |

Rn
fW (w) exp(i t$w) dw. Q.E.D.
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