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Abstract

We present new types of regularity for nonlinear generalized functions, based on the notion of regular
growth with respect to the regularizing parameter of the Colombeau simplified model. This generalizes the
notion of G∞-regularity introduced by M. Oberguggenberger. A key point is that these regularities can be
characterized, for compactly supported generalized functions, by a property of their Fourier transform. This
opens the door to microanalysis of singularities of generalized functions, with respect to these regularities.
We present a complete study of this topic, including properties of the Fourier transform (exchange and
regularity theorems) and relationship with classical theory, via suitable results of embeddings.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The various theories of nonlinear generalized functions are suitable frameworks to set and
solve differential or integral problems with irregular operators or data. Even for linear problems,
these theories are efficient to overcome some limitations of the distributional framework. We
follow in this paper the theory introduced by Colombeau [1,2,10,19]. To be short, a special
Colombeau type algebra is a factor space G = X /N of moderate modulo negligible nets. The
moderateness (respectively the negligibility) of nets is defined by their asymptotic behavior when
a real parameter ε tends to 0.
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A local and microlocal analysis of singularities of nonlinear generalized functions has been
developed during the last decade, based on the notion of G∞-regularity [20]. A generalized func-
tion is G∞-regular if it has uniform growth bounds, with respect to the regularization parameter ε,
for all derivatives. In fact, this notion appears to be the exact generalization of the C∞-regularity
for distributions, in the sense given by the result of [20] which asserts that G∞ ∩ D′ is equal
to C∞.

In this paper we include G∞ and G in a new framework of spaces of R-regular nonlinear gen-
eralized functions, in which the growth bounds are defined with the help of spaces R of sequences
satisfying natural conditions of stability. One main property of those spaces is that the elements
with compact support can be characterized by a “R-property” of their Fourier transform. (Those
Fourier transforms belong to some regular subspaces of spaces of rapidly decreasing generalized
functions [8,22].) Thus, the parallel is complete with the C∞-regularity of compactly supported
distributions. Moreover, from this characterization, we deduce that the microlocal behavior of
a generalized function with respect to a given R-regularity is completely similar to the one of
a distribution with respect to the C∞-regularity. In particular, we can handle the R-wavefront
of an element of G as the C∞ one of a distribution. Finally, the G∞-regularity for an element
of G appears as a remarkable particular case. With this new notion of R-regularity, we enlarge
the possibilities for the study of the propagation of singularities through differential and pseudo
differential operators, and expect to be able to study nonlinear situations. A first attempt (in a
slightly different framework) as began in [6].

We want to emphasize here that this type of spaces also showed its efficiency in problems of
Schwarz kernel-type theorem. More precisely, we proved in [3] that some nets of linear maps
(parametrized by ε ∈ (0,1]), satisfying some growth conditions similar to those introduced for
R-regular spaces, give rise to linear maps between spaces of generalized functions. Moreover,
those maps can be represented by generalized integral kernel on some special R-regular sub-
spaces of G(Ω) in which the growth bounds are at most sublinear with respect to the order
of derivation. These results are due to the fact that the convolution admits an unity in these
R-regular spaces, whereas this is not true in G(Ω). Similar notions are also used in [25] for
another type of kernel problem in G(Ω). Finally, this kind of result has been extended in [5] to
kernel problems in spaces of tempered generalized functions.

The paper is organized as follows. In Section 2, we introduce the spaces of R-regular general-
ized functions and we precise some classical results about the embedding of D′ into these spaces.
Section 3 is devoted to the study of the space GS of rapidly decreasing generalized functions. In
particular, we show that O′

C , the space of rapidly decreasing distributions, is embedded in GS .
Thus, GS plays for O′

C the role that G plays for D′. Section 4 contains the material related to
Fourier transform of elements of GS and especially an exchange theorem which is, in the context
of R-regularity, an analogon and a generalization of the classical exchange theorem between O′

C

and OM . Section 5 gives the above mentioned characterization by Fourier transform of com-
pactly supported R-regular generalized functions whereas, in Section 6, we present the R-local
and R-microlocal analysis of generalized functions.

2. The sheaf of Colombeau simplified algebras and related subsheaves

2.1. Sheaves of regular generalized functions

Definition 1. We say that a subspace R of R
N+ is regular if R is non-empty and
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(i) R is “overstable” by translation and by maximum

∀N ∈R, ∀(k, k′) ∈ N
2, ∃N ′ ∈ R, ∀n ∈ N, N(n + k) + k′ � N ′(n), (1)

∀N1 ∈ R, ∀N2 ∈R, ∃N ∈ R, ∀n ∈ N, max
(
N1(n),N2(n)

)
� N(n). (2)

(ii) For all N1 and N2 in R, there exists N ∈R such that

∀(l1, l2) ∈ N
2, N1(l1) + N2(l2) � N(l1 + l2). (3)

Example 1. (i) The set B of bounded sequences and the set A of affine sequences are regular
subsets of R

N+, which is itself regular.
(ii) The set Log = {N ∈ R

N+ | ∃b ∈ R+, N :n �→ lnn + b} is not regular ((3) is not satisfied),
whereas L1

og = {N ∈ R
N+ | ∃(a, b) ∈ R

2+, N :n �→ a lnn + b} is regular. ((3) comes, for example,
from lnx + lny � 2 ln(x + y), for x > 0 and y > 0.)

Let Ω be an open subset of R
d (d ∈ N) and consider the algebra C∞(Ω) of complex valued

smooth functions, endowed with its usual topology. This topology can be described by the fam-
ily of seminorms (pK,l)K�Ω,l∈N defined by pK,l(f ) = supx∈K, |α|�l |∂αf (x)|. For any regular
subset R of R

N+, we set

XR(Ω)

= {
(fε)ε ∈ C∞(Ω)(0,1] ∣∣ ∀K �Ω, ∃N ∈ R, ∀l ∈N, pK,l(fε)=O

(
ε−N(l)

)
as ε →0

}
,

NR(Ω)

= {
(fε)ε ∈ C∞(Ω)(0,1] ∣∣ ∀K � Ω, ∀m ∈R, ∀l ∈ N, pK,l(fε) = O

(
εm(l)

)
as ε → 0

}
.

Proposition 1.

(i) For any regular subspace R of R
N+, the functor Ω →XR(Ω) defines a sheaf of differential

algebras over the ring

X (C) = {
(rε)ε ∈ C

(0,1] ∣∣ ∃q ∈ N, |rε| = O
(
ε−q

)
as ε → 0

}
.

(ii) The set NR(Ω) is equal to Colombeau’s ideal

N (Ω)

= {
(fε)ε ∈ C∞(Ω)(0,1] ∣∣ ∀K �Ω, ∀l ∈N, ∀m∈N, pK,l(fε)=O

(
εm

)
as ε →0

}
.

Thus, the functor NR :Ω →NR(Ω) defines a sheaf of ideals of the sheaf XR(·).
(iii) For any regular subspaces R1 and R2 of R

N+, with R1 ⊂ R2, the sheaf XR1(Ω) is a
subsheaf of the sheaf XR2(Ω).

Proof. We give the main ideas. (a) Algebraical properties. First, for a given Ω , properties (1)
and (2) imply that XR(Ω) is stable by multiplication by elements of XM(R) and by sum. Then
property (3), combined with the Leibniz rule, renders XR(Ω) stable by product. Finally, for
the equality NR(Ω) = N (Ω), take first (fε) ∈ NR(Ω). For any K � Ω , l ∈ N and m ∈ N,
choose N ∈ R. According to (1), there exists N ′ ∈ R such that N + m � N ′. Thus, pK,l(fε) =
O(εN ′(l)) = O(εm) and (fε) ∈ N (Ω). Conversely, given (fε)ε ∈ N (Ω) and N ∈ R, we have
pK,l(fε) = O(εN(l)) since this estimates holds for all m ∈ N.
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(b) Sheaf properties. The proof follows the same lines as in the case of Colombeau simplified
algebras (see [10, Theorem 1.2.4]). First, the definition of restriction (by mean of restriction of
representatives) is straightforward. For the sheaf properties, we have to replace Colombeau’s
usual estimates by XR-estimates. In each place where these estimates appear, we have only to
consider a finite number of terms by compactness properties. Thus, the stability by maximum
of R (property (2)) induces the result. Finally, point (iii) of the proposition follows directly from
the obvious inclusion XR1(Ω) ⊂ XR2(Ω). �

The sheaf GR(·) = XR(·)/NR(·) = XR(·)/N (·) turns to be a sheaf of differentiable alge-
bras on the ring XM(C)/N (C) with

N (K) = {
(rε) ∈ K

(0,1] ∣∣ ∀q ∈ N, |rε| = O
(
εq

)}
, K = R or K = C.

Definition 2. For any regular subset R of R
N+, the sheaf of algebras

GR(·) = XR(·)/NR(·)
is called the sheaf of R-regular algebras of (nonlinear) generalized functions.

Example 2. Taking R= R
N+, we recover the sheaf of Colombeau simplified or special algebras.

Notation 1. In the sequel, we shall write G(Ω) (respectively XM(Ω)) instead of GR
N+(Ω) (re-

spectively XR
N+(Ω)). For (fε)ε in XM(Ω) or XR(Ω), [(fε)ε] will be its class in G(Ω) or in

GR(Ω), since these classes are obtained modulo the same ideal. (We consider GR(Ω) as a sub-
space of G(Ω).)

Example 3. Taking R = B, introduced in Example 1, we obtain the sheaf of G∞-generalized
functions [20].

Example 4. Take a in [0,+∞] and set

R0 =
{
N ∈ R

N+
∣∣ lim

l→+∞
(
N(l)/ l

) = 0
}
,

Ra =
{
N ∈ R

N+
∣∣ lim sup

l→+∞
(
N(l)/ l

)
< a

}
, for a > 0.

For any a in [0,+∞], Ra is a regular subset of R
N+. The corresponding sheaves GRa (·) are the

sheaves of algebras of generalized functions with slow growth introduced in [3] and mentioned
in the introduction. Note that, for a in (0,+∞], a sequence N is in Ra iff there exists (a′, b) ∈
(R+)2 with a′ < a such that N(l) � a′l + b. The growth of the sequence N is at most linear.

For any regular subspace R of R
N+, the notion of support of a section f ∈ GR(Ω) makes sense

since GR(·) is a sheaf. The following definition will be sufficient for this paper.

Definition 3. The support of a generalized function f ∈ GR(Ω) is the complement in Ω of the
largest open subset of Ω where f is null.

Notation 2. We denote by GR
C (Ω) the subset of GR(Ω) of elements with compact support.
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Lemma 2. Every f ∈ GR
C has a representative (fε)ε , such that each fε has the same compact

support.

We shall not prove this result here, since Lemma 10 below gives the main ideas of the proof.

2.2. Some embeddings

As we need in the sequel some results related to the embeddings of classical spaces into the
spaces of nonlinear generalized functions, we recall and precise here such constructions. For any
regular subspace R of R

N+ and any Ω open subset of R
d , C∞(Ω) is embedded into GR(Ω) by

the canonical embedding

σ : C∞(Ω) → GR(Ω), f → [
(fε)ε

]
with fε = f for all ε ∈ (0,1].

For the embedding of D′(Ω) into G(Ω), we follow the ideas of [19]. Consider ρ ∈ S(Rd) such
that ∫

ρ(x)dx = 1,

∫
xmρ(x)dx = 0 for all m ∈ N

d \ {0}.

We now choose χ ∈ D(Rd) such that 0 � χ � 1, χ ≡ 1 on B(0,1) and χ ≡ 0 on R
d \ B(0,2).

Define

∀ε ∈ (0,1], ∀x ∈ R
d, θε(x) = 1

εd
ρ

(
x

ε

)
χ

(| ln ε|x)
.

Finally, consider (κε)ε ∈ (D(Rd))(0,1] such that

∀ε ∈ (0,1), 0 � κε � 1, κε ≡ 1 on
{
x ∈ Ω | d(

x,R
d \ Ω

)
� ε and d(x,0) � 1/ε

}
.

With these ingredients, the map

ι: D′(Ω) → G(Ω), T �→ (κεT ∗ θε)ε +N (Ω) (4)

is an embedding of D′(Ω) into G(Ω) such that ι|C∞(Ω) = σ . The proof is mainly based on the
following property of (θε)ε:∫

θε(x)dx = 1 + O
(
εk

)
as ε → 0, ∀m ∈ N

d \ {0},∫
xmθε(x)dx = O

(
εk

)
as ε → 0. (5)

Set

R1 = {
N ∈ R

N+
∣∣ ∃b ∈ R+, ∀l ∈ R, N(l) � l + b

}
. (6)

One can verify that the set R is regular and we set G(1)(·) = GR1(·). By refining the classical
proof (see [4]), we can show the proposition.

Proposition 3. The image of D′(Ω) by the embedding, defined by (4), is included in G(1)(Ω).
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These results are summarized in the following commutative diagram (all arrows are embed-
dings):

C∞(Ω)

σ

D′(Ω)

ι

G∞(Ω) G(1)(Ω) G(Ω).

(7)

3. Rapidly decreasing generalized functions

3.1. Definition and first properties

Spaces of rapidly decreasing generalized functions have been introduced in the literature
[8,22,23], notably in view of the definition of the Fourier transform in convenient spaces of
nonlinear generalized functions. We give here a more complete description of this type of space
in the framework of R-regular spaces.

Definition 4. We say that a subspace R′ of the space R
N

2

+ of maps from N
2 to R+ is regular if

(i) R′ is “overstable” by translation and by maximum

∀N ∈ R′, ∀(k, k′, k′′) ∈ N
3, ∃N ′ ∈R′, ∀(q, l) ∈ N

2,

N(q + k, l + k′) + k′′ � N ′(q, l), (8)

∀N1 ∈R′, ∀N2 ∈R′, ∃N ∈R′, ∀(q, l) ∈ N
2,

max
(
N1(q, l),N2(q, l)

)
� N(q, l). (9)

(ii) For any N1 and N2 in R′, there exists N ∈ R′ such that

∀(q1, q2, l1, l2) ∈ N
4, N1(q1, l1) + N2(q2, l2) � N(q1 + q2, l1 + l2). (10)

Example 5.

(i) The set B′ of bounded maps from N
2 to R+ is a regular subset of R

N
2

+ .

(ii) The set R
N

2

+ of all maps from N
2 to R+ is a regular set.

We consider Ω an open subset of R
d and the space S(Ω) of rapidly decreasing functions

defined on Ω , endowed with the family of seminorms Q(Ω) = (μq,l)(q,l)∈N2 defined by

μq,l(f ) = sup
x∈Ω, |α|�l

(
1 + |x|)q ∣∣∂αf (x)

∣∣.
Let R′ be a regular subset of R

N
2

+ and set

XR′
S (Ω)={

(fε)ε ∈ S(Ω)(0,1] ∣∣ ∃N ∈R′, ∀(q, l)∈N
2, μq,l(fε)=O

(
ε−N(q,l)

)
as ε →0

}
,

NR′
S (Ω)={

(fε)ε ∈ S(Ω)(0,1] ∣∣ ∀m∈R′, ∀(q, l) ∈ N
2, μq,l(fε)=O

(
εm(q,l)

)
as ε →0

}
.

Using the same techniques as in the proof of Proposition 1, we have NR′
S (Ω) = NS(Ω), with

NS(Ω) = {
(fε)ε ∈ S(Ω)(0,1] ∣∣ ∀(q, l) ∈ N

2, ∀m ∈ N, μq,l(fε) = O
(
εm

)
as ε → 0

}
.
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Thus, the functor NS :Ω → NS(Ω) defines a presheaf of ideals of the presheaf XR′
S (·). We also

have:

Proposition 4.

(i) For any regular subspace R′ of R
N

2

+ , the functor Ω →XR′
S (Ω) defines a presheaf (it allows

restrictions) of differential algebras over the ring X (C).

(ii) For any regular subspaces R′
1 and R′

2 of R
N

2

+ , with R′
1 ⊂ R′

2, the presheaf XR′
1

S (Ω) is a

subpresheaf of the presheaf XR′
2

S (Ω).

Definition 5. The presheaf GR′
S (·) = XR′

S (·)/NS (·) is called the presheaf of R′-regular rapidly
decreasing generalized functions.

As for the case of GR(·), the presheaf GR′
S (·) is a presheaf of differential algebras and a sheaf

of modules over the factor ring C = X (C)/N (C).

Example 6. Taking R′ = R
N

2

+ , we obtain the presheaf of algebras of rapidly decreasing general-
ized functions [8,22,23].

Notation 3. In the sequel, we shall note GS(Ω) (respectively XS(Ω)) instead of GR
N

2
+

S (Ω) (re-

spectively XR
N

2
+

S (Ω)). For all regular subset R′ and (fε)ε ∈XR′
S (Ω), [(fε)ε]S denotes its class

in GR′
S (Ω).

Example 7. Taking R′ = B′, we obtain the presheaf of G∞
S generalized functions or of regular

rapidly decreasing generalized functions.

Set

NS∗(Ω) = {
(fε)ε ∈ C∞(Ω)(0,1] ∣∣ ∀m ∈ N, ∀q ∈ N, μq,0(fε) = O

(
εm

)
as ε → 0

}
. (11)

We have the exact counterpart of Theorems 1.2.25 and 1.2.27 of [10] (the proof is similar):

Lemma 5. If the open set Ω is a box, i.e. the product of d open intervals of R (bounded or not)
then NS(Ω) is equal to NS∗(Ω) ∩XS(Ω).

3.2. Embeddings

The embedding of S(Rd) into GS(Rd) is done by the canonical injective map

σS : S
(
R

d
) → GS

(
R

d
)
, f �→ [

(fε)ε
]
S with fε = f for all ε ∈ (0,1].

In fact, the image of σS is included in GR′
S (Rd) for any regular subset of R′ ⊂ R

N
2

+ . For the
embedding of O′

C(Rd) into GS(Rd), we consider ρ ∈ S(Rd) which satisfies∫
ρ(x)dx = 1,

∫
xmρ(x)dx = 0 for all m ∈ N

d \ {0}. (12)
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Set

∀ε ∈ (0,1], ∀x ∈ R
d , ρε(x) = 1

εd
ρ

(
x

ε

)
. (13)

Theorem 6. The map

ιS : O′
C

(
R

d
) → GS

(
R

d
)
, u �→ [

(u ∗ ρε)ε
]
S (14)

is a linear embedding which commutes with partial derivatives.

Proof. Take u ∈ O′
C(Rd). As ρε ∈ S(Rd), uε ∗ ρε is in S(Rd) for all ε ∈ (0,1]. Consider q ∈ N.

The structure of elements of O′
C(Rd) [24] shows the existence of a finite family (fj )1�j�l(q) of

continuous functions such that (1 + |x|)qfj is bounded (for 1 � j � l(q)), and (αj )1�j�l(q) ∈
(Nd)l(q) such that u = ∑l(q)

j=1 ∂αj fj . In order to simplify notations, we shall suppose that this

family is reduced to one element f , that is u = ∂αf . Take now β ∈ N
d . We have

∀x ∈ R
d , ∂β(u ∗ ρε)(x) = ∂β

(
∂αf ∗ ρε

)
(x)

= (
f ∗ ∂α+β(ρε)

)
(x) =

∫
f (x − y)∂α+β(ρε)(y)dy

= ε−|α|−|β|
∫

f (x − εv)∂α+βρ(v)dv.

On one hand, there exists a constant C1 > 0 such that

∀(x, v) ∈ R
2d ,

∣∣f (x − εv)
∣∣ � C1

(
1 + |x − εv|)−q

.

On the other hand, as ρ is rapidly decreasing, there exists C2 > 0 such that ∂α+βρ(v) � C2 ×
(1 + |v|)−q−d−1. These estimates imply the existence of a constant C3 such that

∀x ∈ R
d ,

∣∣∂β(u ∗ ρε)(x)
∣∣�C3ε

−|α|−|β|
∫ ((

1+|x − εv|)(1+|v|))−q(
1+|v|)−d−1 dv.

We have (1 + |x − εv|) � (1 + ||x| − ε|v||). A short study of the family of functions φ|x|,ε : t �→
(1 + ||x| − εt |)(1 + t) for positive t shows that φ|x|,ε(t) � 1 + |x|. Consequently

∀x ∈ R
d ,

∣∣∂β(u ∗ ρε)(x)
∣∣ � C3ε

−|α|−|β|(1 + |x|)−q
∫ (

1 + |v|)−d−1 dv

� C4ε
−|α|−|β|(1 + |x|)−q

(C4 positive constant).

It follows that μq,l(u∗ρε) = O(ε−N(q,l)) as ε → 0 with N(q, l) = |α|+ l. (α may depends on q)
This shows that (u ∗ρε)ε belongs to XS(Rd). Finally, it is clear that (u ∗ρε)ε ∈NS(Rd) implies
that uε ∗ ρε → 0 in S ′, as ε → 0. As uε ∗ ρε → u as ε → 0, u is therefore null. �
Theorem 7. We have ιS|S(Rd ) = σS .

The proof is close to the one which asserts that diagram (7) is commutative [4].

Consider

R′
1 = {

N ′ ∈ R
N

2

+
∣∣ ∃N ∈R1, N ′ = 1 ⊗ N

}
, (15)
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where R1 is defined by (6). (This amounts to: N ∈R′
1 iff there exists b ∈ R+ such that N(q, l) �

l + b.) The set R′
1 is clearly regular and we note

G(1)

S
(
R

d
) = XR′

1
S

(
R

d
)
/NS

(
R

d
)
. (16)

Proposition 8. The image of O′
M(Rd) by ιS is included in G(1)

S (Rd).

Proof. Let u be in O′
M(Rd). According to the characterization of elements of O′

M(Rd) [11],
there exists a finite family (fj )1�j�l of rapidly decreasing continuous functions and (αj )1�j�l ∈
(Nd)l such that u = ∑l

j=1 ∂αj fj . For sake of simplicity, we shall suppose that u = ∂αf , with f

as above. For β ∈ N
d , the same estimates as in proof of Theorem 6 lead to the following property

∀q ∈ N, ∃Cq > 0, ∀x ∈ R
d,

(
1 + |x|)q ∣∣∂β(u ∗ ρε)(x)

∣∣ � Cqε−|α|−|β|,

since, in the present case, f is rapidly decreasing. (The only difference is here that f and α do
not depend on the chosen integer q .) Then μq,l(u ∗ ρε) � Cq ε−l−|α|. Our claim follows, with
N ′(q, l) = l + |α|, where |α| only depends on u. �

We can summarize Theorems 6, 7 and Proposition 8 in the following commutative diagram in
which all arrows are embeddings (compare with diagram (7)):

S(Rd)

σS

O′
M(Rd)

ιS

O′
C(Rd)

ιS

G(1)

S (Rd) GS(Rd).

(17)

Remark 1. In order to embed S ′(Rd) into an algebra playing the role of G(Rd) for D′(Rd),
a space Gτ (R

d) of tempered generalized functions is often introduced (see [1,10]). This space
Gτ (R

d) does not fit in the general scheme of construction of Colombeau type algebras, since
the growth estimates for Gτ (R

d) are not based on the natural topology of the space OM(Rd),
which replaces C∞(Rd) in this case. Although it is possible to construct a space Gτ (R

d) based
on the topology of OM(Rd), we do not need it in the sequel. Nevertheless, with the notations (12)
and (13), one can verify that the map

ιS ′ : S ′(
R

d
) → GS

(
R

d
)
, u �→ [(

(u ∗ ρε)ρ̂ε

)
ε

]
S

is a linear embedding.

4. Fourier transform and exchange theorem

4.1. Fourier transform in GS(Rd)

The Fourier transform F is a continuous linear map from S(Rd) to S(Rd). According to
[7, Proposition 3.2], F has a canonical extension FS from GS to GS defined by

GS
(
R

d
) → GS

(
R

d
)
, u �→ û =

[(
x �→

∫
e−ixξ uε(ξ)dξ

)
ε

]
S
, (18)

where (uε)ε ∈ XS(Rd) is any representative of u.
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The proof of this result uses mainly the continuity of F . More precisely, any linear contin-
uous map is continuously moderate in the sense of [7] and, therefore, admits such a canonical
extension.

Definition 6. The map FS defined by (18) is called the Fourier transform in GS .

In the same way, we can define F−1
S by

GS
(
R

d
) → GS

(
R

d
)
, u �→

[(
x �→ (2π)−d

∫
eixξ uε(ξ)dξ

)
ε

]
S
, (19)

where (uε)ε ∈XS(Rd) is any representative of u.

Theorem 9. FS :GS(Rd) → GS (Rd) is a one to one linear map, whose inverse is F−1
S .

Proof. Let u be in GS(Rd) and (uε)ε ∈ XS(Rd) be one of its representative. As representative
of F(F−1(u)), we can choose (ũε)ε defined by

∀ε ∈ (0,1], ∀x ∈ R
d , ũε(x) = (2π)−d

∫
eixξ ûε(ξ)dξ.

Since the Fourier transform is an isomorphism in S(Rd), we get ũε = uε , for all ε ∈ (0,1], and
FS(F−1

S (u)) = [(uε(x))ε]S = u. �
4.2. Regular subpresheaves of GS(·)

We introduce here some regular subpresheaves of GS(·) needed for our further microlocal
analysis.

Let R be a regular subset of R
N+ and set

Ru ={
N ′ ∈R

N
2

+
∣∣ ∃N ∈R, N ′ =1 ⊗ N

}; R∂ ={
N ′ ∈R

N
2

+
∣∣ ∃N ∈R, N =N ⊗ 1

}
.

In other words, N ′ ∈ Ru (respectively R∂ ) iff there exists N ∈ R such that N ′(q, l) = N(l)

(respectively N ′(q, l) = N(q)) or, equivalently, iff N only depends (in a R-regular way) of l

(respectively q).

Notation 4. We shall write, with a slight abuse, Ru = {1} ⊗R, R∂ = R⊗ {1}.

Obviously, Ru (respectively R∂ ) is a regular subset of R
N

2

+ .

Example 8. Take R=R
N+. We set: Gu

S(·) = GRu

S (·) (respectively G∂
S(·) = GR∂

S (·)). In this case,
we have Ru = {1} ⊗ R

N+ (respectively R∂ = R
N+ ⊗ {1}).

The elements of Gu
S(Ω) (Ω open subset of R

d ) have uniform growth bounds with respect to
the regularization parameter ε for all factors (1 + |x|)q . For G∂

S(Ω), those bounds are uniform
for all derivatives. For G∞

S (Ω), introduced in Example 7, the uniformity is global, in some sense
stronger than the G∞-regularity considered for the algebra G. (In this last case, the uniformity is
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not required with respect to the compact sets.) We have the obvious embeddings for any regular
subset R of R

N+:

GR∂

S (Ω) G∂
S(Ω)

G∞
S (Ω) GS(Ω)

GRu

S (Ω) Gu
S(Ω)

. (20)

Example 9. The algebra G(1)

S (Rd) = XR′
1

S (Rd)/NS(Rd) introduced in relation (16) for the em-

bedding of O′
M(Rd) into GS(Rd) (Proposition 8) can be written as G(R1)u

S , with

R1 = {
N ∈ R

N+
∣∣ ∃b ∈ R+, ∀l ∈ R N(l) � l + b

}
.

As a first illustration of the properties of these spaces, we can show the existence of a canonical
embedding of algebras of compactly supported generalized functions into particular spaces of
rapidly decreasing generalized functions.

Lemma 10. Let R be a regular subset of R
N+ and u be in GR

C (Ω) (Ω open subset of R
d ), with

(uε)ε a representative of u. Let κ be in D(Ω), with 0 � κ � 1 and κ ≡ 1 on a neighborhood of
suppu. Then (κuε)ε belongs to XRu

S (Rd) and [(κuε)ε]S only depends on u and κ .

Proof. We first show that (κuε)ε is in XRu

S (Rd) and then the independence with respect to the
representation.

(a) There exists a compact set K ⊂ Ω such that, for all ε ∈ (0,1], suppκuε ⊂ K . It follows
that κuε is compactly supported and therefore rapidly decreasing. Moreover

∀(q, l) ∈ N
2, ∀ε ∈ (0,1], μq,l(κuε) � sup

x∈K

(
1 + |x|)q

pK,l(κuε) � CK,qpK,l(κuε),

CK,q > 0.

Thus, (κuε)ε belongs to XRu

S (Rd). Indeed, by using the Leibniz rule for estimating pK,l(κuε),
we can find a constant CK,q,κ > 0 such that

∀(q, l) ∈ N
2, ∀ε ∈ (0,1] μq,l(κuε) � CK,q,κpK,l(uε). (21)

(b) Let (ũε)ε be another representative of u and κ̃ be in D(Ω), with 0 � κ̃ � 1 and κ̃ = 1
on a neighborhood of supp ũ. Let L be a compact set such that suppκuε ∪ supp κ̃ ũε ⊂ L ⊂ Ω .
According to the previous estimate, we have

∀(q, l) ∈ N
2, ∀ε ∈ (0,1],

μq,l(κuε − κ̃ ũε) � μq,l

(
(κ − κ̃)uε

) + μq,l

(
κ̃(uε − ũε)

)
� CL,qpL,l

(
(κ − κ̃)uε

) + CL,qpL,l

(
κ̃(uε − ũε)

)
.

As κ = κ̃ on a closed neighborhood V of suppu, it follows that pV,l((κ − κ̃)uε) = 0. More-
over, for all m ∈ N, pL\V,l((κ − κ̃)uε) = O(εm) as ε → 0, since (L \ V ) ∩ suppu = ∅. Then
pL,l((κ − κ̃)uε) = O(εm) as ε → 0. As [(uε)ε] = [(ũε)ε], we have pL,l(κ̃(uε − ũε)) = O(εm) as
ε → 0. Then μq,l(κuε − κ̃ ũε) = O(εm) and [(κuε)ε]S = [(κ̃ũ)ε]S . �
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From Lemma 10, we deduce easily the following proposition.

Proposition 11. With the notations of Lemma 10, the map

ιC,S : GR
C (Ω) → GRu

S
(
R

d
)
, u �→ [

(κuε)ε
]
S

is a linear embedding.

From the embedding ιC,S , one can then verify that the Fourier transform of a compactly
supported generalized functions u ∈ GR(Ω), which can be straightforwardly considered as an
element of GC(Rd), is defined by one of the following equalities

F(u) = F
(
ιC,S(u)

) =
[(

x �→ (2π)−d

∫
W

eixξ uε(ξ)dξ

)
ε

]
S
,

where (uε)ε ∈ XR(Rd) is any representative of u and W any relatively compact neighborhood
of suppu.

4.3. Exchange and regularity theorems

Theorem 12 (Exchange theorem). For any regular subset R of R
N+, we have

F
(
GRu

S
(
R

d
)) = GR∂

S
(
R

d
)
, F

(
GR∂

S
(
R

d
)) = GRu

S
(
R

d
)
. (22)

The proof is based on the following refinement of a classical result [17] (the proof is left to
the reader).

Lemma 13. For all u ∈ S(Rd) and (q, l) ∈ N
2, there exists a constant Cq,l > 0 such that

μq,l(û) � Cq,l μl+d+1,q (u). (23)

Indeed, let R be a regular subset of RN+. (a) Take u ∈ GRu

S (Rd) and (uε)ε ∈ XRu

S (Rd) a
representative of u. There exists a sequence N ∈ R such that μr,q(uε) = O(ε−N(q)) as ε → 0,
for all r ∈ N. Lemma 13 implies that μq,l(ûε) = O(ε−N(q)) as ε → 0, for all l ∈ N. Thus, F(u) ∈
GR∂

S (Rd).

(b) Conversely, take u ∈ GR∂

S (Rd) and (uε)ε ∈ XR∂

S (Rd) a representative of u. There exists
a sequence N ∈ R such that μr,m(uε) = O(ε−N(r)) as ε → 0, for all r ∈ N. According to the
stability of regular sets, there exists a sequence N ′ ∈ R such that

∀l ∈ N, N(l + d + 1) � N ′(l).

Lemma 13 implies that μq,l(ûε) = O(ε−N ′(q)) as ε → 0, for all l ∈ N. Thus, F(u) ∈ GRu

S (Rd).
So, we proved the inclusions of the sets in the left-hand side of relations (22), into the sets of

the right-hand side. The equalities follow directly from a similar study with the inverse Fourier
transform.

Example 10. Take R=R
N+. We get F(G∂

S(Rd)) = Gu
S(Rd) and F(Gu

S(Rd)) = G∂
S(Rd), result

which is closely related to the classical exchange theorem between OM(Rd) and O′ (Rd).
C
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Indeed, take u ∈ O′
C(Rd) and consider (uε)ε = (u∗ρε)ε which is a representative of its image

by the embedding ιS . Its Fourier image F(ιS(u)) = [(ûρ̂ε)ε]S belongs to GS(Rd), with û ∈
OM(Rd) and ρ̂ε ∈ S(Rd). As limε→0 ρ̂ε = 1, we get limε→0(ûρ̂ε)ε ∈ OM(Rd). (For those limits,
we consider OM(Rd) equipped with its usual topology; see [16,24].) This shows the consistency
of our result with the classical one. The generalized function F(ιS(u)) belongs to a space of
rapidly decreasing generalized functions, but the limit of its representatives when ε → 0 is in a
space of functions of moderate growth.

Corollary 14 (Regularity theorem). We have F(G∞
S (Rd)) = G∞

S (Rd).

Proof. Apply Theorem 12 with R= B, the set of bounded sequences, for which Bu = B∂ . �
We can now complete diagram (20) in the case of Ω = R

d :

GR∂

S (Rd)

F

G∂
S(Rd)

FG∞
S (Rd) GS(Rd)

GRu

S (Rd) Gu
S(Rd)

. (24)

An interesting consequence of Corollary 14 is the following property, also proved in [8],
which is the equivalent for rapidly decreasing generalized functions of the result mentioned in
the introduction for the G∞-regularity: D′(Ω) ∩ G∞(Ω) = C∞(Ω) [20].

Proposition 15. We have O′
C(Rd) ∩ G∞

S (Rd) = S(Rd).

Proof. We follow here the ideas of [19] for the proof of the above mentioned result about
G∞(Rd). Let u be in O′

C(Rd) and set (uε)ε = (u ∗ ρε)ε . By assumption [(u ∗ ρε)ε]S is in
G∞
S (Rd). According to Corollary 14, FS([(u ∗ ρε)ε]S) is also in G∞

S (Rd). It follows that there
exists N ∈ N such that

∀q ∈ N, ∃Cq > 0, sup
ξ∈Rd

(
1 + |ξ |)q ∣∣û(ξ)ρ̂ε(ξ)

∣∣ � Cqε−N, for ε small enough.

By choice of ρ, ρ̂ε is an element of D(Rd). Moreover, a straightforward calculation shows that
ρ̂ε(ξ) = ρ̂(εξ), for all ξ ∈ R

d , with ρ̂ equal to 1 on a neighborhood of 0. It follows that, for all
q ∈ N, we have

∀ξ ∈ R
d ,

(
1 + |ξ |)q ∣∣û(ξ)

∣∣ �
(
1 + |ξ |)q ∣∣û(ξ)

∣∣(∣∣1 − ρ̂(εξ)
∣∣ + ∣∣ρ̂(εξ)

∣∣)
�

(
1 + |ξ |)q ∣∣û(ξ)

∣∣∣∣1 − ρ̂(εξ)
∣∣ + Cqε−N.

Since 1 − ρ̂(εξ) = ρ̂(0) − ρ̂(εξ) = −εξ
∫ 1

0 ρ̂′(εξ t)dt , with ρ̂′ bounded, there exists a constant
C > 0 such that

∀ξ ∈ R
d ,

(
1 + |ξ |)q ∣∣û(ξ)

∣∣ � C
(
1 + |ξ |)q ∣∣û(ξ)

∣∣ε|ξ | + Cqε−N.

As û is in OM(Rd), there exist m ∈ N and a constant C1 > 0 such that supξ∈Rd (1 +
|ξ |)−m+1|û(ξ)| � C1. Therefore, by setting C2 = max(CC1,Cq), we get
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∀ξ ∈ R
d,

(
1 + |ξ |)q ∣∣û(ξ)

∣∣ � C2
((

1 + |ξ |)q+m−1
ε|ξ | + ε−N

)
� C2

((
1 + |ξ |)q+m

ε + ε−N
)
.

By minimizing the function fξ : ε �→ (1 + |ξ |)q+mε + ε−N , we get the existence of a constant
C3 > 0 such that

∀ξ ∈ R
d,

(
1 + |ξ |)q ∣∣û(ξ)

∣∣ � C3
((

1 + |ξ |)N(q+m)/(N+1))
, and

∀ξ ∈ R
d,

∣∣û(ξ)
∣∣ � C3

((
1 + |ξ |)−q/(N+1)+mN/(N+1))

,

for all q ∈ N. (m only depends on u.) Treating the derivatives in the same way, we obtain the
same type of estimates. Therefore û and its derivatives are rapidly decreasing. This shows that
O′

C(Ω) ∩ G∞
S (Ω) ⊂ S(Ω). As the other inclusion is obvious, our claim is proved. �

5. Global regularity of compactly supported generalized functions

5.1. C∞-regularity for compactly supported distributions

In order to render easier the comparison between the distributional case and the generalized
case, we are going to recall the classical theorem and complete it by some equivalent statements.

Theorem 16. For u in E ′(Rd), the following equivalences hold:

(i) u ∈ C∞(
R

d
) ⇔ (ii) F(u) ∈ S

(
R

d
)

⇔ (iii) F(u) ∈ S∗
(
R

d
)

⇔ (iv) F(u) ∈O′
M

(
R

d
)

⇔ (v) F(u) ∈O′
C

(
R

d
)
.

Proof. The equivalence (i) ⇔ (ii) is the classical result. The trivial inclusion S(Rd) ⊂ S∗(Rd)

shows (ii) ⇒ (iii). Then, the structure of elements of O′
M(Rd) [21] shows that S∗(Ω) is canon-

ically embedded in O′
M(Rd): this shows (iii) ⇒ (iv). As O′

M(Rd) ⊂ O′
C(Rd), (iv) ⇒ (v) is

obvious. For (v) ⇒ (i), note that F(u) belongs to OM(Rd) and better to OC(Rd) since u is in
E ′(Rd). (This last assertion is a refinement of the classical previous one.) Then, if (v) holds, F(u)

is in OC(Rd) ∩O′
C(Rd) which is equal to S(Rd) [21]. Then (ii) holds. �

Theorem 16 shows, at least, that there is no need to consider spaces of functions with all the
derivatives rapidly decreasing to characterize elements of E ′(Rd) which are C∞. In fact, we can
only consider functions rapidly decreasing, with no other hypothesis on the derivatives. A sim-
ilar situation holds for generalized functions, justifying the introduction of rough generalized
functions in the following subsection.

5.2. Rough rapidly decreasing generalized functions

5.2.1. Definitions
Let R be a regular subset of R

N+ and Ω an open subset or R
d . Set

S∗(Ω) = {
f ∈ C∞(Ω) | ∀q ∈ N, μq,0(f ) < +∞}

,

XR
S (Ω) = {

(fε)ε ∈ S∗(Ω)(0,1] ∣∣ ∃N ∈ R, ∀q ∈ N, μq,0(fε) = O
(
ε−N(q)

)
as ε → 0

}
,
∗
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NS∗(Ω) = {
(fε)ε ∈ S∗(Ω)(0,1] ∣∣ ∀N ∈ R

N+, ∀q ∈ N, μq,0(fε) = O
(
εN(q)

)
as ε → 0

}
.

(25)

One can show that XR
S∗(Ω) is a subalgebra of S∗(Ω)(0,1] and NS∗(Ω) an ideal of XR

S∗(Ω). (The
proof is similar to that of Proposition 1.)

Definition 7. The space GR
S∗(Ω) = XR

S∗(Ω)/NS∗(Ω) is called the algebra of R-regular rough
rapidly decreasing generalized functions.

Example 11. Taking R = R
N+, we obtain the space GS∗(Ω) of rough rapidly decreasing gener-

alized functions.

Example 12. Taking R = B, the set of bounded sequences, we obtain the space G∞
S∗(Ω), of

regular rough rapidly decreasing generalized functions.

Lemma 5 implies immediately the following proposition.

Proposition 17. If the open set Ω is a box and R′ a regular subset of R
N

2

+ , then GR′
S (Ω) is

included in GR′
0

S∗ (Ω), where R′
0 is the regular subset of R

N+ defined by

R′
0 = {

N(·,0), N ∈ R′}.
Example 13. If Ω is a box, for all R⊂ R

N+, GR∂

S (Ω) is included in GR
S∗(Ω).

Indeed, R∂ = R⊗ {1}, which implies that (R∂ )0 = R. Let us mention two other applications
of Proposition 17.

Corollary 18. If the open set Ω is a box, then

(i) GS(Ω), obtained for R′ = RN
2

+ , is included in GS∗(Ω).
(ii) G∞

S (Ω), obtained for R′ = B′, is included in G∞
S∗(Ω).

Indeed, (i) (respectively (ii)) holds, since (RN
2

+ )0 = R
N+ (respectively (B′)0 = B′). Note that

the proof of Proposition 15 shows also that G∞
S∗(R

d) ∩O′
C(Rd) = S∗(Rd).

We turn to the question of embeddings. First, the structure of elements of O′
C(Rd) [16,21]

shows that S∗(Rd) is canonically embedded in O′
C(Rd). The embedding of S(Rd) into GS∗(R

d)

is done by the canonical injective map

σS∗ : S∗
(
R

d
) → GS∗

(
R

d
)
, f �→ (fε)ε +NS∗

(
R

d
)

with fε = f for ε ∈ (0,1].
Finally, a simplification of the proofs of Theorems 6, 7 and Proposition 8 leads to the following
theorem, where (ρε)ε is defined by (12) and (13).

Theorem 19.

(i) The map

ιS∗ : O′
C

(
R

d
) → GS∗

(
R

d
)
, u �→ (u ∗ ρε)ε +NS∗

(
R

d
)

is a linear embedding which commutes with partial derivatives.
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(ii) We have: ιS∗|S∗(Rd ) = σS∗ .
(iii) We have: ιS∗(O′

M(Rd)) ⊂ G∞
S∗(R

d).

Remark 2. Theorems 6, 7 and 19 combined together show that all the arrows are injective and
all the diagrams commutative in the following schemes:

S(Rd) S∗(Rd)

O′
C(Rd)

GS(Rd) GS∗(R
d)

S(Rd) S∗(Rd)

O′
M(Rd)

Gu
S(Rd) G∞

S∗(R
d)

5.2.2. Fourier transform in GS∗(R
d)

We need in the sequel to define a Fourier transform (or an inverse Fourier transform) in
GR
S∗(R

d). This is done in the following way. Set, for any regular subspace R of R
N+,

XB(Ω) = {
(fε)ε ∈ C∞(Ω)(0,1] ∣∣ ∃N ∈ R

N+, ∀l ∈ N, μ0,l(fε) = O
(
ε−N(l)

)
as ε → 0

}
,

XR
B (Ω) = {

(fε)ε ∈ C∞(Ω)(0,1] ∣∣ ∃N ∈R, ∀l ∈ N, μ0,l(fε) = O
(
ε−N(l)

)
as ε → 0

}
,

NB(Ω) = {
(fε)ε ∈ C∞(Ω)(0,1] ∣∣ ∀N ∈ R

N+, ∀l ∈ N, μ0,l(fε) = O
(
εN(l)

)
as ε → 0

}
.

According to the general scheme of construction of Colombeau type algebras, GB(Ω) =
XB(Ω)/NB(Ω) is an algebra, called the algebra of bounded generalized functions. Moreover,
XR
B (Ω) is a subalgebra of XB(Ω). (The proof is similar to that of Proposition 1.) The space

GR
B (Ω) = XR

B (Ω)/NB(Ω) is called the space of R-regular bounded generalized functions.

Notation 5. We shall note [(fε)ε]B the class of (fε)ε in GR
B (Ω).

Remark 3. One can verify that GC(Ω) (respectively GR
C (Ω)) is embedded into GB(Ω) (respec-

tively GR
B (Ω)).

Proposition 20.

(i) For all u ∈ GS∗(R
d) and (uε)ε ∈ XS∗(R

d) a representative of u, the expression

û:

[
ûε =

(
ξ �→

∫
e−ixξ uε(x)dx

)
ε

]
B

(26)

defines an element of GB(Ω) depending only on u.
(ii) For any regular subspace R of RN+ and (uε)ε ∈ XR

S (Ω), we have (ûε)ε ∈ XR
B (Ω).

Proof. Assertion (i). Take u ∈ GS∗(R
d) and (uε)ε ∈ XS∗(R

d) a representative of u. Then
Lemma 13 (applied with q = 0) implies that

∀l ∈ N, ∃Cl > 0, ∀ε ∈ (0,1], μ0,l(ûε) � Cαμl+d+1,0(uε). (27)
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This estimate shows that (ûε)ε ∈ XB(Rd). Indeed, if (uε)ε is in XS∗(R
d), there exists a se-

quence N ∈ R such that μl,0(uε) = O(ε−N(l)) as ε → 0 and setting N1 : l �→ N(l + d + 1),
we get that μ0,l(ûε) = (ε−N1(l)) as ε → 0. According to the overstability by translation of the
subset R, (ûε)ε belongs to XB(Rd). Similar arguments show that, if (ηε)ε ∈ NS∗(R

d), then
(η̂ε)ε ∈NB(Ω). Therefore, relation (26) defines an element of GB(Rd), depending only on u.

Assertion (ii). The estimate (27) implies that the regularity of the sequences in the definition
of moderate elements transfers by Fourier transform from the space index q in the S∗-type spaces
to the derivative index l in the Colombeau type space (here of bounded functions), showing our
claim. �

We define the Fourier transform F∗ on GS∗(R
d) by the formula

F∗: GS∗
(
R

d
) → GB

(
R

d
)
, u �→

[(
x �→

∫
e−ixξ uε(ξ)dξ

)
ε

]
B
,

where (uε)ε ∈ XS∗(R
d) is any representative of u. (The inverse Fourier on GS∗(R

d) is defined
analogously.)

The assertion (ii) of Proposition 20 implies:

Proposition 21 (Small exchange theorem). We have F(GR
S∗) ⊂ GR

B (Rd).

5.3. GR-regularity for compactly supported generalized functions

We have now all the elements to formulate and prove the following fundamental theorem.

Theorem 22. Let R be regular subspace of R
N+. For u in GC(Rd), the following equivalences

hold:

(i) u ∈ GR(
R

d
) ⇔ (ii) F(u) ∈ GR∂

S
(
R

d
)

⇔ (iii) F(u) ∈ GR
S∗

(
R

d
)
.

Proof. (i) ⇒ (ii). As u is in GC(Rd)∩GR(Rd) = GR
C (Rd), u is in GRu

S (Rd) according to Propo-

sition 11. Then, applying Theorem 12, F(u) is in GR∂

S (Rd).

(ii) ⇒ (iii). We have GR∂

S (Rd) ⊂ GR
S∗(R

d), according to Example 13.

(iii) ⇒ (i). Let u be in GC(Rd), (uε)ε be a representative of u and K a compact set such
that suppuε ⊂ K , for all ε in (0,1]. We have FS(u) = [(ûε)ε]GS where ˆ denotes the classical
Fourier transform in S . By assumption FS(u) is in GR

S∗(R
d) and we can consider its inverse

Fourier transform F−1∗ , with F−1∗ (FS(u)) in GR
B (Rd) and

F−1∗
(
FS(u)

) = [(
F−1(ûε)

)
ε

]
B.

Using the classical isomorphism theorem in S , we have F−1(ûε) = uε for all ε in (0,1]. Then

F−1∗
(
FS(u)

) = [
(uε)ε

]
B.

Since all the uε have their support included in the same compact set, we obviously have
[(uε)ε]B = ιC,B(u), where ιC,B is the canonical embedding of GC(Rd) in GB(Rd). Therefore,
u ∈ GR

B (Rd) ∩ GC(Rd) = GR(Rd) ∩ GC(Rd). �
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Example 14. The case R = B in Theorem 22 gives a characterization of the global G∞-regularity
of compactly supported generalized functions.

Moreover, we can refine Theorem 22 in this particular case and prove:

Theorem 23. For u in GC(Rd), the following statements are equivalent:

(i) u ∈ G∞(
R

d
) ⇔ (ii) F(u) ∈ G∞

S
(
R

d
)

⇔ (iii) F(u) ∈ Gu
S
(
Rd

)
⇔ (iv) F(u) ∈ G∞

S∗
(
R

d
)
.

Indeed, (i) ⇒ (ii) and (iv) ⇒ (i) follow directly from Theorem 22 applied with R = B, since
B∂ = B′, the set of bounded elements of RN

2

+ . For (ii) ⇒ (iii), we have G∞
S (Rd) ⊂ Gu

S(Rd). For

(iii) ⇒ (iv), we remark that Gu
S(Rd) is obtained with R′ = {1} ⊗ R

N+ as regular subset of R
N

2

+ .
This implies that (R′)0 = B′, with the notations of Proposition 17.

6. Local and microlocal R-regularity

We follow here the presentation of [15] and show that, with the previously introduced mate-
rial, the GR-wavefront of a generalized function is defined exactly like the C∞-wavefront of a
distribution. First, as GR is a subsheaf of G, the following definition makes sense.

Definition 8. Let u be in G(Ω). The singular GR-support of u is the set

sing suppR u = Ω \ {
x ∈ Ω | ∃V ∈ Vx, u ∈ GR(V )

}
.

Proposition 24. GS∗ :Ω → GS∗(Ω) is a presheaf. It allows restrictions.

The proof is similar to the part (b) of the one of Proposition 4.

Notation 6. For (x, ξ) ∈ Ω × R
d \ {0} (Ω open subset of R

d ), we shall denote by:

(i) Vx (respectively VΓ
ξ ), the set of all open neighborhoods (respectively open convex conic

neighborhoods) of x (respectively ξ ),
(ii) Dx(Ω), the set of elements D(Ω) nonvanishing at x.

For Γ ∈ VΓ
ξ , we say that û ∈ GR

S∗(Γ ) if u|Γ ∈ GR
S∗(Γ ). Let us fix a regular subset R of R

N+
and set, for u ∈ GC(Rd),

OR(u) = {
ξ ∈ R

d \ {0} | ∃Γ ∈ VΓ
ξ û ∈ GR

S∗(Γ )
}
, ΣR(u) = (

R
d \ {0}) \ OR(u).

Lemma 25. For u ∈ GC(Rd) and ϕ ∈ D(Rd), OR(u) ⊂ OR(ϕu) (or, equivalently, ΣR(ϕu) ⊂
ΣR(u)).

Proof. Let (uε)ε ∈ X (Rd) be a representative of u with suppuε included in the same compact
set, for all ε in (0,1]. We have

ϕ̂uε(y) = ϕ̂ ∗ ûε(y) =
∫

ϕ̂(η)ûε(y − η)dη.
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Let ξ be in OR(u) and Γ ∈ VΓ
ξ such that û ∈ GR

S∗(Γ ). There exists an open conic neighborhood
Γ1 ⊂ Γ of ξ and a real number c ∈ (0,1) such that, for all (y, η) with y ∈ Γ1 and |η| � c|y|,
y − η ∈ Γ . Then

ϕ̂uε(y) =
∫

|η|�c|y|
ϕ̂(η)ûε(y − η)dη +

∫
|η|>c|y|

ϕ̂(η)ûε(y − η)dη

=
∫

|η|�c|y|
ϕ̂(η)ûε(y − η)dη

︸ ︷︷ ︸
v1,ε(y)

+
∫

|y−η|>c|y|
ϕ̂(y − η)ûε(η)dη

︸ ︷︷ ︸
v2,ε(y)

.

In order to estimate v1,ε , let us remark that û ∈ GR
S∗(Γ ). There exists a sequence N ∈ R such

that, for all q ∈ N, there exists a constant C1 > 0 with

∀(y, η) ∈ Γ1 × R
d with |η| � c|y|, ∣∣ûε(y − η)

∣∣ � C1ε
−N(q)

(
1 + |y − η|)−q

,

for ε small enough.
As, for |η| � c|y|, we have |y − η| � ||y| − |η|| � |y|(1 − c), it follows that

∀(y, η) ∈ Γ1 × R
d with |η| � c|y|, ∣∣ûε(y − η)

∣∣ � C1ε
−N(q)

(
1 + |y|(1 − c)

)−q
.

Since ϕ̂ is rapidly decreasing, we get the existence of a constant C2 > 0 such that

∀η ∈ R
d, ϕ̂(η) � C2

(
1 + |η|)−d−1

.

Replacing in the definition of |v1,ε(y)|, we get the existence of a constant C3 > 0 such that

∀y ∈ Γ1,
(
1 + |y|)q ∣∣v1,ε(y)

∣∣ � C3ε
−N(q)

∫ (
1 + |y|

(1 + |y|(1 − c))

)q 1

(1 + |η|)d+1
dη.

The function t �→ (1 + t)/(1 + t (1 − c)) is bounded on R+. It follows that the integral in the
previous inequality converges, we, finally, get a constant C4 > 0 such that

∀y ∈ Γ1
∣∣v1,ε(y)

∣∣ � C4ε
−N(q)

(
1 + |y|)−q

. (28)

For v2,ε , note that (uε)ε ∈ XS∗(R
d). Therefore, there exist M > 0 and C5 > 0 such that |ûε(η)| �

C5ε
−M(1 + |η|)−d−1 for ε small enough. As ϕ̂ ∈ S(Rd), there exists C6 > 0 such that

∀(y, η) ∈ Γ1 × R
d with |y − η| � c|y|,∣∣ϕ̂(y − η)

∣∣ � C6
(
1 + |y − η|)−q � C6

(
1 + c|y|)−q

.

Then |ϕ̂(y − η)| = O((1 + |y|)−q) as y → +∞. Thus, there exists a constant C7 > 0 such that

∀y ∈ Γ1,
∣∣v2,ε(y)

∣∣ � C7ε
−M

(
1 + |y|)−q

, for ε small enough. (29)

From (28) and (29), we get that, for all q ∈ N, there exists a constant C > 0 (depending on q)
such that

∀y ∈ Γ1,
∣∣ϕ̂uε(y)

∣∣ � Cε−(N(q)+M)
(
1 + |y|)−q

.

Since R is overstable by translation, there exists a sequence N ′(·) ∈ R such that N(·) +
M � N ′(·) and μq,0(ϕ̂uε) = O(ε−N ′(q)) as ε → 0. Finally, ϕ̂u = [(ϕ̂uε)ε]GS∗ ∈ GR

S∗(Γ1) and

ξ ∈ OR(ϕu). �
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Definition 9. An element u ∈ G(Ω) is said to be R microregular on (x, ξ) ∈ R
d × (Rd \ {0}) if

there exist ϕ ∈Dx(Ω) and Γ ∈ VΓ
ξ , such that ϕ̂u ∈ GR

S∗(Γ ).

We set, for u ∈ G(Ω) and x ∈ Ω ,

OR
x (u) =

⋃
ϕ∈Dx

OR(ϕu) = {
ξ ∈ (

R
d \ {0}) ∣∣ u is microregular on (x, ξ)

}
,

ΣR
x (u) =

⋂
ϕ∈Dx

ΣR(ϕu) = (
R

d \ {0}) \ OR
x (u).

Definition 10. For u ∈ G(Ω) the set

WFR(u) = {
(x, ξ) ∈ R

d × R
d \ {0} ∣∣ ξ ∈ ΣR

x (u)
}

is called the R-wavefront of u.

Proposition 26. For u ∈ G(Ω), the projection on the first component of WFR(u) is equal to
sing suppR u.

The proof of this proposition follows the same lines as the one for the C∞-wavefront of
a distribution. First, for u ∈ G(Ω) and ϕ ∈ D(Ω), ϕu, which is a priori in GC(Ω), can be
straightforwardly considered as an element of GC(Rd). As GC(Rd) is included in GS(Rd) (see
Proposition 11), the Fourier transform of ϕu can be defined. (In the distributional case, that is,
u ∈ D′(Ω), ϕu is identified to an element of E ′(Rd).) From this, we can follow the arguments
of [15, p. 253] for the C∞-wavefront, which use mainly the compactness of the sphere Sd−1 and
Lemma 25, which holds in both cases; see [15, Lemma 8.1.1] for the distributional case.

Example 15. Taking R= B, the set of bounded sequences, we recover the G∞-wavefront, which
has here a definition independent of representatives.

Example 16. Taking R = R1, we get a wavefront “containing” the distributional microlocal
singularities of a generalized function, since D′(·) is embedded in G(1)(·). This allows the study
of distributional type singularities for a generalized functions.

In [18], it is shown that the analog of this lemma holds for the analytic singularities of a gen-
eralized function, giving rise to the corresponding wavefront set and the projection property of
Proposition 26. Our future aim is to apply this theory to the propagation of singularities through
integral generalized operators [3]. We also refer the reader to [9,12–14,19] and the literature
therein for other presentations of the G∞-wavefront (which is a particular case of R-wavefront).
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