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Abstract

This work considers the problem of reconstructing a phylogenetic tree from triplet-dissimilarities, which are dissimilarities
defined over taxon-triplets. Triplet-dissimilarities are possibly the simplest generalization of pairwise dissimilarities, and were
used for phylogenetic reconstructions in the past few years. We study the hardness of finding a tree best fitting a given triplet-
dissimilarity table under the `∞ norm. We show that the corresponding decision problem is NP-hard and that the corresponding
optimization problem cannot be approximated in polynomial time within a constant multiplicative factor smaller than 1.4. On the
positive side, we present a polynomial time constant-rate approximation algorithm for this problem. We also address the issue of
best-fit under maximal distortion, which corresponds to the largest ratio between matching entries in two triplet-dissimilarity tables.
We show that it is NP-hard to approximate the corresponding optimization problem within any constant multiplicative factor.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Phylogenetic reconstruction methods attempt to find the evolutionary history of a given set of extant species (taxa).
This history is usually described by an edge-weighted tree whose internal vertices represent past speciation events
(extinct species) and whose leaves correspond to the given set of taxa. The amount of evolutionary change between
two subsequent speciation events is indicated by the weight of the edge connecting them. It is usually assumed
(for uniqueness of representation) that internal edges1 have strictly positive weights. Distance-based phylogenetic
reconstruction methods typically try to reconstruct this evolutionary tree from estimates of distances (sum of weights)
along edges in this tree.

Most common distance-based reconstruction algorithms receive as input a dissimilarity matrix D, where D(i, j)
is an estimate of the distance between taxa i and j . A dissimilarity matrix is said to be additive if it can be realized
by distances along the edges of a tree whose leaves are the elements of S [3]. There are numerous algorithms which
reconstruct a tree given its additive metric, the earliest of which appeared in [3,13,14]. However, in reality we are
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1 An edge is external if it is adjacent to a leaf, and is internal otherwise.
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Fig. 1. C(i, j, k) is the inner vertex of degree 3 in the claw spanned by i, j, k. DT (i; jk) is the weight of the path connecting i and C(i, j, k).

unable to obtain accurate distance estimates, and the input dissimilarity matrix is rarely additive. In such a case, a
natural goal is to reconstruct a tree fitting the input matrix in some way. One approach is to return a tree whose
implied metric is ‘close’ to the input under a certain distance norm. Unfortunately, finding a tree closest to a given
dissimilarity matrix was shown to be NP-hard under the `1 and `2 norms in [4], and under the `∞ norm in [1]. [1]
also presents a 3-approximation algorithm for the problem of finding the tree closest, under `∞, to an arbitrary metric;
another 3-approximation algorithm for this problem was presented later in [8].2

In this paper we study the problem of reconstructing a phylogenetic tree based on estimates of triplet-distances.
Given an edge-weighted tree T and three taxa i, j, k, we denote by C(i, j, k) the inner vertex of degree 3 in the claw
spanned by i, j, k (see Fig. 1), and by DT (i; jk) the weight of the path connecting i and C(i, j, k). Note that for all
k ∈ S, DT (i; jk)+DT ( j; ik) = DT (i, j), and in particular DT (i; j j) = DT (i, j). Hence, triplet-distances generalize
the classical notion of pairwise-distances.

A triplet-dissimilarity table contains estimates of all triplet-distances over a given taxon-set. A function
τ : S × S × S → R+ is a valid triplet-dissimilarity table iff it satisfies the following properties:

1. τ(i, i, j) = 0
2. τ(i, j, k) = τ(i, k, j)
3. τ(i, j, j) = τ( j, i, i).

For such a function we denote: τ(i; jk)
4
= τ(i, j, k) and τ(i, j)

4
= τ(i, j, j).

There are several previous works which propose algorithms for reconstructing trees from triplet-dissimilarity tables.
In [11], triplet-dissimilarities are used to obtain more accurate estimates of pairwise-distances for Saitou and Nei’s
Neighbor Joining algorithm (commonly referred to as NJ) [12]. [10] generalizes NJ to receive as input m-dissimilarity
maps, which contain the total weights of all subtrees spanned by subsets of m taxa. In [8] we present a family of
algorithms (DLCA) which construct trees from estimates of triplet-distances from a single root-taxon r , meaning that
the input is a symmetric matrix Lr , where Lr (i, j) is an estimate of DT (r; i j). We show there that a tree whose
triplet-distances {DT (r; i j) : i, j ∈ S} are closest to Lr under `∞ can be constructed in O(n2) time. In this paper we
show that it is NP-hard to find an edge-weighted tree T whose entire triplet-distance table {DT (i; jk) : i, j, k ∈ S} is
closest to a given triplet-dissimilarity table under `∞.

The `∞ norm measures the maximal difference between corresponding entries in two triplet-dissimilarity tables:

||τ1, τ2||∞
4
= max

i, j,k∈S
{|τ1(i; jk) − τ2(i; jk)|}.

Another distance measure we refer to is maximal distortion [2], which is related to the maximal ratio between such
entries:

MaxDist(τ1, τ2)
4
= max

i, j,k∈S

{
τ1(i; jk)

τ2(i; jk)

}
· max

i, j,k∈S

{
τ2(i; jk)

τ1(i; jk)

}
(where 0/0

4
= 1).

We note that maximal distortion seems to be the most relevant criterion for the evolutionary models assumed in [5,6]
and numerous subsequent works.

Consider the decision version of the ‘best-fit to triplet-dissimilarities’ problem: given a triplet-dissimilarity table
τ and a non-negative number K , is there a tree T such that ||DT , τ ||∞ ≤ K ? In Section 2 this decision problem is
shown to be NP-hard by a polynomial reduction from 3SAT. In Section 3 we refine the analysis of the reduction to
show that it is NP-hard to find a tree whose distance to the input under `∞ is less than 1.4 times that of the closest

2 The 3-approximation ratio of the algorithms in [1,8] is proved under the assumption that the input dissimilarity matrix is a metric, meaning that
it satisfies the triangle inequality [D(x, y) +D(y, z) ≥ D(x, z)].
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Fig. 2. The topology of a tree satisfying A1–2.

tree. In Section 4 we present few other related hardness results implied by our reduction, including the NP-hardness
of approximating maximal distortion for triplet-dissimilarities by any multiplicative constant. In Section 5 we give an
upper bound on the approximation ratio of this problem by showing that a constant-rate approximation for the closest
tree to a dissimilarity matrix implies also a constant-rate approximation for the closest tree to a triplet-dissimilarity
table. We conclude with a short discussion of some relevant open questions.

2. A reduction from 3SAT to the ‘best-fit to triplets under `∞’ problem

In this section we present a reduction from 3SAT to the decision version of the ‘best-fit to triplets under `∞’
problem. This reduction transforms a 3CNF formula ϕ into a valid triplet-dissimilarity table τϕ satisfying three
requirements (where ∆ is a positive constant independent of ϕ):

POLY τϕ can be computed in polynomial time given ϕ.
SAT If ϕ is satisfiable, then there is a tree T s.t. ||DT , τϕ ||∞ ≤ ∆.

UNSAT If ϕ is unsatisfiable, then for every tree T , ||DT , τϕ ||∞ > ∆.

Similar to the reduction presented in [1] for the problem of fitting trees to dissimilarity matrices, we first transform
the formula ϕ into a set of upper and lower bounds on some triplet-distances of a tree T (see A1–B3 and Fig. 2).
UNSAT is proven by showing that a tree satisfying all these bounds implies a satisfying assignment to ϕ (Lemma 2.5).
These bounds are enforced by the triplet-dissimilarity table τϕ in the following way: A bound DT (i; jk) ≤ ωi jk is
enforced by τϕ(i; jk) = ωi jk − ∆, and a bound DT (i; jk) ≥ ωi jk is enforced by τϕ(i; jk) = ωi jk + ∆. Clearly, a
tree T satisfying ||DT , τϕ ||∞ ≤ ∆ is guaranteed to obey all bounds.3

Requirement POLY will be obvious from the description of the transformation. To prove SAT we show that
a satisfying assignment to ϕ implies a tree satisfying all bounds (Lemma 2.6). In this tree, triplet-distances
corresponding to entries restricted by these bounds are set to satisfy the bounds with equality. Other triplet-
dissimilarities (not restricted by any bound) are undetermined, however each such dissimilarity falls within one of
the two intervals: [r − ∆, r + ∆] or [s − ∆, s + ∆]. Entries of τϕ corresponding to these dissimilarities are set to the
mid-point of the appropriate interval (r or s).

Let us start with some notations: A 3CNF formula ϕ over a set of variables {x1, x2, . . . , xn} is a conjunction of m
clauses ϕ = c1 ∧ c2 ∧ · · · ∧ cm , s.t. ∀ j = 1..m : c j = (l j

1 ∨ l j
2 ∨ l j

3 ), where l j
1 , l j

2 , l j
3 are literals (a literal is variable xi

or its negation x̄i ). For such a formula, we define a set of taxa:

Sϕ = {T ,F} ∪ {xi , x̄i : i = 1..n} ∪ {y j
1 , y j

2 , y j
3 : j = 1..m}.

We define the following set of bounds on triplet-dissimilarities over Sϕ with parameters α, β > 0 (Fig. 2 can be helpful
at this point):

A1 DT (T ,F) ≥ 2α + 2β

A2 ∀i = 1..n : DT (F; xi x̄i ) ≤ α ; DT (T ; xi x̄i ) ≤ α

B1 ∀ j = 1..m : DT (y j
1 ; l j

2 l j
3 ) ≤ α ; DT (y j

2 ; l j
1 l j

3 ) ≤ α ; DT (y j
3 ; l j

1 l j
2 ) ≤ α

B2 ∀ j = 1..m : DT (y j
1 ; T F) ≥ α ; DT (y j

2 ; T F) ≥ α ; DT (y j
3 ; T F) ≥ α

B3 ∀ j = 1..m : DT (T ; y j
1 y j

2 ) ≤ α ; DT (T ; y j
1 y j

3 ) ≤ α ; DT (T ; y j
2 y j

3 ) ≤ α.

3 Note that in order to keep all entries of τϕ non-negative, we need that ∆ ≤ ωi jk whenever ωi jk is an upper bound on the corresponding entry.
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Fig. 3. Proof of Lemma 2.1(2).

Let T be a tree satisfying A1–B3 above. Denote the mid-point of the path connecting T and F in this tree by vϕ . Note
that restriction A1 implies that T and F are at distance of at least α + β from vϕ . Denote by vT and vF the points
whose distance from vϕ , on the paths leading to T and F respectively, is exactly β. For the sake of the analysis below,
we treat the three points vϕ, vT , vF as vertices in the tree (possibly of degree 2), and assume that T is rooted at vϕ

(see Fig. 2).
We now describe and prove the topological restrictions implied by these bounds. Our proof is based on two simple

connections between distances and topological properties of quartets (subtrees spanned by four taxa), which we bring
next. For vertices x, y in T , denote by path(x, y) the path in T connecting x and y.

Lemma 2.1. For all taxa u, v, y in T , we have

1. If DT (F; uv) ≤ α and DT (T ; uv) ≤ α, then either u is a descendant of vT and v is a descendant of vF or vice
versa.

2. If both u and v are descendants of vF , and DT (y; uv) ≤ DT (y; T F) then y is also a descendant of vF .

Proof. 1. Since DT (F; uv) + DT (T ; uv) ≤ 2α < 2α + 2β ≤ DT (F, T ) (by the assumption and bound A1), we
must have that C(u, T ,F) and C(v, T ,F) are distinct vertices on path(F, T ). In addition, the assumption also
implies that one of them is at a distance at most α from T and the other is at a distance at most α from F , which
proves the claim.

2. Let z be the father of vF (possibly z = vϕ). Notice that the edge (z, vF ) is in path(T ,F) (see Fig. 3). Since both
u and v are descendants of vF , we have that if y is not a descendant of vF , then the path from y to path(u, v) must
contain the edge (z, vF ), and hence DT (y; uv) ≥ DT (y; T F) + w(z, vF ) > DT (y; T F), a contradiction. �

As a direct consequence of A2 and Lemma 2.1(1) above, we have the following:

Corollary 2.2. For each i = 1..n, one of the vertices xi , x̄i is a descendant of vT and the other is a descendant of vF
(see Fig. 2).

The above corollary leads to a natural transformation between trees satisfying A1–2 and truth-assignments to the
variables x1..xn : σT (xi ) = TRUE if xi is a descendant of vT and σT (xi ) = FALSE otherwise. The consistency of this
assignment is guaranteed by Corollary 2.2. Lemma 2.1 (2), and B1-2 lead to the following corollaries:

Corollary 2.3. Let j ∈ {1, . . . , m}, and let {a, b, c} = {1, 2, 3}. If l j
a and l j

b are descendants of vF , then y j
c is also a

descendant of vF .

Corollary 2.4. If for some j = 1..m, l j
1 , l j

2 , l j
3 are all descendants of vF , then the bounds in B3 cannot hold.

Proof. By Corollary 2.3, if l j
1 , l j

2 , l j
3 are all descendants of vF , then so are y j

1 , y j
2 , y j

3 . This implies, for instance, that

C(T , y j
1 , y j

2 ) is a descendant of vF as well, so DT (T ; y j
1 y j

2 ) ≥ DT (T , vF ) ≥ 2β + α > α, contradicting B3 . �

Note the slackness (of 2β) we have in the contradiction concluding the proof. This slackness is used to prove
hardness of approximation in Section 3. The following lemma concludes the discussion of unsatisfiable formulae:

Lemma 2.5. If T is an edge-weighted tree over the set of taxa Sϕ satisfying all bounds in A1–B3, then the assignment
σT satisfies the formula ϕ.
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Fig. 4. Construction of a tree given a satisfying assignment. The figure illustrates how to connect the y-taxa for each type of satisfied clause:
(a) All literals are satisfied (assigned TRUE). (b) Two literals (la , lb) are satisfied. (c) One literal (la ) is satisfied.

Proof. Assume, to the contrary, that σT does not satisfy some clause c j of ϕ. Then, by definition of σT , the taxa

l j
1 , l j

2 , l j
3 are all descendants of vF , and so by Corollary 2.4 the bounds in B3 cannot hold for T . �

Lemma 2.5 is later used to ensure requirement UNSAT. To show that SAT holds we first prove the following
lemma:

Lemma 2.6. If the formula ϕ is satisfiable, then there exists a tree T over the set of taxa Sϕ , satisfying A1–B3 with
equality.

Proof. Let σ be a satisfying assignment of ϕ. We will construct a tree T with only two internal vertices vT , vF , and
one internal edge of weight 2β connecting vT and vF . All external edges are of weight α, and all taxa are either
connected to vT or vF . T is connected to vT , F is connected to vF , and a literal-taxon l j

a is connected to vT if
σ(l j

a ) = TRUE, and to vF otherwise. It is easy to see that the bounds in A1–2 are satisfied by such a tree.
Taxa of the form y j

a are connected according to the following scheme (see Fig. 4): if l j
a is the only literal in clause

c j satisfied by σ , connect y j
a to vF ; otherwise connect it to vT . B2 is clearly satisfied by this construction. B3 is

satisfied, since at most one y-taxon is connected to vF for each clause. B1 is satisfied, since for {a, b, c} = {1, 2, 3}

the following holds: If l j
a , l j

b are connected to vF (vT ) then y j
c is connected to vF (vT respectively) as well. �

We now describe the reduction of the formula ϕ to a triplet-dissimilarity table τϕ : Entries of τϕ corresponding
to distances bounded in A1–B3 are set to enforce the corresponding bounds, as discussed in the beginning of this
section. The rest of the entries in τϕ , and the constant ∆, are set so that |DT (i; jk) − τϕ(i; jk)| ≤ ∆ will hold for
all taxon-triplets in the tree T described in the proof of Lemma 2.6, as follows. First, for all distinct i, j, k ∈ Sϕ

we have DT (i; jk) ∈ [α, α + 2β] (since all external edges are of length α, and the single internal edge is of length
2β). So we set the corresponding entries of τϕ (which do not appear in A1–B3) to α + β, and we set ∆ = β. This
guarantees that |DT (i; jk) − τϕ(i; jk)| ≤ ∆ for the corresponding entries. Similarly, for all distinct i, j ∈ Sϕ we
have DT (i; j j) = DT (i, j) ∈ [2α, 2α + 2β], so we set corresponding entries of τϕ to 2α + β. Thus, the entries of the
triplet-dissimilarity table τϕ are defined according to the following rules:

• τϕ(T ;FF) = τϕ(F; T T ) = 2α + 3β (A1)
• ∀i = 1..n : τϕ(F; xi x̄i ) = τϕ(T ; xi x̄i ) = α − β (A2)

• ∀ j = 1..m : τϕ(y j
1 ; l j

2 l j
3 ) = τϕ(y j

2 ; l j
1 l j

3 ) = τϕ(y j
3 ; l j

1 l j
2 ) = α − β (B1)

• ∀ j = 1..m : τϕ(T ; y j
1 y j

2 ) = τϕ(T ; y j
1 y j

3 ) = τϕ(T ; y j
2 y j

3 ) = α − β (B3)
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• ∀{s, t}( 6= {T ,F}) ⊆ Sϕ : τϕ(s; t t) = τϕ(t; ss) = 2α + β (arbitrary pairwise-distances)
• For all other entries : τϕ(s; tu) = α + β (arbitrary triplet-distances and B2).

We conclude with the following lemma:

Lemma 2.7. Let ϕ be a satisfiable formula, and let τϕ be the triplet-dissimilarity table as defined above, using any
values for α, β s.t. α ≥ β > 0. Then there exists a tree T over the set of taxa Sϕ , such that ||DT , τϕ ||∞ ≤ β.

Proof. The tree T corresponding to an assignment σ satisfying ϕ (as described in the proof of Lemma 2.6) fulfills
this requirement. The proof follows directly from the above discussion. �

Theorem 2.8. The decision version of the problem of finding a tree best fitting a given triplet-dissimilarity table under
the `∞ norm is NP-Hard.

Proof. By the polynomial time reduction from 3SAT described above. The reduction ϕ 7→ (τϕ,∆) is clearly
polynomial (requirement POLY). By Lemma 2.7, if ϕ is satisfiable then there exists a tree T , s.t. ||DT , τϕ ||∞ ≤ ∆
(SAT). If, on the other hand, ϕ is unsatisfiable, then by Lemma 2.5 there is no tree satisfying A1–B3. Due to the
construction of τϕ , this means that there is no tree T , s.t. ||DT , τϕ ||∞ ≤ ∆ (UNSAT). �

3. Hardness of approximation of the ‘best-fit to triplets under `∞’ problem

We prove hardness of approximation of this problem by showing that the reduction described in Section 2 satisfies
stronger requirements:

SAT’ If ϕ is satisfiable, then there is a tree T s.t. ||DT , τϕ ||∞ ≤ β.
UNSAT’ If ϕ is unsatisfiable, then for every tree T , ||DT , τϕ ||∞ ≥ 1.4β.

The first requirement is exactly SAT as phrased in the previous section, and so it follows from Lemma 2.7. UNSAT’
requires proving a stronger version of Lemma 2.5, for a δ-relaxed version of inequalities A1–B3, for some positive δ

which will be defined soon.

A’1 DT (T ,F) ≥ 2α + 2β − δ

A’2 ∀i = 1..n : DT (F; xi x̄i ) ≤ α + δ ; DT (T ; xi x̄i ) ≤ α + δ

B’1 ∀ j = 1..m : DT (y j
1 ; l j

2 l j
3 ) ≤ α + δ ; DT (y j

2 ; l j
1 l j

3 ) ≤ α + δ ; DT (y j
3 ; l j

1 l j
2 ) ≤ α + δ

B’2 ∀ j = 1..m : DT (y j
1 ; T F) ≥ α − δ ; DT (y j

2 ; T F) ≥ α − δ ; DT (y j
3 ; T F) ≥ α − δ

B’3 ∀ j = 1..m : DT (T ; y j
1 y j

2 ) ≤ α + δ ; DT (T ; y j
1 y j

3 ) ≤ α + δ ; DT (T ; y j
2 y j

3 ) ≤ α + δ.

Let T be a tree satisfying A’1–B’3 above for some δ <
2β
5 , and let vϕ be the mid-point of path(F, T ). Let vT and

vF be the points whose distance from vϕ is exactly β − 1.5δ on the paths to T and F respectively. Note that by A’1,
DT (F, vF ) ≥ α + δ and DT (T , vT ) ≥ α + δ (see Fig. 5). Using this, we prove a stronger version of Lemma 2.1:

Lemma 3.1. For all taxa u, v, y in T , we have

1. If DT (F; uv) ≤ α + δ and DT (T ; uv) ≤ α + δ, then either u is a descendant of vT and v is a descendant of vF
or vice versa.

2. If both u and v are descendants of vF , and DT (y; uv) < DT (y; T F) + DT (vT , vF ) then y is not a descendant
of vT .

Proof. 1. As in the proof of Lemma 2.1(1), since DT (F; uv) + DT (T ; uv) < DT (F, T ) we have that C(u, T ,F)

and C(v, T ,F) are distinct vertices on path(F, T ), one at distance at most α + δ from F and the other at distance
at most α + δ from T .

2. Assume, to the contrary, that y is a descendant of vT . Since both u and v are descendants of vF , the path from y
to path(u, v) must contain both vT and vF , which are both on path(F, T ) (see Fig. 6). Thus we must have that
DT (y; uv) ≥ DT (y; T F) + DT (vT , vF ), contradicting the assumption. �

The following corollaries follow from Lemma 3.1 and A’1–B’3:
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Fig. 5. The topology of a tree satisfying A’1–2.

Fig. 6. Proof of Lemma 3.1(2).

Corollary 3.2. Assume that δ <
2β
3 . Then for each i = 1..n, one of the vertices xi , x̄i is a descendant of vT and the

other is a descendant of vF .

Corollary 3.3. Assume that δ <
2β
5 . Let j be in {1, . . . , m}, and let {a, b, c} = {1, 2, 3}. If l j

a and l j
b are descendants

of vF , then y j
c is not a descendant of vT .

Notice that the relaxation of the bounds prevents us from proving (as in Corollary 2.3) that the y-taxa are
descendants of vF . However, the weaker claim in Corollary 3.3 is sufficient to contradict the bounds in B’3, due
to the slackness we had in the proof of Corollary 2.4:

Corollary 3.4. If for some j = 1..m, l j
1 , l j

2 , l j
3 are all descendants of vF , then the bounds in B’3 cannot hold.

Proof. By Corollary 3.3, if l j
1 , l j

2 , l j
3 are all descendants of vF , then none of y j

1 , y j
2 , y j

3 are descendants of vT . This

implies, for instance, that C(T , y j
1 , y j

2 ) is not a descendant of vT as well, so DT (T ; y j
1 y j

2 ) > DT (T , vT ) ≥ α + δ

(by definition of vT ), contradicting B’3 . �

This corollary leads us to the following:

Lemma 3.5. If there is an edge-weighted tree T over the set of taxa Sϕ satisfying ||DT , τϕ ||∞ < 1.4β, then the
formula ϕ is satisfiable.

Proof. A tree satisfying ||DT , τϕ ||∞ ≤ β + δ satisfies the δ-relaxed bounds in A’1–B’3 as well. So if ||DT , τϕ ||∞ <

1.4β, then T satisfies the δ-relaxed bounds for δ = ||DT , τϕ ||∞ − β < 2
5β. Now since A’1–2 hold, the assignment

σT is well defined (Corollary 3.2). Assume that σT does not satisfy some clause c j of ϕ. Then, by definition of σT ,

l j
1 , l j

2 , l j
3 are all descendants of vF , and by Corollary 3.3 the bounds in B’3 cannot hold — a contradiction. �

For a distance table τ , let O PT (τ ) be the minimal value k, for which there is a tree T s.t. ||DT , τ ||∞ ≤ k. By
Lemma 2.6, if ϕ is satisfiable then O PT (τϕ) ≤ β, and by Lemma 3.5, if ϕ is unsatisfiable then O PT (τϕ) ≥ 1.4β.
Thus if there was a polynomial time algorithmA which is guaranteed to approximate O PT (τ ) within a factor smaller
than 1.4, then satisfiability of a formula ϕ could be determined by executingA on τϕ and obtaining k = ||τϕ,A(τϕ)||∞.
If k < 1.4β then ϕ must be satisfiable, and if k ≥ 1.4β then ϕ is unsatisfiable. Hence it is NP-hard to find a tree which
approximates the optimal `∞ distance to a given triplet-dissimilarity table by a ratio smaller than 1.4.

4. Hardness of approximation of maximal distortion and other implied results

We now use the reductions presented in the previous sections to obtain several related hardness results. As the
constructions are similar to those in previous sections, most proofs in this section are only sketched.
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4.1. Hardness of approximation of maximal distortion

Recall the maximal distortion between two triplet-dissimilarity tables:

MaxDist(τ1, τ2)
4
= max

i, j,k∈S

{
τ1(i; jk)

τ2(i; jk)

}
· max

i, j,k∈S

{
τ2(i; jk)

τ1(i; jk)

}
(where 0/0

4
= 1).

We use a reduction similar to the one in Section 2 to prove that MaxDist of the closest tree cannot be approximated
by any multiplicative factor. First, note that scaling a tree by a multiplicative factor does not affect its MaxDist from
a given triplet-dissimilarity table. In other words, MaxDist(τ, DT ) = MaxDist(τ, D[γ T ]), where γ T is the weighted
tree obtained by multiplying edge weights of T by the positive constant γ . This means that if there is a tree T s.t.
MaxDist(τ, DT ) ≤ ρ, then there is a tree T ′ (obtained by re-scaling T ) s.t.

max
{

max
i, j,k∈S

{
τ(i; jk)

DT ′(i; jk)

}
, max

i, j,k∈S

{
DT ′(i; jk)

τ (i; jk)

}}
≤

√
ρ.

A 3 CNF formula ϕ is translated to a triplet-dissimilarity table τ̃ϕ which enforces the inequalities in A1–B3 through
bounds on maximal distortion as follows: An upper bound DT (i; jk) ≤ ω is enforced by setting τ̃ϕ(i; jk) =

ω
√

ρ
, and

a lower bound DT (i; jk) ≥ ω is enforced by setting τ̃ϕ(i; jk) =
√

ρω, where ρ ≥ 1 will soon be defined. By the
argument raised above, a tree whose MaxDist from τ̃ϕ is at most ρ implies a tree satisfying all bounds. We now show
how to set ρ and fill in the rest of the entries of τ̃ϕ , such that the tree T described in the proof of Lemma 2.6 satisfies
MaxDist(τ̃ϕ, DT ) ≤ ρ: Recall that in such a tree, triplet-dissimilarities not mentioned in A1–B3 fall within the interval
[α, α + 2β] for distinct-taxa triplets, and within the interval [2α, 2α + 2β] for taxon-pairs (see discussion following
Lemma 2.6). In order to allow triplet-dissimilarities within these intervals, we set ρ = max{

α+2β
α

,
2α+2β

2α
} = 1 + 2β

α
,

and set the relevant entries of τ̃ϕ to
√

ρ · α and
√

ρ · 2α (corresponding to distinct-taxa triplets and taxon-pairs
respectively). The following lemma ensures that τ̃ϕ and ρ have the desired properties:

Lemma 4.1. Let α, β > 0 be given, and let ρ = 1 + 2β
α

. Further, let τ̃ϕ be the triplet-dissimilarity table defined by
α, β and ρ as described above, then:

SAT” If ϕ is satisfiable, then there exists a tree T s.t. MaxDist(DT , τ̃ϕ) ≤ ρ.
UNSAT” If ϕ is unsatisfiable, then for every tree T , MaxDist(DT , τ̃ϕ) ≥ ρ(1 +

2β
3α

).

Proof (An Outline). SAT” is guaranteed by the tree construction described in the proof of Lemma 2.6 and by the
value we chose for ρ, as discussed above. UNSAT” is proved by adjusting the proof in Section 3. First, we define a
set of bounds A”1–B”3, obtained by a relaxation of A1–B3 by a multiplicative factor of δ > 1 as follows:

A”1 DT (T ,F) ≥ (2α + 2β)/δ

A”2 ∀i = 1..n : DT (F; xi x̄i ) ≤ αδ ; DT (T ; xi x̄i ) ≤ αδ

B”1 ∀ j = 1..m : DT (y j
1 ; l j

2 l j
3 ) ≤ αδ ; DT (y j

2 ; l j
1 l j

3 ) ≤ αδ ; DT (y j
3 ; l j

1 l j
2 ) ≤ αδ

B”2 ∀ j = 1..m : DT (y j
1 ; T F) ≥ α/δ ; DT (y j

2 ; T F) ≥ α/δ ; DT (y j
3 ; T F) ≥ α/δ

B”3 ∀ j = 1..m : DT (T ; y j
1 y j

2 ) ≤ αδ ; DT (T ; y j
1 y j

3 ) ≤ αδ ; DT (T ; y j
2 y j

3 ) ≤ αδ.

Next, we consider a tree satisfying the relaxed bounds, and define the internal points vT , vF to be at distance α+β
δ

−δα

from vϕ . To prove the analogue of Lemma 3.1(1), it is required that DT (F, T ) be strictly larger than 2αδ, which by

A”1 reduces to α+β
δ

− δα > 0, i.e. δ <

√
1 +

β
α

. Corollary 3.3 is proven by the analogue of Lemma 3.1(2). For this

we require α/δ + DT (vF , vT ) > αδ. Since DT (vF , vT ) = 2(
α+β

δ
− δα), this is equivalent to δ <

√
1 +

2β
3α

. This
latter upper bound on δ implies also the previous one, and hence if ϕ is unsatisfiable, there is no tree satisfying the

δ-relaxed bounds in A”1–B”3 for δ <

√
1 +

2β
3α

. In other words, there is no tree T satisfying:

max
{

max
i, j,k∈Sϕ

{
τ̃ϕ(i; jk)

DT (i; jk)

}
, max

i, j,k∈Sϕ

{
DT (i; jk)

τ̃ϕ(i; jk)

}}
<

√
ρ

(
1 +

2β

3α

)
.

This means that there is no tree whose MaxDist from τ̃ϕ is less than ρ(1 +
2β
3α

), as claimed. �
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Now, assume that there was a polynomial time algorithm A which given a triplet-dissimilarity table τ , was
guaranteed to return a tree whose MaxDist from τ is at most K -times the MaxDist of the closest tree to τ , for some
constant K . Such an algorithm may be used to efficiently deduce whether a formula ϕ is satisfiable in the following
way: given a formula ϕ, calculate τ̃ϕ with parameters α, β s.t. K < 1 +

2
3

β
α

. Execute algorithm A on this triplet-

dissimilarity table to receive a tree T , and calculate r = MaxDist(τ̃ϕ, DT ). Now, if r ≤ Kρ (where ρ = 1 + 2β
α

as
previously defined), then ϕ must be satisfiable due to UNSAT”. If, on the other hand, r > Kρ, then sinceA guarantees
a K -approximation, there is no tree whose MaxDist from τ̃ϕ is at most ρ. From SAT” it follows that ϕ is unsatisfiable.

4.2. Fitting distances of distinct-taxa triplets

Triplet-distance tables, as we defined them, contain entries corresponding to distinct-taxa triplets as well as entries
corresponding to taxon-pairs (i.e. τ(i; j j)). In some scenarios it is more natural to separately address pairwise
dissimilarities and triplet-dissimilarities. Therefore, we are interested in the problem of finding a best-fit tree to a
triplet-dissimilarity table τ , considering entries corresponding only to distinct-taxa triplets. The best-fit analysis can
be done under any of the `p norms or MaxDist. Results similar to the ones presented above apply in this case as
well. The only modification required in order to adapt the reduction to this case is changing the bounds in A1, which
correspond to the pairwise-distance between T and F . To ensure a similar bound, we introduce an additional taxon
into Sϕ : F ′, and replace A1 by:

A1 DT (T ;FF ′) ≥ 2α + 2β.

It is easy to see that this new bound implies the desired lower bound on the distance between T and F (i.e. A1).
The original set of bounds is, therefore, equivalent to this one, and all claims proven for it apply here as well. The
tree described in the proof of Lemma 2.6 is adapted to the introduction of F ′, by turning the original taxon F into
an internal vertex, and adding two zero-weight edges from this vertex to F,F ′. All triplet-dissimilarities concerning
F ′ are set to be equal to their counterparts concerning F . The analysis done in previous sections is easily adjusted to
accommodate this modification of the reduction.

4.3. Best-fit ultrametric

It is possible to generalize all hardness results shown in this paper for ultrametrics as well. A weighted tree is
called ultrametric if it contains a point which is equidistant from all leaves; this point may be an internal vertex, or
a degenerate (degree 2) vertex situated on one of the edges. The problem of finding a best-fit ultrametric to a given
dissimilarity matrix under `∞ (and MaxDist) was shown to have a polynomial time algorithm in [9,7].

In the case of triplet-dissimilarities, the same reductions presented in Sections 3 and 4.1 imply that it is NP-hard
to find (and to approximate) a best-fit ultrametric under the `∞ norm, as well as MaxDist. To see this, observe that if
ϕ is unsatisfiable, then the lower bounds proved for UNSAT’ in Lemma 3.5 and for UNSAT” in Lemma 4.1 (for `∞

and MaxDist respectively) are clearly valid when the trees are restricted to be ultrametrics. We are left to show that if
ϕ is satisfiable then there is an ultrametric tree satisfying all bounds. This follows from the fact that the construction
described in the proof of Lemma 2.6 yields an ultrametric tree, since the internal point vϕ is at the same distance
(α + β) from all taxa.

5. A constant-rate approximation scheme

In this section we present a constant-rate approximation algorithm for the problem of finding a closest tree under
`∞ to a given triplet-dissimilarity table. Our algorithm is based on an approximation algorithm for the corresponding
problem concerning pairwise-dissimilarities. The main result is stated in the following theorem.

Theorem 5.1. A polynomial time r-approximation algorithm for finding a tree closest under `∞ to a given
dissimilarity matrix implies a polynomial time ( 3

2r + 6)-approximation algorithm for finding a tree closest under
`∞ to a given triplet-dissimilarity table.

Our approximation algorithm, APP , consists of two stages:

APP1. Given a triplet-dissimilarity table τ over taxon-set S, calculate a dissimilarity matrix Dτ over S as follows:
∀i, j ∈ S : Dτ (i, j) = τ(i; j j).

APP2. Execute the r -approximation algorithm on Dτ to obtain an edge-weighted tree T out.
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To analyze the approximation ratio of the above algorithm, we start with some notations. For an arbitrary taxon-pair
i, j ∈ S, denote Dτ

min(i, j) = mink∈S{τ(i; jk) + τ( j; ik)}, and similarly Dτ
max(i, j) = maxk∈S{τ(i; jk) + τ( j; ik)}.

Furthermore, denote by I τ
= maxi, j∈S{Dτ

max(i, j) − Dτ
min(i, j)} the maximum difference between Dτ

max and Dτ
min.

The following lemma contains two basic inequalities required for the proof of our approximation result.

Lemma 5.2. Let τ be a triplet-dissimilarity table, and Dτ be the corresponding dissimilarity matrix defined inAPP1.
Further let T be an edge-weighted tree with corresponding additive distance matrix DT and triplet-dissimilarity table
τT . Then we have the following:

1
4

I τ
≤ ||τ, τT ||∞ ≤

3
2

(
I τ

+ ||Dτ , DT ||∞

)
.

Proof. First we prove that 1
4 I τ

≤ ||τ, τT ||∞. Let i, j be a taxon-pair s.t. Dτ
max(i, j) − Dτ

min(i, j) = I τ , and let kmax
be a taxon s.t. Dτ

max(i, j) = τ(i; jkmax) + τ( j; ikmax). Since τT (i; jk) + τT ( j; ik) = DT (i, j), for all k ∈ S, then:

Dτ
max(i, j) − DT (i, j) = [τ(i; jkmax) + τ( j; ikmax)] − [τT (i; jkmax) + τT ( j; ikmax)]

= [τ(i; jkmax) − τT (i; jkmax)] + [τ( j; ikmax) − τT ( j; ikmax)]

≤ 2||τ, τT ||∞. (1)

Similarly, if kmin is a taxon s.t. Dτ
min(i, j) = τ(i; jkmin) + τ( j; ikmin), then:

Dτ
min(i, j) − DT (i, j) ≥ −2||τ, τT ||∞. (2)

Now, since Dτ
max(i, j) − Dτ

min(i, j) = I τ , then by subtracting (2) from (1) we get I τ
≤ 4||τ, τT ||∞, thus proving the

left inequality.
We now turn to prove the right inequality of the lemma. Given an arbitrary taxon-triplet i, j, k ∈ S, denote

ε(i; jk) = τ(i; jk) − τT (i; jk). We will show that |ε(i; jk)| ≤
3
2 (I τ

+ ||Dτ , DT ||∞). First,

|ε(i; jk) + ε( j; ik)| = |[τ(i; jk) − τT (i; jk)] + [τ( j; ik) − τT ( j; ik)]|

= |[τ(i; jk) + τ( j; ik)] − [τT (i; jk) + τT ( j; ik)]|

= |τ(i; jk) + τ( j; ik) − DT (i, j)|

≤
∣∣τ(i; jk) + τ( j; ik) − Dτ (i, j)

∣∣ +
∣∣Dτ (i, j) − DT (i, j)

∣∣
≤

∣∣τ(i; jk) + τ( j; ik) − Dτ (i, j)
∣∣ + ||Dτ , DT ||∞

≤ I τ
+ ||Dτ , DT ||∞.

The last inequality follows from the fact that Dτ (i, j) = τ(i; j j) + τ( j; i j). Using a similar line of argument we get
|ε(i; k j) + ε(k; i j)|, |ε( j; ki) + ε(k; j i)| ≤ I τ

+ ||Dτ , DT ||∞ as well. This is used to obtain the desired bound as
follows:

|ε(i; jk)| =
1
2

|[ε(i; jk) + ε( j; ik)] + [ε(i; k j) + ε(k; i j)] − [ε( j; ki) + ε(k; j i)]|

≤
1
2

(|ε(i; jk) + ε( j; ik)| + |ε(i; k j) + ε(k; i j)| + |ε( j; ki) + ε(k; j i)|)

≤
3
2

(
I τ

+ ||Dτ , DT ||∞

)
. �

Our main result (Theorem 5.1) is directly implied by the following lemma:

Lemma 5.3. Given a triplet-dissimilarity table τ , denote by τ out the triplet-dissimilarity table induced by the output
tree T out returned by the algorithm APP . Then for every triplet-dissimilarity table τT induced by an arbitrary edge-
weighted tree T , we have:

||τ, τ out
||∞ ≤

(
3
2

r + 6
)

||τ, τT ||∞.
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Proof. Denote by Dτ the dissimilarity matrix computed in APP1, and by Dout and DT the metrics induced over the
leaves of T out and T , respectively. The lemma is proved by the following sequence of inequalities:

||τ, τ out
||∞ ≤

3
2

(
I τ

+ ||Dτ , Dout
||∞

)
(3)

≤
3
2

(
4||τ, τT ||∞ + ||Dτ , Dout

||∞

)
(4)

≤
3
2

(
4||τ, τT ||∞ + r ||Dτ , DT ||∞

)
(5)

≤

(
3
2

r + 6
)

||τ, τT ||∞. (6)

(3) and (4) follow from the right and left inequalities of Lemma 5.2, respectively. The approximation ratio of the
algorithm executed during APP2 implies (5). (6) follows from the fact that ||Dτ , DT ||∞ ≤ ||τ, τT ||∞, which holds
since Dτ (i, j) = τ(i; j j) and DT (i, j) = τT (i; j j) for every taxon-pair i, j ∈ S. �

By Theorem 5.1, the 3-approximation algorithms for pairwise dissimilarities presented in [1,8] imply a 10 1
2 -

approximation algorithm for triplet-dissimilarities. However, the 3-approximation ratio of the algorithms in [1,8]
is proved under the assumption that the input dissimilarity matrix is a distance metric. Therefore, this bound (of
10 1

2 ) is valid only if the matrix Dτ computed in APP1 satisfies the triangle inequality. When the triangle inequality
is not assumed, the analysis in [1,8] can be modified to yield a 6-approximation ratio, rather than the original 3-
approximation. This 6-approximation algorithm leads, by Theorem 5.1, to a 15-approximation of the closest tree to
an arbitrary triplet-dissimilarity table under `∞.

6. Discussion

In this paper we discussed the hardness of several problems of fitting a phylogenetic tree to a given triplet-
dissimilarity table. This question is motivated by several recent works which reconstruct trees using triplet-
dissimilarities [11,10,8]. The optimization criteria considered in this paper are the `∞ norm and MaxDist, which
measure the maximum discrepancy (difference and ratio respectively) between the input dissimilarities and the ones
induced by the desired tree. It is interesting to find out whether similar hardness results apply also for other common
distance measures such as the `1 and `2 norms.

The construction in Lemma 2.6 which implies our basic NP-hardness result yields a tree containing two vertices
of very high degree. Common models for phylogenetic trees assume a binary tree (meaning that all internal vertices
have degree 3). Furthermore, edge weights are assumed to lie within an interval [wmin, wmax], where wmin and wmax
are strictly positive constants independent of the size of the tree. It is interesting to find out whether our NP-hardness
results apply also when introducing these assumptions on the desired tree, and specifically what is the smallest ratio
between wmax and wmin mentioned above which still gives similar hardness results. Can this ratio be a constant
independent on n? Does the NP-hardness result apply also for binary trees with uniform edge weights?

Another question relates to the approximation ratio given in Section 5. Possibly, a better approximation ratio may
be obtained by a closer analysis of the algorithms in [1,8].
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