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Chemical communication of handling stress in fish
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We investigated whether juveniles of the nocturnal fish jundiá (Rhamdia quelen) and the diurnal fish Nile
tilapia (Oreochromis niloticus) are able to chemically communicate stress to conspecifics. Groups of 8 fish were
reared in tanks under recirculated water (water exchanged among all the tanks) for each species. Fish were
handled in half of the tanks (stressor fish) and whole-body cortisol concentrations were compared among
handled fish, non-handled fish exposed to water from the handled fish, and non-handled control fish held
with no water communication. For each treatment cortisol concentrations were determined before exposure
to the stressor (basal levels) and after 1, 2, 4, 8, and 24 h. Basal levels of cortisol confirmed fish were
unstressed in the beginning of the experiment. Cortisol was increased in the stressor fish 1 h after handling.
Fish receiving water from the stressor fish increased cortisol levels later (2 h after the stressor fish were
handled). As the isolated control group maintained cortisol levels unchanged throughout the experiment, we
concluded that some chemical factor was released by the stressed fish in the water and thus stressed the
conspecifics. This pattern was similar for both unrelated species, thus suggesting that this communication
might have evolved earlier in fish and reinforcing the biological value of this kind of information.
ogy, Instituto de Biociências,
catu, SP, Brazil. Tel.: +55 14

the Elsevier OA license.
ished by Elsevier Inc. Open access under the Elsevier OA license.
Publ
1. Introduction

Stressors in fish can be categorized into four types [1]: a) physical
factors that directly touch the animal, such as bites [2], high or low
temperatures [3], and low oxygen [4]; b) factors released from a
stressor that does not involve directly touching the animal, such as
chemical or visual cues from a predator [5,6]; c) memory of a stressful
condition that is not currently present [1,7]; and d) cues released from
a conspecific that was previously stressed [8,9]. Accordingly, while in
most of these categories the initial stressor acts on the focus stressed
animal, category d is the only to involve social communication of
stressor. Here, an example of category d is provided by means of
chemical communication. Such putative chemical alarm cues are
thought to be produced and stored by epidermal ‘club’ cells and
released into the water as a result of skin injury (i.e., alarm substance)
[8,10–14] or by non-injured fish exposed to a stressful condition (i.e.,
disturbance substance) [9,15].
Disturbance substances would be expected to increase survival by
enhancing an individual's awareness of environmental disturbances;
however, few studies have documented this phenomenon. On the other
hand, physiological stress responses induced by alarm substances have
beenobserved in Europeanminnows (Phoxinus phoxinus) [10], pearl dace
(Semotilus margarita) [11], coho salmon (Oncorhynchus kisutch) [12], and
Nile tilapia (Oreochromis niloticus) [13]. Ide et al. [16] observed behavioral
reactions inmatrinxã (Brycon cephalus) exposed to alarm substances, but
failed to detect changes in plasma glucose or cortisol. These authors
attributed this failure to the intensity of the stimulus. Toa et al. [17]
reportedan increase in cortisol butnotplasmaglucoseorhepatic hsp70 in
rainbow trout (Oncorhynchusmykiss) exposed to a disturbance substance
(water) or alarm substance (skin extract) from stressed conspecifics;
substances fromnonstressedfish did not elicit any response. It is not clear
whether stress responses are due to alarm substances [8] or disturbance
cues [9]; however, these studies suggest disturbance cues more likely to
elicit a stress response, but still further research is needed on this issue.

In the present study, we describe a cortisol response to chemicals
released from stressed conspecifics in two fish species: jundiá
(Rhamdia quelen) and Nile tilapia (O. niloticus). Whereas jundiá is a
nocturnal silver catfish inwhich chemical communication is expected,
the Nile tilapia is a diurnal fish. The jundiá (Heptapteridae) and Nile
tilapia (Cichlidae) are phylogenetically distant, demonstrating the
importance of this adaptive response.
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2. Material and methods

2.1. Animals

We maintained a population of 120-day-old mixed-sex jundiá
fingerlings (R. quelen) in a 6200-L plastic tank (daily water exchange,
10%) before distributing into experimental tanks. Fish were main-
tained on a natural photoperiod and fed twice a day (10:00 and 16:00)
at 5% of body weight with commercial extruded food (42% crude
protein, 3400 kcal kg−1 digestible energy). Mixed-sex Nile tilapia
fingerlings (O. niloticus) were 90 days old and maintained under the
same conditions as jundiá.

2.2. Experimental design

Fish species were evaluated in separate experiments. The strategy,
which is schematized in Fig. 1, consisted of maintaining groups of
8 fish in 12 circular tanks (0.25 m3 each) under recirculated water
(water exchanged among all the tanks). Fish were handled in half of
the tanks (stressor fish). We then compared whole-body cortisol
concentrations among three treatments: handled fish, non-handled
fish exposed to water from the handled fish, and non-handled control
fish held separately in five non-recirculating tanks. Water supplied,
however, was the same for the whole system (experimental and
control tanks). Cortisol concentrations were determined before
exposure to the stressor (basal levels) and after 1, 2, 4, 8, and 24 h
(each group, n=8 each time point per treatment). As whole cortisol
was measured, all fish of a tank in a same time point were killed for
cortisol measurement. Thus, each trial measured cortisol in a time
point for each treatment, thus avoiding any repeated disturbance
effect. All experimental procedures were approved by the Institu-
tional Ethics Committee at the University of Passo Fundo, RS, Brazil.

2.3. Procedures

The handling stress consisted of chasing the fishwith a net for 60 s,
which has been shown to be an effective stressor for both Nile tilapia
[18] and jundiá [19]. To prevent management bias, views of adjacent
tanks were completely blocked by black covers on all tanks. Moreover,
water reached each tank (in and out) from a tap located about 15 cm
Recirculated syste

Fig. 1. Schematic view of the experimental design. Each tank was visually separated from oth
and controlled any external disturbance. Water flow through the tanks was about 2 mL/m
recirculated tanks.
above the next tank, thus avoiding any possibility of sound com-
munication between tanks.

During the experiment, fish were fed to satiation by means of a
small hole in the black cover. To prevent management stress, feces
and food residuewere not siphoned from the tanks.Water qualitywas
maintained as follows: temperature, 24.6±0.08 °C; dissolved oxygen,
6.2±0.01 mg L−1; pH, 7.3±0.01; and NH4 and NO2 never exceeded
0.5 mg L−1, total hardness and alkalinity, 60 and 65 mg L−1 CaCO3,
respectively.

To determine tissue cortisol concentration, fish were captured and
immediately frozen in liquid nitrogen for 10 to 30 s, and then stored at
−20 °C until cortisol extraction. To minimize management stress, less
than 30 s elapsed between capture and killing. Whole-body cortisol
was extracted according to the method of Sink et al. [20] with a minor
modification described by Barcellos et al. [18]. Cortisol concentrations
were determined from duplicate samples of tissue extract with a
commercially available enzyme-linked immunosorbent assay (ELISA)
kit, EIAgen™ cortisol test (BioChem ImmunoSystems). This kit was
validated for fish tissue extracts [18].

2.4. Statistics

The whole-body cortisol values of all treatment groups were
compared by two-way analysis of variance (ANOVA), with treatment
and time as factors, followed by Tukey's multiple range tests.
Statistical significance was accepted at pb0.05.

3. Results

The 4-h cortisol samples for Nile tilapia failed; therefore, these
concentrations were not available for analysis. Basal whole-body
cortisol concentrations were similar among treatment groups and
remained unchanged in the isolated control groups throughout the
experiment (Fig. 2). However, 1 h after handling, cortisol concentra-
tions were increased in the handled fish of both species, and
concentrations remained high for at least 1 h. In jundiá, the cortisol
concentration of the handled fishwas still elevated at 4 h, significantly
higher than that of the other groups (Fig. 2A).

Non-handled jundiá exposed to water from stressed conspecifics
demonstrated increased cortisol concentrations at 2 h (Fig. 2A). In
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B) Nile tilapia (Oreochromis niloticus)
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No water communication and no stress

Jundiá (Rhamdia quelen)

Fig. 2. Chemically-mediated increase in whole-body cortisol levels in jundiá (A) and
Nile tilapia (B). Exposure to water from handled fish (stressed conspecifics) increased
the whole-body cortisol levels in non-handled fish of both species. Note that cortisol
levels for Nile tilapia was not measured at 4 h after the stressor and that scales in Y axes
are different for A and B. Data are presented asmean±standard error of themean (each
time point, n=8).
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contrast, cortisol levels of non-handled Nile tilapia were significantly
increased as early as 1 h after exposure to water from stressed
conspecifics (Fig. 2B). For both species, the area under the cortisol
response curve for the non-handled stressor-exposed fish was lower
than in that of the handled fish (Fig. 2). Jundiá appeared to produce
less cortisol overall due to a slower cortisol increase (Fig. 2A). Because
the 4-h cortisol samples for Nile tilapia were not obtained, it is not
knownwhether cortisol concentrations returned to basal levels before
the 8-h time point (Fig. 2B).

4. Discussion

Here we report that whole-body cortisol concentrations in fish
were increased by chemical cues from stressed conspecifics. This
conspecific communication is interpreted as an adaptive mechanism
that increases cortisol in anticipation of a potential threat, amplifying
the animal's awareness of its environment. Chemical cues overcome
visual barriers to communicate stressful conditions to conspecifics in
other places. Because this response was similar in two phylogenet-
ically unrelated species, Nile tilapia and jundiá, we suggest that it may
be a very ancient mechanism in fish.

The basal whole-body cortisol levels (ng cortisol/g fish) observed
in the present study (~15 for Nile tilapia; ~12 for Jundiá) were similar
with basal ranges reported previously: b20 [Jundiá; 21]; 5 to 15
[zebrafish; 22,23]; b10 [minnows; 24]; ~7 [zebrafish; 25]. Moreover,
the similarity between cortisol profiles of the unhandled isolated
control fish overtime confirms the reliability of the whole-body
cortisol analysis. The strongly elevated cortisol levels in the handled
fish further corroborate this method because handling has been
shown to strongly increase cortisol in jundiá [18] and Nile tilapia
[18,26].

The increased cortisol in the non-handled fish exposed to water
from stressed conspecifics indicates that handled fish release a
substance that induces a stress response in the recipient fish. This is
concluded since the reported cortisol increase cannot be explained by
any potential disturbance factor from the experimental system.Water
from stressed fish reached the non-stressed conspecifics by falling
from a height of about 15 cm; thus, water could not transfer sound
between fish from these tanks. Whole-body cortisol measured at time
zero (Fig. 2) also shows that disturbance from water falling did not
affect cortisol levels (this hormone was raised only after water
contained stressed conspecific's odor entered the system). Moreover,
the time lag in peak cortisol concentration between the handled fish
and the unhandled fish exposed to recirculated water reinforces that
the cortisol increase in these unhandled fish may be a function of
water exchange speed and the time required for sufficient quantity of
the chemicals to be released by the handled fish.

Another argumentation is that the biofilter used in the present
study could not affect any significant water component of the
reported cortisol increase. First, the same biofilter was in the tanks
of the three treatments. Second, and more importantly, as an effect on
cortisol occurred, any explanation in terms of chemicals sequestered
or altered by biofilter's microbial activity is meaningless.

Characterization of the putative water-born substance requires
future investigation; however, its effects reveal an important adaptive
mechanism. Chemical communication overcomes physical barriers
and reaches places that light waves necessary for vision cannot reach.
Therefore, chemical cues from conspecific fishmay be as important for
a diurnal species like the Nile tilapia as they are for a nocturnal
species. This kind of chemical communication enables animals to
perceive what conspecifics are aware of and react accordingly. For
example, pacú (Piaractus mesopotamicus), is a diurnal species that can
differentiate a predator from a non-predator, retreating and
approaching accordingly [9]. Accordingly, pacú watching a predator
release chemicals that disperse to conspecifics; whenwatching a non-
predator, they release chemicals that attract conspecifics. This
chemically-mediated communication provides additional environ-
mental information to a fish unable to see a potential danger, thus
eliciting the appropriate reaction.

In the present study, the cortisol response was similar between
Nile tilapia and jundiá. Such chemical communication is expected to
require the production of specific chemicals and the expression of
specific receptors and cell biochemical machinery to amplify the
signal. Despite this complexity, it occurred in two phylogenetically
distant species of the Cichlidae and Heptapteridae families. Similar
chemical communication is also reported by Mothersill and collea-
gues for rainbow trout [27], zebrafish [28] and medaka [29] exposed
to ionizing radiation stress. Although convergent evolution might
have occurred, a more parsimonious explanation assumes that this
trait evolved earlier in fish. This explanation reinforces the adaptive
value of such a strategy and conservation of a complex mechanism.
This strategy may be also part of a wider phenomenon where
kairomones trigger beneficial responses in a different species, or even
in plants' allelopathic responses.

The present results have practical implications for fish culture.
Release of chemical stress factors should be considered when
handling fish in a recirculating system. In addition, consequences for
catch-and-release practices cannot be ignored, as hooked fish may
release chemicals that stress conspecific fish, thereby spreading the
damage to many more fish.
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