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Free, i.e. non-externally cued generation of movement sequences is fundamental to human behavior. We have
earlier hypothesized that the dorsal premotor cortex (PMD), which has been consistently implicated in cognitive
aspects of planning and selection of spatial motor sequences may be particularly important for the free genera-
tion of spatial movement sequences, whereas the pre-supplementary motor area (pre-SMA), which shows in-
creased activation during perception, learning and reproduction of temporal sequences, may contribute more
to the generation of temporal structures. Here we test this hypothesis using fMRI and musical improvisation in
professional pianists as a model behavior. We employed a 2×2 factorial design with the factors Melody (Speci-
fied/Improvised) and Rhythm(Specified/Improvised). Themain effect analyses partly confirmed our hypothesis:
there was a main effect of Melody in the PMD; the pre-SMA was present in the main effect of Rhythm, as
predicted, as well as in the main effect of Melody. A psychophysiological interaction analysis of functional con-
nectivity demonstrated that the correlation in activity between the pre-SMA and cerebellum was higher during
rhythmic improvisation than during the other conditions. In summary, there were only subtle differences in ac-
tivity level between the pre-SMA and PMD during improvisation, regardless of condition. Consequently, the free
generation of rhythmic andmelodic structures, appears to be largely integrated processes but the functional con-
nectivity betweenpremotor areas and other regionsmay change during free generation in response to sequence-
specific spatiotemporal demands.

© 2012 Elsevier Inc. Open access under CC BY-NC-ND license.
Introduction

The ability to freely generate and organize movement sequences
to reach higher order goals is a fundamental human capacity. Previ-
ous research have identified a number of frontal regions, including
the pre-supplementary motor area (pre-SMA) (Beudel and de Jong,
2009; de Manzano and Ullen, 2012; Pesaran et al., 2008) and the dor-
sal premotor cortex (PMD) (Deiber et al., 1991; Lau et al., 2004) that
play central roles in more cognitive aspects of movement sequencing
and free generation per se.

While both the pre-SMA and the PMD are certainly implied in
more than one aspect of sequential control, several studies have con-
sistently found that the pre-SMA is involved in the perception
(Bengtsson et al., 2009; Schubotz and von Cramon, 2001), production
(Bengtsson et al., 2004, 2005; Karabanov et al., 2009; Penhune and
Doyon, 2002; Schubotz and von Cramon, 2001) and learning
(Ramnani and Passingham, 2001) of temporal sequential structures.
Activity in the PMD, in contrast, has more often been linked to the
perception (Schubotz and von Cramon, 2001), production (Bapi et
al premotor area; PPI, psycho-
motor area.

ano).

-NC-ND license.
al., 2006; Bengtsson et al., 2004; Jenkins et al., 1994) and learning
(Bischoff-Grethe et al., 2004; Jenkins et al., 1994) of spatial sequences.
However, no previous studies have directly examined spatial and
temporal control of sequences in free generation tasks using well-
matched conditions and ecologically valid model behaviors in
humans (see critique on Berkowitz and Ansari (2008) in the Discus-
sion), and some studies on internally generated sequences suggest
that there is not a clear dissociation between premotor regions in-
volved in spatial and temporal control (Bortoletto and Cunnington,
2010; Chen et al., 2008; Kurata et al., 2000; Xiao et al., 2006). Addi-
tionally, as noted, both the pre-SMA and PMD are implied in a range
of other processes that are difficult to separate out experimentally.
Hence, previous investigations may suggest a broader and more com-
plicated picture (Berkowitz and Ansari, 2008; Karabanov et al., 2009;
Koch and Rothwell, 2009; Xiao et al., 2006). On one hand, the pre-
SMA and the PMD, which are heavily interconnected, form part of
an integrated network where information processing is to some ex-
tent distributed and regional differences in activity levels are fairly
subtle; on the other hand, they also express a degree of functional
specialization.

The specialization is likely to depend, at least in part, on differen-
tial connectivity to other brain regions. The pre-SMA is anatomically
and functionally connected to several areas involved in temporal pro-
cessing, such as the inferior frontal gyrus, basal ganglia and cerebellum
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(Habas, 2010; Luppino et al., 1993; Zhang et al., 2012), whereas
the PMD is more connected to parietal regions that are involved in
spatial processing (Luppino et al., 2003; Tomassini et al., 2007). The
pre-SMA and PMD might therefore each serve as an input port for
certain information required in the organization of sequences. One
way of separating their specific roles would thus be to investigate
the effective functional connectivity between the premotor areas
and other regions (as indicated above) during free generation of either
temporal or spatial behavioral sequences. The hypothesis would conse-
quently assume a dynamic functional network for internally driven se-
quence generation, which can extend to and draw upon different
regions, depending on the sequence-specific spatiotemporal structure.

Here, we invited a group of professional pianists to performmusical
improvisations during fMRI. We used a 2×2 design with the factors
Melodic Structure (Notated or Improvised) and Rhythmic Structure
(Notated or Improvised) (Fig. 1) to investigate main effect contrasts
for Improvised Melody and Improvised Rhythm. The main effect con-
trasts were also used in an analysis of effective functional connectivity
using psychophysiological interactions (PPI) with the pre-SMA and
PMD as seed regions (Friston et al., 1997). A supplementary analysis of
the direct contrast between free improvisation and sight reading was
also performed in order to replicate previous analyses of differences
in brain activity between internal generation of musical structures and
externally cued musical performance (de Manzano and Ullen, 2012).
Materials and methods

Participants

Seventeen right-handed classical concert pianists with no history
of neurological disease participated in the study. Imaging data from
one participant, and one session from each of two participants were
excluded because of a technical failure with the MR-scanner. All the
participants had a piano education from the Royal College of Music
in Stockholm or corresponding musical academy, and were regularly
performing at the time of the scanning. Another participant and fur-
ther five sessions from other participants were excluded due to incon-
sistent performance on the task (playing during rest or pausing more
than 10 s during an active condition, see Processing and analysis of
behavioral data). Hence,fifteen participants (mean=40, SD=12 years;
one female) were included in the final analyses. The experimental pro-
cedures were undertaken with the understanding and written consent
of each participant, conformed to The Code of Ethics of theWorld Med-
ical Association (Declaration of Helsinki), and ethically approved by the
Regional Ethical Review Board in Stockholm (Dnr 2007/83–/32). Partic-
ipants were reimbursed with 600 SEK.
Fig. 1. Experimental design and conditions. Four active conditions were used which were arr
both melody and rhythm specified; Melody—melody unspecified, rhythm specified; Rhythm
Materials

Piano keyboard and musical feedback
A custom made MR-compatible fiber optic piano keyboard

(LUMItouch, Inc.) of one octave (12 keys with authentic dimensions,
ranging from F to E) was used to collect behavioral data. The key-
board was connected to an optical–electrical converter outside
the scanner room. The converter was in turn connected to a MIDI-
keyboard (Midistart-2; miditech), generating a signal that was subse-
quently stored on a laptop using a standard recording and sequencer
software (Cubase SE 3; Steinberg). The same software was also used
together with a sound sampler (Kontakt 2/Steinway D convolution
grand piano; Native instruments) and an external sound card (TerraTec
Producer Phase 26 USB; TerraTec) to provide auditory feedback to
the participants. Hence, the participants could hear what they were
playing throughout the experiment.
Visual stimuli
Stimulus presentation was controlled by an E-prime (Psychologi-

cal Software Tools, Inc.) script on a laptop computer. The visual stim-
uli, i.e. instruction slides for each condition, were back-projected on a
screen placed just in front of the scanner and viewed by the partici-
pants through a periscope mirror attached to the birdcage head coil.
The instruction slides had a line of text at the top giving the name
of the condition (in Swedish), and below that, a musical score of
four bars. For examples of musical scores see Fig. 1. All scores were
constructed originally for the study by one of the authors (FU).

Visual templates for the four active conditions differed such that
rhythm and melody were notated or left unspecified, according to
the employed 2×2 factorial design (Fig. 1). For Notes both rhythm
and melody were specified. For Melody the rhythm was specified
using standard pitch-less percussion notation; the melody was thus
left unspecified. For Rhythm the melody was specified using filled
note heads; the rhythm was unspecified. For Free neither rhythm
nor melody was specified; crosses were used to indicate the approx-
imate number of notes to be played (8 crosses/bar or 32 in total, as il-
lustrated in Fig. 1). For the three conditions constrained by external
stimuli (Notes, Melody and Rhythm), there were eight notes in each
bar. For the Rest condition, blank musical staves were shown (see
Fig. 1). Since all active conditions were presented twice during each
of the four sessions, a total of thirty-three unique templates (includ-
ing one template for the Rest condition) were used. Throughout the
preparatory period before each condition, the musical score was
surrounded by a red rectangular frame. The removal of this frame
signaled to the participant to either start playing or remain at rest,
depending on the experimental task.
anged into a 2×2 factorial design according to the factors Melody and Rhythm: Notes—
—melody specified, rhythm unspecified; Free— both melody and rhythm unspecified.
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Auditory stimuli
Four beats of a metronome (clapping sound), corresponding to

one bar of music (quadruple time, 60 beats per minute), were played
during the preparatory period before all conditions, to pace subse-
quent performance.
Experimental procedure and design

Upon arrival, the participants were re-briefed about the purpose
of the study and safety procedures. Then, they filled out a question-
naire regarding general health and history of disease relevant to the
experiment and signed the informed consent form. Finally, detailed
instructions were given about the experimental procedures, and the
participants performed a brief training session. During training, the
participants were seated at a desk with the piano keyboard and a lap-
top. Auditory feedback from the piano during the training session was
provided through loudspeakers. The training procedure was identical
to the procedure used during scanning, except that different musical
templates were used, and that each condition was presented only
two times (giving a total training time with the script of 3 min and
45 s). The participants were informed (i) that they were not con-
strained to play a certain musical style or genre (ii) that they should
play according to their own inspiration and creativity (iii) while
aiming at performing roughly the same amount of keystrokes during
the free improvisations as in the other conditions and (iv) not make
pauses more than a few seconds during the free improvisations.
After the training session, the participants were asked if they had
any difficulties with understanding or performing any of the experi-
mental conditions. None of the participants reported any difficulties.
Before scanning, the participants were told not to move during rest
conditions; and to move only their right hand and forearm while
keeping the head and shoulder still during playing. In total, the in-
struction period lasted about 15 min.

Participants were scanned in supine position with the piano key-
board resting on their lap. The right arm was supported by a pillow
to avoid fatigue and minimize arm movements. Earplugs and head
phones were used to reduce scanner noise and to allow auditory feed-
back from the piano (see Materials) and verbal communication with
the experimenters supervising the scanning session. The perceived
loudness of the auditory feedback was optimized for each individual.
An adhesive tape was placed between the head coil and forehead to
help the participants maintain their head in a fixed position.

The experimental paradigm was designed as a 2×2 factorial de-
sign (Fig. 1) with the two factors Melodic Structure (Specified or Im-
provised) and Rhythmic Structure (Specified or Improvised). There
were thus four active conditions where rhythm and melody were ei-
ther notated, or unspecified with need for improvisation: Notes
(Specified Melodic Structure, Specified Rhythmic Structure), Melody
(Improvised Melodic Structure, Specified Rhythmic Structure),
Rhythm (Improvised Rhythmic Structure, Specified Melodic Struc-
ture), and Free (Improvised Rhythmic Structure, Improvised Melodic
Structure). Main effect contrasts were used to reveal neural activity
related to the improvisation of melodic and rhythmic material.

The experiment was carried out in four sessions. One session was
composed of ten trials corresponding to two presentations of each con-
dition (four experimental conditions and the rest condition). The trial
order was randomized for each participant. Each trial lasted for 22.5 s,
which means that a session was completed in 225 s and that the total
scan time per participant was 900 s. The trials were composed of two
parts: instruction period (5 s) and condition (17.5 s). The visual tem-
plate was displayed throughout the duration of the trial. During the in-
struction period, fourmetronome clickswere presented (1 beat/s), with
the first onset 1 s into the trial. After the instruction period the red
frame surrounding the musical score was removed in order to cue the
participants to perform the condition.
Processing and analysis of behavioral data

As described earlier, all behavioral data were recorded in MIDI for-
mat using a laptop. This raw data was first converted into text and
parsed by a custom made script in MATLAB 7 (MathWorks, Inc.), to
extract the onset time and identity of all keys played during scanning.
An additional script in MATLAB was then used to calculate two types
of measures from this data.

First, measures of the accuracy of the performance in the different
conditionswere computed. Thiswas done by calculating the Levenshtein
distance (LD) between a performed melody or rhythm and the
corresponding target structure presented in the visual template. LD
is a measure of the similarity between two sequences (Bengtsson
et al., 2007; Levenshtein, 1966). It corresponds to the minimum
number of single element deletions, insertions or substitutions required
to transform one sequence into the other. For the two conditions with
notated melodic structure (Notes, Rhythm) the melodic LD between
the performed and notated sequences of pitches was computed. The
melodic LD between the pitch sequences (C-D-D-E) and (C-D-E-E)
would, e.g., be 1. For the conditions with notated rhythmic structure
(Notes, Melody) a corresponding rhythmic LDwas calculated. LD calcu-
lation requires that the sequences are composed from a finite set of dis-
crete elements. Duration, however, is a continuous variable. Therefore,
the performed durations had first to be converted into discrete note
values. This was done by replacing each performed duration with the
closest target duration in the template tune, i.e. the target duration for
which the absolute error of the performeddurationwas smallest. For ex-
ample, if the durations in the target tunewere all from the set {500, 750,
1000}, and if the participant produced the duration sequence (490, 510,
770, 1084, 990), then this duration sequencewould be transformed into
the note value sequence (500, 500, 750, 1000, 1000) (all in ms).

The script would additionally notify if a participant had played
during rest conditions or if the performance of a condition included
a pause which exceeded 10 s. It was found that one participant had
played during rest conditions and this participant was thus excluded
from the final analysis. Another five sessions from other individuals
were also excluded based on the same criteria.

Melodic and rhythmic LDs are presented for all conditions when
relevant (e.g. not in Free, since it contains no target sequence), for de-
scriptive purposes and in order to demonstrate the degree of accuracy
of the performances. To investigate if the melodic accuracy differed
between Notes and Rhythm, a repeated measures ANOVA was per-
formed, using the participant median melodic LD as dependent vari-
able. To test if the rhythmic accuracy differed between Notes and
Melody, the corresponding test was performed using the median
rhythmic LD.

Secondly, the motor output in the different conditions was charac-
terized. The number of performed notes (key presses) was used as a
measure of overall motor output. To determine if there were differ-
ences in motor output between conditions, 2×2 factorial ANOVAs
were employed, as in the imaging analysis. The median number of
notes was used as dependent variable. Rhythmic Structure and Me-
lodic Structure were used as factors, each with two levels (Specified
and Improvised).

In order to give a brief descriptive overview of what type of impro-
visations the participants had actually performed, a professional musi-
cologist was assigned to identify modes/tonalities in the performances.
This analysis is presented in the Supplementary data together with
typical examples of performances in the three improvisation conditions
(Figure S1).

MRI scanning parameters

Imagingwas performed using a 1.5 T scanner (Signa Excite, GEMed-
ical Systems, Milwaukee, WI, USA) with a standard eight-channel head
coil. At the beginning of each scanning session, a high-resolution, three-
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dimensional spoiled gradient echo T1-weighted anatomical image
volume of the whole brain (voxel size 1×1×1 mm3) was collected.
Functional image data was then collected using a gradient-echo, echo-
planar (EPI) T2*-weighted sequence with blood oxygenation level-
dependent (BOLD) contrasts (Kwong et al., 1992; Ogawa et al., 1992),
and the following parameters: repetition time (TR)=2.5 s; echo time
(TE)=40ms; field of view (FOV)=22 cm; matrix size=64×64; slice
thickness=5 mm; slice spacing=0.5 mm; voxel size=3.44×3.44×
5 mm3; flip angle=90°. Whole brain image volumes were constructed
from32 contiguous axial sliceswhichwere acquired in ascending order.
At the beginning of the session, four “dummy” image volumes were
scanned, but not saved, to allow for equilibration effects. A total of 360
functional image volumes were acquired from each participant.

Image processing and analysis

TheMRI datawere processed and analyzed using the SPM8 software
package (WellcomeDepartment of ImagingNeuroscience, London, UK).

Image preprocessing
All fMRI image volumes were realigned (to the first image of

the first session), unwarped and coregistered to each individual's
T1-weighted image (Andersson et al., 2001; Ashburner and Friston,
1997), and normalized using the template brain of the Montréal
Neurological Institute (Friston et al., 1995).

Analysis of main effects
The fMRI data were modeled using a general linear model using

the standard hemodynamic response function. The first level design
matrix was set up using four conditions of interest, corresponding to
the periods in each epoch during which the participants played the
piano (i.e. the last 17.5 s of the 22.5 s epochs); one regressor rep-
resenting the preparatory periods (first 5 s of each epoch). Rest
was modeled as part of the implicit baseline. The design matrix
weighted each preprocessed image according to its overall variabili-
ty to reduce the impact of movement artifacts (Diedrichsen and
Shadmehr, 2005).

Firstly, a region-of-interest (ROI) analysis was performed based
on the main hypothesis of a particular role of the pre-SMA and PMD
in rhythmic and melodic improvisation, respectively. It has been
suggested that the PMD can be further divided into pre-PMD and
PMD proper analogous to the medial premotor areas (Picard and
Strick, 2001), but the borders of these regions are yet not certain
(Hanakawa, 2011). Therefore, for the purpose of the present analysis,
we treat the PMD as one integrated region. The collective ROI, which
included both the pre-SMA and PMD in both hemispheres, was de-
fined using the “Human Motor Area Template” after Mayka et al.
(2006), who on the basis of a meta-analysis of 126 studies were
able to model the spatial distribution of the human motor regions.
The main effect for Improvised Melodic Structure was investigated
with the contrast (Free+Melody)–(Rhythm+Notes). The main effect
for Improvised Rhythmic Structure was investigated with the contrast
(Free+Rhythm)–(Melody+Notes). Interaction effects were explored
with the two contrasts (Free+Notes)–(Rhythm+Melody) and
(Rhythm+Melody)–(Free+Notes). Analyses were first performed
within each participant. After this estimation, the images of contrast
estimates were spatially smoothed with an isotropic Gaussian filter of
8 mm full-width-at-half-maximum. A series of second-level randomef-
fects analysis (a one sample t-test for each contrast of interest) based on
the contrast images from each participant, were then performed to
allow inferences at group level. The significance of effects was assessed
using t-statistics from included voxels to create statistical parametric
maps. For the ROI analysis, cluster level thresholds with family-wise
error (FWE) correction for multiple comparisons were implemented
to control for false positives.
Connectivity analysis
A PPI describes how functional connectivity between brain regions

may differ between experimental (psychological) contexts (Friston
et al., 1997). Our hypothesis was that there would be a differential
functional connectivity between premotor areas and other regions
depending on the contextual constraints of sequence generation (melodic
or rhythmic improvisation), and that the pre-SMA and PMDmight show
different connectivity patterns. Based on that pre-SMA was involved in
the main effect of both Melody and Rhythm (see Results), we postulated
a central role for the pre-SMA in coordinating and integrating sequence-
specific spatiotemporal information.We therefore expected to see greater
connectivity between the pre-SMA and regions involved in spatial pro-
cessing (e.g. the PMDandposterior parietal cortex) duringmelodic versus
rhythmic improvisation/sight-reading, and between the pre-SMA and re-
gions involved in timing and temporal processing (e.g. the inferior frontal
gyrus, basal ganglia and cerebellum)during rhythmic improvisation com-
pared with melodic improvisation/sight-reading. To test this, we firstly
extracted the deconvolved BOLD time series from the pre-SMA (defining
the ROI as described above, according to the Human Motor Area Tem-
plate), and used the two main effects from the previous factorial design
as psychological variables. The product of the pre-SMA neuronal signal
and each of the psychological variables represented the two PPIs of inter-
est. All regressors were subsequently convolved with the canonical HRF
and entered into two separate regression models according to spatial or
temporal main effect. As previously, the design matrixes weighted each
preprocessed image according to its overall variability to reduce the im-
pact of movement artifacts (Diedrichsen and Shadmehr, 2005). Secondly,
two first level analyses were performed for each regression model, for
each participant. The resulting images of contrast estimateswere spatially
smoothed with an isotropic Gaussian filter of 8 mm full-width-at-half-
maximum. Finally, we performed a second-level random effects analyses.
These analyses were repeated with the left PMD as a seed region for ex-
ploratory purposes. This region appeared in the main effect of Melody
in the ROI analysis (see Results).

Free improvisation vs. sight reading
Supplementary analyses of the contrasts between free improvisation

and sight reading (Free–Notes and Notes–Free) were also performed,
using the same analysis parameters as in the main effects analysis,
in order to replicate previous analyses on brain regions specifically in-
volved in the internal generation of musical structures vs. externally
cued musical performance (de Manzano and Ullen, 2012). The results
of these comparisons are found in the Supplementary data.

Results

Behavioral data

To evaluate how accurately the participants performed the condi-
tions, the produced melodic and rhythmic structures were compared
to the notated targets. The LD between performed and notated struc-
ture was used as a measure of accuracy (see Materials and methods).
The melodic LD was defined as the LD between the performed and the
target pitch sequences, and corresponds to the number of wrong or
omitted notes in a performance. To measure the rhythmic accuracy,
a sequence of note values was first constructed for each performance,
using the note values that provided the best approximation of each
produced temporal interval (see Materials and methods). The rhyth-
mic LD between the sequences of actual and target note values was
then calculated. The means and standard deviations of the LDs in
each relevant condition are displayed in Table 1.

A repeated measures ANOVA with melodic LD as dependent vari-
able, showed that melodic LD was higher in Rhythm than in Notes
(F(1, 14)=14.5, p=.002). Rhythmic LD was higher in Melody than
in Notes (F(1, 14)=4.87, p=.04). There was thus a tendency for
somewhat lower accuracy in the reproduction of a notated dimension
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when the other dimension was improvised (Melody and Rhythm),
than when both dimensions were notated (Notes). However, the
number of melodic and rhythmic errors was low in absolute terms.
The mean of the Rhythmic LD during Melody was somewhat higher
than the Melodic LD during Rhythm (see Table 1). This could be inter-
preted as Melody being a more difficult task than Rhythm. However
the reason for the difference was likely that for Melody, the rhythmic
performance (duration sequence) had to be transformed into a note
value sequence before the LD measure could be calculated. In line
with this, it can be observed that the Rhythmic LD was also higher
than Melodic LD during Notes. Therefore, we compared Melody and
Rhythm using difference scores with Notes as baseline, i.e. Melodic
LD during Rhythm–Melodic LD during Notes versus Rhythmic LD dur-
ing Melody–Rhythmic LD during Notes, using a repeated measures
ANOVA. No significant effect was found (F(1, 14)=0.01, p=.910),
confirming that when controlling for “baseline LD” there was no dif-
ference in performance between Melody and Rhythm.

Secondly, we investigated whether the performances in the differ-
ent conditions were equal in terms of overall motor output. There was
no difference in total number of keystrokes between conditions. The
means and standard deviations of the number of keystrokes in each
condition are shown in Table 1. A 2×2 factorial ANOVA with number
of notes as dependent variable, and Rhythmic Structure and Melodic
Structure as factors, each with two levels (Notated and Improvised),
showed no main effect of Rhythmic Structure (F(1, 14)=.013;
p=.91), no main effect of Melodic Structure (F(1, 14)=1.18; p=.29)
and no interaction (F(1, 14)=.68; p=.42).

Functional MRI data

Analysis of main effects
The ROI based analysis showed a significant main effect of melodic

improvisation in the left PMD and the left pre-SMA. There was also a
significant main effect of rhythmic improvisation in the left pre-SMA.
The results were adjusted for multiple comparisons using cluster
level FWE-correction. The results are summarized in Table 2. Fig. 2
illustrates these results and additionally displays the percent signal
change for each active condition in relation to the implicit baseline
in the left pre-SMA and left PMD. No interaction effects were found.
The direct contrasts between Melody and Rhythm (Melody–Rhythm;
Rhythm–Melody) showed no suprathreshold clusters.

Connectivity analysis
The whole-brain PPI-analysis revealed that there was a greater

correlation between activity changes in the pre-SMA (the seed re-
gion) and a cluster of voxels in the cerebellum (kE=466; p=0.002,
cluster level FWE-corrected) during conditions of rhythmic improvi-
sation than during melodic improvisation or sight-reading (see
Fig. 3). The peak activity was found in the left lobule VIII but extended
across the vermis and midline to the right lobule VIII and further into
lobule VI. The PPI approach involves creating a regressor which corre-
lates with activity in the seed region during certain experimental
Table 1
Means and standard deviations of LDs and number of keystrokes for relevant experi-
mental conditions.

Condition /Measure Mean SD

Notes /Melodic LD 0.88 0.95
Notes /Rhythmic LD 4.11 1.95
Rhythm /Melodic LD 2.07 1.57
Melody /Rhythmic LD 5.38 1.84
Notes /NrKeys 32.12 0.29
Rhythm /NrKeys 31.68 0.96
Melody /NrKeys 32.27 0.57
Free /NrKeys 32.85 4.78

LD = Levenshtein distance; NrKeys = number of keystrokes.
conditions, but is negatively correlated during other conditions.
Hence, we confirmed that the results were due to an enhanced corre-
lation between pre-SMA and cerebellar activity during rhythmic im-
provisation and not because of an increased negative correlation
during melodic improvisation. The graph in Fig. 3 illustrates an exam-
ple of the different slopes of the correlations between the pre-SMA and
cerebellumduringMelody and Rhythm in one participant. No PPIswere
found for the pre-SMA in relation to melodic improvisation, or when
using the left PMD as a seed region.

Free improvisation vs. sight reading
In order to replicate our previous findings and add to the more

general discussion in the literature of which brain regions are more
specifically related to internally generated musical improvisation as
opposed to externally cued musical production, we investigated the
contrasts Free–Notes and Notes–Free. For Free–Notes, we found two
clusters of voxels that displayed higher activity during Free than dur-
ing Notes. One cluster of activity included the pre-SMA and left PMD.
The second cluster was largely located around the left dorsolateral
prefrontal cortex but also extended slightly into the left inferior fron-
tal cortex (pars triangularis). For more detailed results see Supple-
mentary data Table 3 and Figure S2 (clusters in red color). For the
contrast Notes–Free we found six clusters of voxels that were signif-
icantly more active during sight reading than during free improvisa-
tion. All results were corrected for multiple comparisons using
cluster level family-wise error. The clusters were found in the bilater-
al inferior occipital gyrus, right precentral gyrus (extending across the
midline and dorsally into the right superior parietal cortex), bilateral
medial frontal gyrus, left superior parietal lobe and right inferior pa-
rietal lobe. For more detailed results see Supplementary data Table
3 and Figure S2 (clusters in blue color).

Discussion

In this fMRI study, we let professional piano players perform four
conditions of musical improvisation on a one octave piano keyboard,
varying the freedom of either rhythm or melody, to investigate the
regional distribution of spatial and temporal processing during crea-
tive internal generation of musical structures. A key novel finding
is that functional connectivity between premotor regions and other
regions may change during free generation in response to spatiotem-
poral demands (see Overlapping neural correlates of melodic and
rhythmic improvisation). We also conclude that, although we see
subtle rhythmic/melodic modulations of activity in the pre-SMA and
PMD, there is a striking overlap in temporal and spatial processing
during musical improvisation at this level of movement sequence
generation (see Free generation vs. sight reading).

As shown by the melodic and rhythmic LD measures, the partici-
pants reproduced the notated templates accurately in all conditions.
There was a tendency for a somewhat lower accuracy in the repro-
duction of a notated dimension when the other dimension was im-
provised (Melody and Rhythm), than when both dimensions were
notated (Notes) but the number of errors in absolute terms was
low. There was no difference in LD between Melody and Rhythm
Table 2
The main effects of rhythmic and melodic improvisation in a ROI analysis based on the
bilateral pre-SMA and PMD.

Main effect of Melody Main effect of Rhythm

Brain region Side kE T x y z kE T x y z

pre-SMA L 98* 5.31 −4 10 63 143* 5.78+ −2 18 61
pre-SMA R/L 100* 5.55+ 0 24 47
PMD L 72* 5.14 −30 −4 65

* Significant at pb .05, cluster level FWE-corrected; + Significant at pb .05, voxel level
FWE-corrected. PMD = dorsal premotor region, pre-SMA = pre-supplementary
motor area. L = left hemisphere; R = right hemisphere. x, y, and z, MNI coordinates.



Fig. 2. Results from the main effects analysis (Melody and Rhythm), and percent signal
change from baseline of active conditions in peak voxels. The bars illustrate the hemo-
dynamic response (% signal change) for each condition relative the implicit baseline in
one local peak voxel: Left pre-SMA, in coordinates x=−2, y=18, z=61; Left PMD, in
coordinates x=−30, y=−4, z=65. Error bars represent the spread of the data +/−1
standard error. The top panel displays significant clusters superimposed on the nor-
malized group T1w image.
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when controlling for baseline LD during Notes. The behavioral analy-
ses thus support that differences in brain activity between conditions
indeed reflect differences in processing between improvisation and
reproduction of melodic and rhythmic structures.
Fig. 3. Results from the PPI-analysis illustrating a cluster of voxels in the cerebellum
(red) which activity correlates with pre-SMA activity (blue) during Rhythm. The clus-
ter was significant at p=0.002, cluster level FWE-corrected. The graph illustrates the
different slopes of the correlations between pre-SMA and cerebellar activity during
Melody (dotted black line) and Rhythm (red continuous line) in one participant. The
markers represent raw data.
Differential roles of the pre-SMA and PMD for melodic and rhythmic
improvisation

The ROI analysis partly confirmed our main hypothesis. The PMD
was present in the main effect of melodic improvisation, but not in
the main effect of rhythmic improvisation; activity in the pre-SMA
was, as predicted, related to rhythmic improvisation but also in-
creased its activity for melodic improvisation. However, both regions
were to some extent active during all conditions, particularly for the
improvisation conditions as illustrated by the contrast between free
improvisation and sight reading. The direct contrasts between
Rhythm and Melody did not replicate what was found in the main
effects analysis. There was no interaction between Melody and
Rhythm.

Many studies implicate the pre-SMA in the processing of sequen-
tial temporal structures in different contexts, e.g. rhythm learning
(Ramnani and Passingham, 2001; Steele and Penhune, 2010); repro-
duction of auditorily (Chen et al., 2005) or visually (Schubotz and
von Cramon, 2001) presented rhythms; performance of overlearned
rhythms that were trained in auditory (Bengtsson et al., 2004;
Karabanov et al., 2009) or visual (Karabanov et al., 2009) modality;
as well as passive rhythm perception (Bengtsson et al., 2009). Mita
et al. (2009) was in addition able to demonstrate, based on neural re-
cordings of pre-SMA neurons in monkeys, that these neurons contrib-
ute to both inference of temporal constraints from visual instructions
and timing of motor initiation as well as representation of time per se,
during self-generated movements. The same group of researchers
was later able to create a computational algorithm which could de-
code temporal information from individual neurons in the pre-SMA,
to estimate the elapsed time during a response task with variable de-
lays with a precision of approximately 1 s (Shinomoto et al., 2011).
Thus, while a distributed set of brain regions may have a role in
motor timing, these studies nonetheless provide a convincing demon-
stration of the importance of medial premotor areas.

Other studies suggest that the pre-SMA plays important roles for
sequence control in general, in particular for the hierarchical control
of action sequences (Kennerley et al., 2004). Interestingly, the func-
tional roles of the pre-SMA in sequential timing and hierarchical con-
trol may be related, since spontaneously emerging temporal patterns
in complex movement sequences reflect their internal organization
into chunks (Rosenbaum et al., 1983; Sakai et al., 2003). Even though
the main effect of Rhythm was slightly greater than that of Melody,
the present findings indicate a broader role of the pre-SMA in free
generation. In a report from Mansfield et al. (2011), it was suggested
that the pre-SMA may bias the striatum towards lower response
thresholds when behavior is less constrained. One could speculate
on this being an important feature in relation to free generation and
creative performance in general, when it comes to regulating fluency
and filtering of appropriate responses.

The PMD is heavily connected with parietal regions, and is implied
in visuomotor integration and spatial targeting of movements in
general (Wise et al., 1997). PMD activity has been related to spatial se-
quence processing in various paradigms, including learning (Bischoff-
Grethe et al., 2004; Jenkins et al., 1994), performance (Bapi et al.,
2006; Bengtsson et al., 2004; Jenkins et al., 1994) and perception
(Schubotz and von Cramon, 2001). Activity in the rostral section of
the PMD is presumably more related to cognitive aspects of movement
control (Picard and Strick, 2001). Ohbayashi et al. (2003) e.g., found
that neurons in this region are involved in transforming positional
cues in working memory into a sequential motor program. Directly in
line with the present findings is the report from Beudel and de Jong
(2009), where the PMD was found to be involved in free selection of
both target based and self-referenced finger movements in a spatial
key pressing task.

As reviewed, there is ample evidence which supports that action
and perception are integrated processes that to a large extent rely

image of Fig.�2
image of Fig.�3
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on the same neural circuitry (see e.g. Hommel et al., 2001; Prinz,
1997; Rizzolatti and Craighero, 2004). In addition to more cognitive
aspects of sequence generation, premotor areas have thus also been
shown to be activated in a number of perceptual paradigms, e.g. dis-
crimination, judgment and passive perception of sequences (see
Introduction), even though activity levels are generally higher for
internal generation of sequences. In other words, another aspect of
the current findings is that free generation may utilize neural circuit-
ry that is also used for perception, learning and production of the
same type of structures. This might be an important observation in re-
lation to neuropsychological research on creativity in general, and
may to some extent account for why results across experiments in
this field have been fairly inconclusive (Dietrich and Kanso, 2010);
although some regions may play generic roles for free response
generation (de Manzano and Ullen, 2012) other regions involved in
creative performance may be highly task specific.

Free generation vs. sight reading

Continuing on the previous topic, we address the more general
question of which brain regions are involved in musical creativity. We,
and others, have already explored brain activity which is related tomu-
sical improvisation as compared to e.g. sight-reading (de Manzano and
Ullen, 2012), pseudo-random sequence generation (de Manzano and
Ullen, 2012), reproductions of a previous improvisations (Bengtsson
et al., 2007) or overlearned sequences (Berkowitz and Ansari, 2008;
Limb and Braun, 2008). In these studies, a number of regions (e.g. ante-
rior cingulate and premotor cortices) are found to be particularly in-
volved in the creative internal generation of musical material.

There are however also diverging results in these studies with re-
gard to brain areas such as the dorsolateral prefrontal cortex, which is
found either more or even less active during improvisation. These dif-
ferences likely stem from methodological sources such as choice of
control tasks or demography and expertise of the participant sample.
A more detailed comparative review of these previous studies can be
found in de Manzano (2010). In light of these discrepancies, it was of
interest to show supplementary results from the present study on the
direct contrast between free improvisation and sight reading (see Sup-
plementary data). The present results replicate our previous findings
(de Manzano and Ullen, 2012), by emphasizing the importance of the
pre-SMA, PMD and dorsolateral prefrontal cortex in creativity and musi-
cal improvisation. Thus, this is the third study (incl. Bengtsson et al., 2007;
deManzano andUllen, 2012) inwhich improvisation is not accompanied
by a deactivation of the dorsolateral prefrontal cortex, as reported by
Limb and Braun (2008) during improvisation. In Limb and Braun
(2008), improvisation was compared to execution of over-learned musi-
cal sequences at two levels of complexity. The participants – six profes-
sional jazz pianists – were asked to play either a C major scale,
improvise in C major, play a Jazz composition from memory to auditory
musical accompaniment, or improvise to this accompaniment.

The apparent discrepancy in results could possibly be accounted for
by a difference in expertise/improvisational skills between the two ex-
perimental groups (de Manzano, 2010). Improvisation is a much more
central feature of jazz than of classical music, and jazz pianists are argu-
ably more accustomed to performing spontaneous improvisations than
are classical pianists. Furthermore, it could be argued that the two ex-
perimental paradigms differ in complexity. Improvisation on a well-
learned scale or chord structure, as in Limb and Braun, is conceivably
a less cognitively demanding task than completely free improvisation.
In line with this reasoning, it can be observed that our classical pianists
activate a network including the pre-SMA, PMD andDLPFC, typically as-
sociated with explicit processing of novel motor sequences, while jazz
pianists rely on regions for implicit routine and automated behavior,
showing a more caudal distribution of activity in the SMA and PMD, in
conjunction with activity in limbic regions and the basal ganglia
(Doyon and Benali, 2005). Notably, all previous imaging studies on
piano improvisation (Bengtsson et al., 2007; Berkowitz and Ansari,
2008; de Manzano and Ullen, 2012; Limb and Braun, 2008) as well as
the present investigation, find that the PMD is involved in musical
creativity.

Overlapping neural correlates of melodic and rhythmic improvisation

Although we found some evidence that the pre-SMA and the PMD
may have differential importance for rhythmic and melodic control, it
should be emphasized that a striking aspect of the present findings is
the large degree of overlap in activity between the different improvi-
sation conditions. Both the pre-SMA and the PMD increased their ac-
tivity in all improvisation conditions, albeit to a different degree. This
general observation is in line with the findings of Berkowitz and
Ansari (2008), who also investigated piano improvisations of melo-
dies and rhythms using fMRI. In that study however, the ability to dis-
cern regional differences might have been limited by a number of
factors: Firstly, the control condition where rhythm and melody
were determined (corresponding to our Notes), involved playing a
sequence of pre-learned 5-note patterns, which in effect gave rich
possibilities for free choice and musical creation (retrieving, selecting
and combining out of seven different 5-note melodies to form a 16
pattern long sequence). We believe this is the main reason why the
pre-SMA, which is generally found active in relation to free choice
and internally generated behaviors (see reviews in e.g. de Manzano
and Ullen, 2012; Haggard, 2008), is not present in their results. Sec-
ondly, the metronome only sounded during the conditions were
rhythm was constrained, and not during rhythm improvisation. This
means that the main effect of rhythmic improvisation was to some
extent confounded by the difference in auditory stimulation. Thirdly,
the instruction to improvise the melody was post-hoc found to have a
significant effect on both generation of melody (variety of note com-
binations) and generation of rhythm (inter-press interval variability),
which might have confounded results even further.

Nonetheless, the shared observation of an overlap in neural corre-
lates underscores that the processes involved in the generation of
rhythmic and melodic strutures are highly integrated. Indeed, if a par-
ticular, e.g. musical goal should be fulfilled, these aspects of a tune can
obviously not be generated independently: the emotional character of
a tune is determined by a complex interplay between these, and
other, musical parameters (Gabrielsson and Lindström, 2001). The
high degree ofmelody–rhythm integration in higher ordermusical pro-
cesses such as improvisation fits a general, modular view of music pro-
cessing in the brain, where temporal and spatial/melodic processing are
separated at lower levels of perception and production but integrated in
superordinate brain regions (Peretz and Coltheart, 2003).

Effective functional connectivity that varieswith spatiotemporal processing
demands

Using the PPI-approach we were able to demonstrate an increase
in effective functional connectivity between the pre-SMA and cere-
bellum during free generation of rhythm which was not present to
the same extent during improvisation ofmelody or externally cued pro-
duction of either rhythmic or melodic sequences. This result could be
interpreted either as a condition-sensitive change in the effective con-
nectivity between two areas, or alternatively, that the pre-SMA modu-
lates the responsiveness of the cerebellum to rhythmic improvisation
(Friston et al., 1997). We propose that the premotor network may
show different patterns of interaction with other regions depending
on the functionality required in organizing and generating a particular
movement sequence. The cerebellum and the pre-SMA are connected
via cerebello-thalamo-cortical loops and the basal ganglia (Akkal et al.,
2007). In humans, resting state activity time-courses in the pre-SMA
and cerebellumhave also been found to correlate (Habas, 2010). As out-
lined in the introduction, the cerebellum was one of the brain areas
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wherewe a priori expected an associationwith rhythmic improvisation
and therefore the present results are in linewith our hypotheses. A large
literature demonstrates the importance of the cerebellum in temporal
processing, which includes neuroimaging studies on perceptual and
motor timing (Ivry, 1993; Penhune et al., 1998) as well as clinical
research on patients who have suffered neurological deficits in timing
functions following cerebellar damage (Ivry and Keele, 1989). We
have previously reported on cerebellar activity, notably in the ipsilateral
lobuli VI and VIII, i.e. similar areas as in the present study, as being asso-
ciated with self-paced production of well-learned rhythms (Karabanov
et al., 2009). The findings are also directly in line with Aso et al. (2010)
who were able to show functional connectivity between the medial
premotor regions (the ROI included both pre-SMA and SMA proper)
and the cerebellar lobuli VI and VIII during sensory and motor timing.
Again, it would appear as if structures controlling the internal genera-
tion of movement sequences are able to draw on similar functional
resources as are utilized during perception and production. Notably,
we here control for rhythmic sight-reading, which means that that the
observed PPI is specific to the internal generation of rhythm. The
above referenced literaturewould suggest that this additional contribu-
tion involves extended support in constructing and representing tem-
poral intervals.

It should be mentioned that at least two studies have found more
activity in cerebellar regions during the performance of spatial se-
quences than during performance of rhythmic sequences (Bengtsson
et al., 2004; Berkowitz and Ansari, 2008). The cerebellum is known to
be involved in e.g. the accuracy and coordination ofmovements in addi-
tion to timing (reviewed in Grimaldi and Manto, 2011), which means
that it would not be improbable for different, or perhaps even similar
regions of the cerebellum to be involved in both Rhythm and Melody.
It is therefore conceivable that if placing more extreme demands on
spatial processing, another PPI analysis would have found amodulation
of the correlation between e.g. the PMD and lateral cerebellar hand
regions. Similarly,we cannot rule out thatmore extreme forms of impro-
visation, or for thatmatter an increased sample size,might have revealed
additional patterns of functional connectivity between the premotor re-
gions and other areas.

Conclusion

In summary, free generation of either spatial or temporal sequences
is associated with only subtle modulations in the level of activity of the
pre-SMA and PMD and overall, creative musical improvisation of melo-
dy and rhythm appears to be a largely integrated processes. Interesting-
ly however, functional connectivity between premotor regions and
other regions varies during free generation in response to task-specific
spatiotemporal demands.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.06.024.
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