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a b s t r a c t

We define model structures on exact categories, which we call exact model structures. We
look at the relationship between these model structures and cotorsion pairs on the exact
category. In particular, when the underlying category is weakly idempotent complete, we
get Hovey’s one-to-one correspondence betweenmodel structures and complete cotorsion
pairs. We classify the right and the left homotopy relation in terms of the cotorsion
pairs and look at examples of exact model structures. In particular, we see that given
any hereditary abelian model category, the full subcategories of cofibrant, fibrant and
cofibrant–fibrant subobjects each has natural exact model structures equivalent to the
original model structure. These model structures each has interesting characteristics.
For example, the cofibrant–fibrant subobjects form a Frobenius category, whose stable
category is the same as the homotopy category of its model structure.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Exact categories were introduced by Quillen in [13]. These are additive categories, which may not have all kernels and
cokernels, but which have enough structure to allow for a notion of ‘‘short exact sequences’’. The axioms allow for a rather
thorough treatment of homological algebra, analogous to the traditional theory in an abelian category; for example, see [1].
But homological algebra itself is encompassed in Quillen’s notion of a model category and so there ought to be model
structures on exact categories describing homological algebra in these categories.

So, in this paper, we define and conduct a brief study of exact model structures. These are exact categories with a model
structure that is compatible in a nice way with short exact sequences. The precise statement is Definition 3.1 and is entirely
analogous to Hovey’s definition of an abelian model category, which appeared in [10]. However, a model category is usually
assumed to have, at least, all finite limits and colimits and more often now assumed to have all small limits and colimits.
As we explain in more detail in the beginning of Section 4, we do not need the full finite limit and colimit assumptions to
obtain the standard introductory results of homotopy theory, including the fundamental result on localization with respect
to the class of weak equivalences. In fact, all the limits and colimits needed already come under the definition of an exact
category. Therefore, we use the term exact model structure and reserve exact model category for the case where the category
does come equipped with all small limits and colimits.

We can also define cotorsion pairs in exact categories, and we see that Hovey’s correspondence between abelian model
structures and cotorsion pairs naturally carries over to a correspondence between exact model structures and cotorsion
pairs. However, only one direction of the correspondence seems to hold for a general exact model structure. To have a
perfect one-to-one correspondence between exact model structures and cotorsion pairs, we need to assume that the exact
category is ‘‘weakly idempotent complete’’. This means that the exact category has cokernels of all split monos, and kernels
of all split epis. More details are given in Section 2.2.

This correspondence between model structures and cotorsion pairs provides a way to translate standard language from
the theory of model categories to purely algebraic ideas, and it is interesting to attempt the characterization of certain
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model category notions in terms of cotorsion pairs. We find a nice algebraic characterization of left and right homotopy
which appears as Proposition 4.4 and Corollary 4.8.

We show that for an hereditary abelian model category (or more generally an hereditary exact model structure), the full
subcategories of cofibrant, fibrant, and cofibrant–fibrant subobjects come equipped with their own exact model structures
describing their usual homotopy categories. We can think of these as canonical sub-model structures and each one has its
own interesting characteristics. The cofibrant objects have an equivalent ‘‘injective’’ sub-model structure, the fibrant objects
have an equivalent ‘‘projective’’ sub-model structure and the cofibrant–fibrant subobjects have an equivalent ‘‘Frobenius’’
sub-model structure.

We assume the reader is interested in model categories or in the interactions between homotopy theory and algebra.
Definitions or proper references will be given as they are needed. Section 2 concerns definitions and basic results on exact
categories, cotorsion pairs in exact categories and weakly idempotent complete exact categories. Section 3 concerns the
correspondence between exact model structures and cotorsion pairs in weakly idempotent complete exact categories. In
Section 4 we characterize the left and right homotopy relation in terms of the cotorsion pairs. We also define and look
at projective, injective and Frobenius model structures. Finally, Section 5 mainly concerns the examples of the canonical
sub-model structures of an hereditary exact model structure, but we also look at how classical homotopy theory of chain
complexes fits into our setup.

The author would like to thank Sergio Estrada for asking questions which led to this paper and for pointing out the
notion of an exact category. Thanks to T. Bühler for his nicely written monograph [1] which I found to be a great read on
exact categories.

2. Exact categories

An exact category is a pair (A, E) where A is an additive category and E is a class of ‘‘short exact sequences’’: That is,
triples of objects connected by arrows A

i
−→ B

p
−→ C such that i is the kernel of p and p is the cokernel of i. A map such as i is

necessarily a monomorphism and in the language of exact categories is called an admissible monomorphismwhile p is called
an admissible epimorphism. The class E of short exact sequences must satisfy the following axioms which are inspired by the
properties of short exact sequences in any abelian category:

(1) E is closed under isomorphisms.
(2) E contains each of the canonical split exact sequences A → A ⊕ B → B.
(3) Any pushout of an admissible monomorphism exists and admissible monos are stable under pushouts. Similarly, any

pullback of an admissible epimorphism exists and admissible epis are stable under pullbacks.
(4) Admissible monomorphisms are closed under compositions. Similarly, admissible epimorphisms are closed under

compositions.

We sometimes denote admissible monomorphisms by � and denote admissible epimorphisms by �. These axioms are
equivalent to Quillen’s original definition in [13]. See Bühler’s recent paper [1] for a very thorough and readable exposition
on exact categories.

Given any additive category A, we may take E to be all split exact sequences to get a (trivial) exact category (A, E).
However, taking E to be all short exact sequences that already exist in A will not, in general, define an exact category.
Certainly it does whenA is abelian. The typical exact category arises as a full subcategory of an abelian category: Any strictly
full subcategory A of an abelian category B, in which A is closed under extensions, gives an exact category (A, E) where E
consists of the short exact sequences from B in which all three terms are objects in A. Conversely, any exact category may
be embedded inside an abelian category. See [1] for more details on all of the above.

2.1. Cotorsion pairs in exact categories

Let A = (A, E) be an exact category. In analogy to abelian categories, the axioms allow for the usual construction of the
Yoneda Ext bifunctor Ext1A(M,N). It is the abelian group of equivalence classes of short exact sequences N � Z � M . See
Chapter XII.4 of [11] for details on the construction of the Yoneda Ext bifunctor. In particular, we get that Ext1A(M,N) = 0
if and only if every short exact sequence N � Z � M is isomorphic to the split exact sequence N � N ⊕ M � M .

We say an object I ∈ A is injective if any admissible monomorphism I � Z splits (has a left inverse). Since the arrow
I � Z has a cokernel, I must be a direct summand of Z by (the dual of) the argument in Remark 7.4 of [1]. From this one
can see I is injective if and only if Ext1A(M, I) = 0 for any M ∈ A. Projective objects are defined dually. (Perhaps these
objects should be called ‘‘admissible injectives’’ and ‘‘admissible projectives’’, since they may not be categorically injective
or projective. But it seems as though the language is standard for exact categories.) The definition of a cotorsion pair also
readily generalizes to exact categories.

Definition 2.1. A pair of classes (F , C) in an exact category A is a cotorsion pair if the following conditions hold:

(1) Ext1A(F , C) = 0 for all F ∈ F and C ∈ C.



2894 J. Gillespie / Journal of Pure and Applied Algebra 215 (2011) 2892–2902

(2) If Ext1A(F , X) = 0 for all F ∈ F , then X ∈ C.
(3) If Ext1A(X, C) = 0 for all C ∈ C, then X ∈ F .

We say the cotorsion pair is hereditary if F is closed under taking kernels of admissible epimorphisms between objects of
F and if C is closed under taking cokernels of admissible monomorphisms between objects of C.

In particular, letting P be the class of projective objects in A and I be the class of injective objects in A, one has the
projective cotorsion pair (P , A) and the injective cotorsion pair (A, I).

A cotorsion pair is said to have enough projectives if for anyX ∈ A there is a short exact sequence C � F � X where C ∈ C
and F ∈ F . We say it has enough injectives if it satisfies the dual statement. If both of these hold we say the cotorsion pair is
complete. If the cotorsion pair has enough projectives in a way that is functorial with respect to X then we say the cotorsion
pair has enough functorial projectives. Similarly, we have the terms enough functorial injectives and functorially complete.

A functor between exact categories is called exact if it preserves short exact sequences. In particular, one can show in
the usual way that HomA(P, −) : A −→ Ab is exact if and only if P is projective and the contravariant HomA(−, I) is exact
if and only if I is injective. More generally, for any X ∈ A, the functor HomA(X, −) : A −→ Ab, sends short exact sequences
to left exact sequences. Similarly the contravariant HomA(−, X) sends right exact sequences to left exact sequences. As in
Bühler’s Remark 12.11 of [1] we can define left and right derived functors satisfying the usual properties when the exact
category has enough projectives and injectives. In particular, Ext1A above must coincide with the 1st right derived functor of
HomA and fit into the usual long exact sequence.

2.2. Weakly idempotent complete exact categories

We are interested in the problem of defining model structures on exact categories. The cofibrations will be admissible
monomorphismswith certain cokernels and the fibrations will be admissible epimorphismswith certain kernels. Part of the
requirement for a model structure is that the cofibrations and fibrations be closed under retracts. So we want admissible
monomorphisms and admissible epimorphisms to be closed under retracts.We now show that this is equivalent to insisting
that the additive category A is weakly idempotent complete. The author learned of weakly idempotent complete exact
categories from [1]. Except for our main Proposition 2.4, all of the ideas here can be found in Section 7 of [1].

The main idea is very simple. It is not automatic that split monomorphisms (those with left inverses) in exact categories
be admissible monomorphisms and that split epimorphisms (those with right inverses) be admissible epimorphisms. This
stems from the fact that split monomorphisms in additive categories need not automatically have cokernels, and the dual
for split epimorphisms. The concept of weak idempotent completeness removes this problem.

Let f : X −→ Y and g : Y −→ X . Recall that if gf = 1X then we call f a split monomorphism, or a section and g a split
epimorphism, or a retraction. A split monomorphism is a monomorphism since it is easily seen to be left cancellable while
a split epimorphism is an epimorphism since it is right cancellable. Bühler calls a split epimorphism a retraction and a split
monomorphism a coretraction and has a different usage of the word ‘‘section’’.

Definition 2.2. We call an additive categoryAweakly idempotent complete if every split monomorphism has a cokernel and
every split epimorphism has a kernel. We call an exact category (A, E) weakly idempotent complete if the additive category
A is such.

For example, the category of free R-modules is an exact category which is not weakly idempotent complete whenever
there are projective modules which are not free. The ‘‘Eilenberg Swindle’’ can be used to see this. The following Proposition
summarizes all the results we will need on weakly idempotent complete exact categories. Clear proofs can be found in
Section 7 of [1].

Proposition 2.3. Let (A, E) be a weakly idempotent complete exact category. The following hold:

(1) Every split monomorphism f : X −→ Y is an admissible monomorphism. Letting Y −→ Z be its cokernel, the sequence
X � Y � Z is isomorphic to the split exact sequence X � X ⊕ Z � Z.

(2) Every split epimorphism g : Y −→ Z is an admissible epimorphism. Letting K −→ Y be its kernel, the sequence K � Y � Z is
isomorphic to the split exact sequence K � K ⊕ Z � Z.

(3) If gf is an admissible monomorphism, then f is an admissible monomorphism.
(4) If gf is an admissible epimorphism, then g is an admissible epimorphism.

The last two properties in the above proposition are easy to remember since they are analogous to standard facts about
monomorphisms and epimorphisms in any category.

We now see why we want (A, E) to be weakly idempotent complete when we wish to build an exact model structure
on (A, E). We need admissible monomorphisms and admissible epimorphisms to be closed under retracts.

Proposition 2.4. Let (A, E) be an exact category. Then the following are equivalent:

(1) (A, E) is weakly idempotent complete.
(2) Admissible monomorphisms are closed under retracts.
(3) Admissible epimorphisms are closed under retracts.
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Proof. (1) ⇒ (2). Suppose (A, E) is weakly idempotent complete and suppose we have the commutative diagram below
expressing j : A −→ B as a retract of i : X � Y .

A
f1

−−−−→ X
g1

−−−−→ A

j

 i

j

B
f2

−−−−→ Y
g2

−−−−→ B
So g1f1 = 1A and g2f2 = 1B. In particular, f1 is a split monomorphism. So by Proposition 2.3, f1 is an admissible
monomorphism. By the composition axiom if1 = f2j is an admissible monomorphism. So by 2.3 again we get j is an
admissible monomorphism.

(2) ⇒ (1). Suppose that the class of admissible monomorphisms is closed under retracts. We wish to show that (A, E) is
weakly idempotent complete. By Corollary 7.5 of [1] we just need to show that every split monomorphism is an admissible
monomorphism. So let f : A −→ C be a split monomorphism. So there is a map g : C −→ A with gf = 1A. First, we note
that the map A −→ A ⊕ B defined by the matrix

1A
−f


is an admissible monomorphism since the diagram below puts it in a

sequence which is isomorphic to the split exact sequence A � A ⊕ C � C .

A
(
1A
−f)

−−−−→ A ⊕ C
(f 1C )

−−−−→ C  
A

(
1A
0 )

−−−−→ A ⊕ C
(0 1C )

−−−−→ C

The middle vertical arrow above is the map

1A 0
f 1C


which has the inverse


1A 0
−f 1C


. Now by hypothesis we will be

done if we can show that f : A −→ C is a retract of
1A
−f


. But the commutative diagram below displays that this is indeed the

case.
A A A

f

 (
1A
−f)

f

C
( g
−1C

)
−−−−→ A ⊕ C

(f fg−1C )
−−−−−→ C

This completes the proof of (1) ⇔ (2) and similarly one can show (1) ⇔ (3). �

3. Exact model structures

Hovey defined in [10], Definition 2.1, the notion of an abelian model structure. This is a model structure on an abelian
category in which (trivial) cofibrations are monomorphisms with (trivially) cofibrant cokernel and (trivial) fibrations are
epimorphisms with (trivially) fibrant kernel. Wemake a similar definition for model structures on exact categories. First we
define some terminology from the theory of model categories.

Note that if (A, E) is an exact category, then for any X ∈ A, 0 � X is an admissible monomorphism and X � 0 is an
admissible epimorphism. Now suppose (A, E) has a model structure as defined in Definition 1.1.3 of [9].

• We say X is trivial if 0 � X is a weak equivalence. By the 2 out of 3 axiom and the fact that identity maps are always
weak equivalences, this is equivalent to insisting X � 0 is a weak equivalence.

• We say X is cofibrant if 0 � X is a cofibration.
• We say X is fibrant if X � 0 is a fibration.
• We say X is trivially cofibrant if it is both trivial and cofibrant.
• We say X is trivially fibrant if it is both trivial and fibrant.

Recall that in a model category, a trivial cofibration is a map which is both a cofibration and a weak equivalence. Thus an
object X is trivially cofibrant if and only if 0 � X is a trivial cofibration. Of course, the analogue is true for trivial fibrations.
We are now ready to define an exact model structure.
Definition 3.1. Let (A, E) be an exact category. An exact model structure on (A, E) is a model structure in the sense of
Definition 1.1.3 of [9] in which each of the following holds.

(1) A map is a (trivial) cofibration if and only if it is an admissible monomorphism with a (trivially) cofibrant cokernel.
(2) A map is a (trivial) fibration if and only if it is an admissible epimorphism with a (trivially) fibrant kernel.

Note that with any model structure, by the 2 out of 3 axiom, a map g is a weak equivalence if and only if it has a
factorization g = pi where i is a trivial cofibration and p is a trivial fibration. So in an exact model structure, a map g
is a weak equivalence if and only if it has a factorization g = pi where i is an admissible monomorphism with trivially
cofibrant cokernel and p is an admissible epimorphism with trivially fibrant kernel.
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3.1. Hovey’s correspondence

Hovey’s correspondence theorem is a translation betweenmodel structures on an abelian categoryA and two compatible
complete cotorsion pairs on A. We now point out that this correspondence also works when A is a weakly idempotent
complete exact category. We will need the definition of a thick subcategory.

Definition 3.2. Given an exact category (A, E), by a thick subcategory of A we mean a class of objects W which is closed
under direct summands and such that if two out of three of the terms in a short exact sequence are inW , then so is the third.

Note: The definition of a thick subcategory usually states that W be closed under retracts instead of saying direct
summands. These are clearly the same ifA is abelian, or weakly idempotent complete. But for a general exact category there
is a subtlety. In this case one can showW is closed under direct summands if and only if given any admissiblemonomorphism
f : X � W with W ∈ W , if f splits then X ∈ W . [Similar to Remark 7.4 of [1], one can show that such an admissible split
monomorphism gives rise to a direct sum decomposition ofW .]

Theorem 3.3. Let (A, E) be an exact category with an exact model structure. Let Q be the class of cofibrant objects, R the class
of fibrant objects and W the class of trivial objects. Then W is a thick subcategory of A and both (Q, R ∩ W) and (Q ∩ W, R)
are complete cotorsion pairs in A. If we assume (A, E) is weakly idempotent complete then the converse holds. That is, given a
thick subcategory W and classes Q and R making (Q, R ∩ W) and (Q ∩ W, R) each complete cotorsion pairs, then there is an
exact model structure on A where Q are the cofibrant objects, R are the fibrant objects and W are the trivial objects.

Proof. Hovey proved the statement that (Q, R ∩ W) and (Q ∩ W, R) are complete cotorsion pairs in [10], Proposition 4.1,
in the abelian case. A careful look at the proof shows that it readily carries over to exact categories. In the second paragraph
of that proof, one can show directly that the map A(A, X) −→ A(A, Y ) is surjective by taking g ∈ A(A, Y ), forming the
pullback of the pair (g, p), and using the splitting to construct the necessary lift. The dual argument of forming a pushout
will work for paragraph three.

Hovey proved (again for the abelian case) that W is a thick subcategory in Lemma 4.3 in [10]. We follow that proof but
make necessary modifications for exact categories. First, if W ∈ W and X is a direct summand of W , then it is easy to see
that the map 0 � X is a retract of the map 0 � W . Since 0 � W is a weak equivalence the retract axiom tells us 0 � X is
also a weak equivalence. This proves thatW is closed under direct summands. Next wewish to prove that if two out of three
of the terms in an exact sequence are in W , then so is the third. We will make repeated use of the following observations
which follow easily from the 2 out of 3 axiom for model categories: If X −→ Y is a weak equivalence and either X or Y is in
W , then so is the other. On the other hand, if X, Y ∈ W , then anymap X −→ Y is a weak equivalence.

Now suppose A
f

−→ B
g
−→ C is an admissible short exact sequence. Using the factorization axioms, write g = piwhere p is

a fibration (so an admissible epimorphismwith fibrant kernel) and i is a trivial cofibration (so an admissiblemonomorphism
with a trivially cofibrant cokernel). Let A′

= ker p and use the universal property of ker p to get the following commutative
diagram:

A
f

−−−−→ B
g

−−−−→ C

j

 i


A′

k
−−−−→ B′

p
−−−−→ C

By Proposition 2.12 of [1] we get that the left square above is a pushout square. Letting q = cok i, one can then prove directly
that qk is the cokernel of j. (This is an easy exercise, first use the universal property of the pushout square followed by the
universal property of the cokernel q.) Since i and f are admissible monomorphisms, it follows that the composition kj = if is
an admissiblemonomorphism. Furthermore k is an admissiblemonomorphism and jwas shown above to have a cokernel. It
follows from Quillen’s ‘‘obscure axiom’’, Proposition 2.16 of [1] that j is also an admissible monomorphism. Since the target
of q is trivially cofibrant we see that the target of qk is also trivially cofibrant. Therefore j is a trivial cofibration. In particular
j is a weak equivalence.

Now if A ∈ W , then A′
∈ W since j is a weak equivalence. In this case p is a trivial fibration. So then g = pi is a weak

equivalence. So in this case B ∈ W if and only if C ∈ W .
On the other hand, if B, C ∈ W , then anymap B −→ C is aweak equivalence and in particular g = pi is aweak equivalence.

In this case, by the 2 out of 3 axiom, p must be a trivial fibration. Therefore A′
∈ W . Since we proved above that j is a weak

equivalence it follows that A ∈ W .
Hovey proved the converse statement in Section 5 of [10] in the case of abelian categories. That proof can be adapted here

and we point out now how the weakly idempotent completeness hypothesis is necessary. First, in light of Proposition 2.4,
we need the weakly idempotent complete hypothesis to prove the retract axiom. Also, throughout Hovey’s proof, there
are several uses of constructing kernel–cokernel exact sequences and uses of the Snake Lemma. These theorems hold in
exact categories with the weakly idempotent complete hypothesis by Proposition 8.11 and Corollary 8.13 of [1]. In each
application one can check that the proper morphisms are ‘‘admissible’’ in the sense of Definition 8.1 of [1]. �
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Corollary 3.4. Let (A, E) be a weakly idempotent complete exact category. Then there is a one-to-one correspondence between
exactmodel structures onA and complete cotorsion pairs (Q, R∩W) and (Q∩W, R)whereW is a thick subcategory ofA. Given
a model structure, Q is the class of cofibrant objects, R the class of fibrant objects and W the class of trivial objects. Conversely,
given the cotorsion pairs with W thick, a cofibration (resp. trivial cofibration) is an admissible monomorphism with a cokernel in
Q (resp. Q∩W), and a fibration (resp. trivial fibration) is an admissible epimorphismwith a kernel in R (resp. R∩W). The weak
equivalences are then the maps g which factor as g = pi where i is a trivial cofibration and p is a trivial fibration.
Remark. Functorial factorizations in an exact model structure correspond directly to functorial completeness (as defined
after Definition 2.1) of each of the corresponding cotorsion pairs.

4. The homotopy category of an exact model structure

Let M be a model category and X, Y ∈ M. The axioms of a model category allow for the construction of homotopy
relations on the setHomM(X, Y ). The first is left homotopydefined in terms of ‘‘cylinder objects’’. The second is right homotopy
defined in terms of ‘‘path objects’’. It is interesting to note that the standard approach to proving all of the basic facts and
theorems on homotopy including the ‘‘Fundamental Theorem of Model Categories’’ (for example, see Sections 4 and 5 of [2],
or Section 1.2 of [9]) do not require the full assumption that M has all finite limits and colimits. All that is needed are
terminal and initial objects, the existence of finite ‘‘self-products’’ X

∏
X and ‘‘self-coproducts’’ X


X , and the existence of

any pullback of any fibration and any pushout of any cofibration. The fact that pullbacks of fibrations are again fibrations and
that pushouts of cofibrations are again cofibrations follows as usual. Any exact model structure clearly has these properties:
First, since an exact category is additive it contains the initial/terminal object 0 as well as all finite biproducts. Second,
the definition of an exact model structure requires all cofibrations (resp. fibrations) to be admissible monomorphisms
(resp. admissible epimorphisms) and the axioms for an exact category require pushouts (resp. pullbacks) of all admissible
monomorphisms (resp. admissible epimorphisms) to exist.

Our intention now is to remind the reader of some results and notation from homotopy theory which we will use ahead.
Wewill state these as facts about exact model structures when really they hold for all model structures on categories having
the above mentioned limits and colimits. Our notation follows Sections 4 and 5 of [2] here. We first recall the definition of
left and right homotopy.
Definition 4.1. Suppose f , g : X −→ Y are maps in a model category M.

• A cylinder object for X is a factorization of the fold map ∇ : X


X −→ X into a cofibration X


X
i0+i1
−−→ X ′ followed by a

weak equivalence X ′
−→ X .

• We say f and g are left homotopic if there is some cylinder object X ′ and amapH : X ′
−→ Y such thatHi0 = f andHi1 = g .

This defines a relation called left homotopy, denoted ∼
l, on HomM(X, Y ).

The dual notion gives us path objects and right homotopic maps as well as the relation right homotopy∼
r , on HomM(X, Y ).

Fact 4.2. Let (A, E) be an exact category with an exact model structure and let X, Y ∈ A. The following standard facts of
model categories all hold, with the usual proofs, without any further assumptions on the existence of limits and colimits:

(1) The relation ∼
l is an equivalence relation on HomA(X, Y ) whenever X is cofibrant and the same for ∼

r whenever Y is
fibrant.

(2) If X is cofibrant and Y is fibrant then ∼
l
= ∼

r . In this case we simply call the relation homotopy and denote it by ∼. We
then also define π(X, Y ) := HomA(X, Y )/ ∼.

(3) Denote the full subcategory of cofibrant and fibrant subobjects by Ac,f . Then the homotopy relation ∼ is compatible
with composition so that we get a homotopy category πAc,f where the Hom sets are as in item 2 above.

(4) Any f : X −→ Y inAc,f which is an isomorphism inπAc,f is called a homotopy equivalence. So f is a homotopy equivalence
if there exists a map g : Y −→ X such that gf ∼ 1X and fg ∼ 1Y . A map f : X −→ Y in Ac,f is a homotopy equivalence if
and only if it is a weak equivalence in A.

(5) Given any A ∈ A, it has a cofibrant replacement pX : QX � X and a fibrant replacement iX : X � RX . QX is cofibrant
and pX is a trivial fibration, and RX is fibrant and iX is a trivial cofibration. We can insist these exist functorially if one
wishes.

(6) We can define the homotopy category Ho(A) to be the category with the same objects as A and with HomHo(A)(A, B) =

π(RQA, RQB). There is a canonical functor γA : A −→ Ho(A) which sends a map f : A −→ B to the homotopy class
[f ′

] ∈ π(RQA, RQB), where below f̃ and f ′ are anymaps making the diagrams commute:

RQA
f ′

−−−−→ RQB

iQA

 iQB

QA
f̃

−−−−→ QB

pA

 pB

A
f

−−−−→ B
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On the other hand, given any map f : A −→ B in the homotopy category Ho(A), there is a map f ′
: RQA −→ RQB in A,

unique up to homotopy, such that

f = γA(pB) ◦ (γA(iQB))−1
◦ γA(f ′) ◦ γA(iQA) ◦ (γA(pA))−1.

(7) The functor γA sends weak equivalences in A to isomorphisms in Ho(A) and in fact Ho(A) is a localization of A with
respect to the weak equivalences. See Definition 6.1 and Theorem 6.2 of [2].

Let (A1, E1) and (A2, E2) be exact model structures. We call a functor F : A1 −→ A2 which preserves weak equivalences
homotopical.

Lemma 4.3. Any homotopical functor of exact model structures F : A1 −→ A2 induces a unique functor Ho F : HoA1 −→ HoA2
making a commutative square

A1
F

−−−−→ A2

γA1

 γA2

HoA1
Ho F

−−−−→ HoA2

On objects Ho F is the identity and for an arrow f ∈ HoA1(A, B) represented by [f ′
] ∈ π(RQA, RQB) := HomA1(RQA, RQB)/ ∼

we have

Ho F(f ) = γA2F(pB) ◦ (γA2F(iQB))−1
◦ γA2F(f ′) ◦ γA2F(iQA) ◦ (γA2F(pA))−1.

Proof. By Proposition 5.8 of [2] the functor γA2 sends weak equivalences to isomorphisms and so the composite γA2 ◦ F
sends weak equivalences to isomorphisms. By Theorem 6.2 of [2], HoA1 is a localization of A1 with respect to its weak
equivalences which means there exists a unique functor Ho F : HoA1 −→ HoA2 such that Ho F ◦ γA1 = γA2 ◦ F . It follows
from the proof of Theorem 6.2 of [2] that Ho F must be defined exactly as stated. �

4.1. Homotopic maps in exact model structures

Wenow give a nice characterization of left and right homotopicmaps in exactmodel structures. The statement and proof
of the following Proposition is inspired by Proposition 9.1 of [10].

Proposition 4.4. Assume (A, E) is an exact category with an exact model structure. Let (Q, R ∩ W) and (Q ∩ W, R) be the
corresponding complete cotorsion pairs of Theorem 3.3.

(1) Two maps f , g : X −→ Y in A are right homotopic if and only if g − f factors through an object of Q ∩ W .
(2) Two maps f , g : X −→ Y in A are left homotopic if and only if g − f factors through an object of R ∩ W .
(3) Suppose Y is fibrant. Then two maps f , g : X −→ Y in A are right homotopic if and only if g − f factors through an object of

Q ∩ R ∩ W .
(4) Suppose X is cofibrant. Then two maps f , g : X −→ Y in A are left homotopic if and only if g − f factors through an object of

Q ∩ R ∩ W .
(5) Suppose X is cofibrant and Y is fibrant. Then two maps f , g : X −→ Y in A are homotopic if and only if g − f factors through

an object of Q ∩ R ∩ W if and only if g − f factors through an object of Q ∩ W if and only if g − f factors through an object
of R ∩ W .

Proof. The first two statements are dual and we will prove (1). We want to characterize right homotopy, so we first need
to construct a good path object of Y , which is a factorization of the diagonal map ∆ : Y −→ Y ⊕ Y as a weak equivalence
followed by a fibration. Since (Q∩W, R) is a complete cotorsion pair inAwe can find an admissible epimorphism q : Q � Y
where Q ∈ Q ∩ W and with ker q = R ∈ R. Now consider the factorization Y

i
−→ Y ⊕ Q

p
−→ Y ⊕ Y where in the standard

matrix notation i =
1Y

0


is the canonical inclusion and p =


1Y 0
1Y q


. Clearly ∆ = pi and i is a trivial cofibration since

it is an admissible monomorphism with cokernel Q ∈ Q ∩ W . We claim that p is a fibration, that is, it is an admissible
epimorphism with kernel in R. Indeed, one can check that ker p = ker q = R ∈ R. So we now show that p is an admissible

epimorphism. Since q is an admissible epimorphism it follows from Proposition 2.9 of [1] that q ⊕ q =


q 0
0 q


is an

admissible epimorphism. But also,
1Y 0
1Y q

 
q 0

−1Q 1Q


=


q 0
0 q


where


q 0

−1Q 1Q


is the map Q ⊕ Q −→ Y ⊕ Q . It follows from Proposition 2.3 that p is an admissible epimorphism. So

now we have proved that Y ⊕ Q is a good path object for Y .
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Now let f , g : X −→ Y be two maps in A. Then by definition, f ∼
r g if and only if there is a map X

(α β)
−−→ Y ⊕ Q such that

(f g) = p (α β). That is, f ∼
r g if and only if there are maps α : X −→ Y and β : X −→ Q such that f = α and g = α + qβ .

So if and only if g = f + qβ for some β : X −→ Q . So if and only if g − f = qβ for some β : X −→ Q . In particular, this
proves that f ∼

r g if and only if g − f factors through the Q via q. On the other hand, say g − f factors through some object
Q ′

∈ Q ∩ W . Then since q : Q � Y is a fibration, the map Q ′
−→ Y lifts over q. Thus the factorization of g − f through Q ′

extends to a factorization of g − f through q. Therefore, f ∼
r g . This completes the proof of (1).

Statements (3) and (4) are dual and we will prove (4). Suppose that X is cofibrant and f , g : X −→ Y are left homotopic.
Then by (2) we know g − f factors through some object R ∈ R ∩ W . Let Q (R) � R be a cofibrant replacement of R. Then
since X is cofibrant, the map X −→ R in the factorization of g − f , lifts over Q (R) � R. Thus the factorization of g − f extends
to a factorization of g − f through Q (R). Since Q (R) ∈ Q ∩ R ∩ W we are done.

Now (5) is true since left and right homotopy coincide when X is cofibrant and Y is fibrant. �

Remark. By Proposition 4.4 it is immediate that when X is cofibrant then left homotopic implies right homotopic and the
dual is true when Y is fibrant. This of course is a special case of the general fact that holds in all model categories.

Example. Consider the flat model structure on chain complexes of R-modules constructed in [4], or chain complexes of
sheaves [5], or chain complexes of quasi-coherent sheaves on a quasi-compact and semi-separated scheme [6]. With this
model structure Proposition 4.4 says two chainmaps f , g : X −→ Y are right homotopic if and only if their difference factors
through a flat complex and are left homotopic if and only if their difference factors through a cotorsion complex. If X is a
dg-flat complex and Y is a dg-cotorsion complex, then f ∼ g if and only if their difference factors through a flat cotorsion
complex.

4.2. Projective, injective and Frobenius model structures

Assume (A, E) is an exact category with an exact model structure.We now look at what we call projective, injective, and
Frobenius model structures.

Definition 4.5. Assume (A, E) is an exact category with an exact model structure.

(1) We call the model structure on A projective if the trivially cofibrant objects coincide with the projectives.
(2) We call the model structure on A injective if the trivially fibrant objects coincide with the injectives.
(3) We call themodel structure onA Frobenius if the trivially cofibrant objects coincidewith the projectives and the trivially

fibrant objects coincide with the injectives.

Lemma 4.6. Assume (A, E) is an exact category with an exact model structure.

(1) It is a projective model structure if and only if every object is fibrant.
(2) It is an injective model structure if and only if every object is cofibrant.

Proof. This is automatic when looking at the corresponding cotorsion pairs (Q, R∩W) and (Q∩W, R) in A. For example,
the model structure is projective if and only if Q ∩ W is the class of projectives if and only if every object is in R. �

Lemma 4.7. Assume (A, E) is an exact category with an exact model structure. Then the following are equivalent.

(1) The model structure is Frobenius.
(2) The model structure is both projective and injective.
(3) Every object is both cofibrant and fibrant.
(4) The corresponding cotorsion pairs are (A, W) and (W, A).
(5) The projectives and injectives coincide and form the classW of trivial objects. Wewill call an object inW projective–injective.

Proof. (1) ⇒ (2) by definition. (2) ⇒ (3) by Lemma 4.6. For (3) ⇒ (4) note that the cotorsion pairs (Q, R ∩ W) and
(Q ∩ W, R) must collapse to (A, W) and (W, A) and this implies (5) that W must be the class of projective–injective
objects.

(5) ⇒ (1) Suppose (Q, R ∩ W) and (Q ∩ W, R) are the corresponding cotorsion pairs where the trivial objects W are
the class of projective–injectives. Then it follows that W = Q ∩ W = R ∩ W since the right side of a cotorsion pairs always
contains the injectives while the left side always contains the projectives. So the model structure is Frobenius. �

Corollary 4.8. Assume (A, E) is an exact category with an exact model structure.

(1) SupposeA has a projective model structure. Then twomaps f , g : X −→ Y inA are right homotopic if and only if g − f factors
through a projective object. They are left homotopic if and only if g − f factors through a trivial object. In particular, when X
is cofibrant f and g are homotopic if and only if g − f factors through a projective if and only if g − f factors through a trivial
object.
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(2) Suppose A has an injective model structure. Then two maps f , g : X −→ Y in A are left homotopic if and only if g − f factors
through an injective object. They are right homotopic if and only if g − f factors through a trivial object. In particular, when
Y is fibrant f and g are homotopic if and only if g − f factors through a injective if and only if g − f factors through a trivial
object.

(3) Suppose A has a Frobenius model structure. Then two maps f , g : X −→ Y in A are homotopic if and only if g − f factors
through a projective–injective object.

Proof. This follows from Proposition 4.4. �

5. Applications and examples

There are many examples of exact model structures and in particular injective, projective and Frobenius ones. These
include the usual projective and injective model structures on chain complexes of R-modules, and the model structure on
modules over a Frobenius ring R. Each of these is described nicely in [9]. There are also both injective and projective model
structures on the categories of modules over Gorenstein rings, or more generally Ding–Chen rings, which are discussed
in detail in [10,8,7]. Our intention in this section is to look at two other interesting occurrences of these types of model
structures. First, we see the general fact that any hereditary exact model structure contains exact sub-model structures
that are projective, injective and Frobenius. The second is the Frobenius model structure describing the classical homotopy
category of complexes K(R).

5.1. Sub-model structures of hereditary exact model structures

In the standard approach to constructing the homotopy category HoM of a model category M we generally consider
the equivalent localization categories HoMc , HoMf , and HoMc,f , and use the isomorphism HoMc,f ∼= Mc,f / ∼ where
Mc,f / ∼ is the classical homotopy category. But of course model structures are meant to describe localization categories
and homotopy, so it is natural ask if there are model structures on Mc , Mf , or Mc,f . There are very natural model structures
describing these localizations when A is an hereditary exact model structure on a weakly idempotent complete category
(A, E), in particular whenA is an hereditary abelianmodel structure. Of course, all of the homotopy categories with respect
to these model structures are equivalent categories. But our point is that Ac , Af , and Ac,f can each be thought of as exact
sub-model structures of A. Moreover, these sub-model structures are respectively injective, projective and Frobenius.

Throughout this section, we assume A is a weakly idempotent complete exact category and that A has an hereditary
exact model structure. By hereditarywemean that the corresponding cotorsion pairs (Q, R ∩ W) and (Q ∩ W, R) are each
hereditary. Let Af be the full subcategory of fibrant objects and let Ac be the full subcategory of cofibrant objects and Ac,f
the full subcategory of cofibrant–fibrant objects.

It is easy to see that if S is any full additive subcategory of A and if S is closed under extensions then S becomes an exact
category where the class of short exact sequences is taken to be all short exact sequences in A in which all three terms are
objects from S. A subcategory such as S equipped with these short exact sequences is called a fully exact subcategory of A.
In this way Af , Ac and Ac,f are each fully exact subcategories of A. They are also each closed under direct summands and
so the following lemma tells us that the inherited exact structures are each weakly idempotent complete.

Lemma 5.1. Let S be a fully exact subcategory of the weakly idempotent complete exact category A. If S is closed under direct
summands then S is also weakly idempotent complete.

Proof. Suppose that S is closed under direct summands and let i : X −→ Y be a split monomorphism in S. We want to see
that i has a cokernel in S. Viewing i as a splitmonomorphism inAwe know it has a cokernel Y −→ Z and fromProposition 2.3
we know that X � Y � Z is isomorphic to the short exact sequence X � X ⊕ Z � Z . Since Y ∼= X ⊕ Z is in S, the direct
summand Z ∈ S and in particular the cokernel of i is in S. So S is weakly idempotent complete. �

We fix the following notation and definitions on the given category A:
Wf is the class of trivial objects in Af . So Wf = W ∩ R.
Wc is the class of trivial objects in Ac . So Wc = W ∩ Q.
Wc,f is the class of trivial objects in Ac,f . So Wc,f = W ∩ Q ∩ R.
Qf is the class of cofibrant objects in Af . So Qf = Q ∩ R.
Qc is the class of cofibrant objects in Ac . So Qc = Q.
Qc,f is the class of cofibrant objects in Ac,f . So Qc,f = Q ∩ R.
Rf is the class of fibrant objects in Af . So Rf = R.
Rc is the class of fibrant objects in Ac . So Rc = R ∩ Q.
Rc,f is the class of fibrant objects in Ac,f . So Rc,f = Q ∩ R.

Proposition 5.2. Let A be a weakly idempotent complete exact category with an exact model structure. Suppose the associated
complete cotorsion pairs are (Q, R ∩ W) and (Q ∩ W, R) are each hereditary. Then each of the following holds:
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(1) Each ofAc ,Af andAc,f is a weakly idempotent complete exact subcategory ofA under the exact structure naturally inherited
from A.

(2) (Qf , Rf ∩ Wf ) and (Qf ∩ Wf , Rf ) are both complete hereditary cotorsion pairs in Af . The resulting exact model structure
on Af is a projective model structure.

(3) (Qc, Rc ∩ Wc) and (Qc ∩ Wc, Rc) are both complete hereditary cotorsion pairs in Ac . The resulting exact model structure
on Ac is an injective model structure.

(4) (Qc,f , Rc,f ∩ Wc,f ) and (Qc,f ∩ Wc,f , Rc,f ) are both complete hereditary cotorsion pairs on Ac,f . The resulting exact model
structure on Ac,f is a Frobenius model structure.

Proof. This first statement comes from Lemma 5.1. We will show that (Qf , Rf ∩ Wf ) is a complete cotorsion pair in Af .
Proving that the others are complete cotorsion pairs is similar.

First say Q ∈ Qf = Q ∩ R and R ∈ Rf ∩ Wf = R ∩ W . Then since (Q, R ∩ W) is a cotorsion pair in A, any short exact
sequence R � Z � Q in Af must split. So ExtAf (Q , R) = 0.

Next, say X ∈ Af and ExtAf (X, R) = 0 for all R ∈ Rf ∩ Wf . We want to show X ∈ Qf and this requires showing X ∈ Q.
To show X ∈ Q just let R ∈ R ∩ W be arbitrary and argue that ExtA(X, R) = 0. But this is clearly true by hypothesis since
any short exact sequence R � Z � X in ExtA(X, R) is an element of ExtAf (X, R) = 0.

Lastly, say X ∈ Af and ExtAf (Q , X) = 0 for all Q ∈ Qf . We want to show X ∈ Rf ∩ Wf = R ∩ W . Since (Q, R ∩ W)
is a complete cotorsion pair in A we get a short exact sequence X � R � Q where R ∈ R ∩ W and Q ∈ Q. Since X, R are
each in the coresolving class R we get Q ∈ R. This means that Q ∈ Qf and X � R � Q is an element of ExtAf (Q , X) = 0.
Therefore the sequence must split and so X is a direct summand of R. It follows that X ∈ R ∩ W .

Now the model structure on Af determined by (Qf , Rf ∩ Wf ) and (Qf ∩ Wf , Rf ) must be a projective model structure
since each object is fibrant. The classQf ∩Wf are the projective objects inAf . Similarly, themodel structure onAc is injective
since each object is cofibrant and Rc ∩ Wc are the injective objects. The model structure on Ac,f is Frobenius because every
object is both cofibrant and fibrant and Wc,f are the projective–injective objects. �

Definition 5.3. LetA0 ⊆ A be a fully exact subcategorywith an exactmodel structure.We callA0 a full equivalent sub-model
structure if the inclusion functor i : A0 −→ A preserves themodel structure and if the induced functor Ho(i) : HoA0 −→ HoA
displays HoA0 as a full equivalent subcategory of HoA.

Corollary 5.4. Let A be a weakly idempotent complete exact category with an hereditary exact model structure. Then with the
model structure from Proposition 5.2, Ac , Af , and Ac,f are full equivalent sub-model structures of A. That is, each functor Ho(i)
in the induced commutative diagram below is an inclusion and displays each source category as a full equivalent subcategory of
the corresponding target category:

Ho(Ac,f )
Hoi

−−−−→ Ho(Af )

Hoi

 Hoi

Ho(Ac)
Hoi

−−−−→ Ho(A)

Proof. Each inclusion functor i is clearly model structure preserving. So if we take F to be one of the inclusion functors i,
and follow the rule stated for Ho F in Lemma 4.3 we see that for an arrow f = [f ′

], we have Ho i(f ) = [i(f ′)] = [f ′
] is the

identity on arrows. So the homotopy categories sit properly as full subcategories. To see that each Ho i is a full equivalence
we use Proposition IV.4.2 of [12]. For example, the functor Ho i : Ho(Ac) −→ Ho(A) is an equivalence since given any
object A ∈ Ho(A) we have the isomorphism γA(pX ) : QX −→ X in Ho(A). In particular Q induces the inverse equivalence
HoQ : Ho(A) −→ Ho(Ac). �

Remark. It follows from Propositions 4.4 and 5.2 that the left and right homotopy relations are unambiguous when
considered in either A or one of its sub-model structures Ac , Af and Ac,f . For example, two maps in Ac , are left (resp.
right) homotopic if and only if they are left (resp. right) homotopic in A. In particular, the notation πAc,f := Ac,f / ∼ for
the homotopy category is unambiguous.

5.2. Classical homotopy theory of chain complexes

Let R be a ring. We now show the details to a very simple construction of the model structure on Ch(R) describing the
classical homotopy category K(R), where the morphism sets are chain homotopy classes of maps. The construction of this
model structure was the subject of the paper [3] and its description in terms of cotorsion pairs was pointed out in [10]. This
model structure is a nice example of a Frobenius model structure.

Let Ch(R)dw be the exact category (A, E), where A is the category Ch(R) of chain complexes of R-modules and E is
the class of all degreewise split exact sequences. Then one can check that Ch(R)dw is a weakly idempotent complete exact
category. Let A denote the class of all complexes and W the class of all split exact complexes (i.e., contractible complexes).
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Corollary 5.5. The class W of contractible complexes is a thick subcategory of Ch(R)dw . Both (A, W) and (W, A) are complete
cotorsion pairs with respect to Ch(R)dw . The corresponding model structure on Ch(R)dw is described as follows. The cofibrations
(resp. trivial cofibrations) are the degreewise split monomorphisms (resp. split monomorphisms with contractible cokernel) and
the fibrations (resp. trivial fibrations) are the degreewise split epimorphisms (resp. split epimorphisms with contractible kernel).
The weak equivalences are the usual homotopy equivalences. We note the following properties of this model structure:

(1) The model structure is Frobenius.
(2) The homotopy relation coincides with the usual notion of chain homotopy and two maps are chain homotopic if and only if

their difference factors through a contractible complex.
(3) HoCh(R)dw = K(R).
(4) HoCh(R)dw(X, ΣnY ) ∼= Extndw(X, Y ) ∼= HoCh(R)dw(Σ−nX, Y ), where here Extndw(X, Y ) denotes the usual subfunctor of

Extn(X, Y ) consisting of the dimensionwise split exact sequences.

Proof. We leave it to the reader to show that the class W of contractible complexes is closed under direct summands and
satisfies the two out of three property in Ch(R)dw making W a thick subcategory of Ch(R)dw .

Recall that by definition, an object I in an exact category (A, E) is injective if any admissiblemonomorphism I � Z splits
(has a left inverse). Dual for projectives. We argue thatW are the projective–injective objects in Ch(R)dw . To see this, wewill
show W are the injective objects. A dual argument will show they are also the projective objects. Let W ∈ W and consider
an admissible monomorphism W � Z . Then this is a degreewise split monomorphism and one can see that Z is actually
isomorphic to the mapping cone C(f ) for some chain map f : Σ−1Y −→ W . But since W is contractible, f is null homotopic
and this implies that W � Z is a split monomorphism. On the other hand, suppose I is injective, so that any admissible
monomorphism I � Z in Ch(R)dw is a split mono. Then in particular, the short exact sequence 0 −→ I −→ C(1I) −→ Σ I −→ 0
is an admissible mono and must split. Thus I is a direct summand of C(1I). But since the mapping cone of an identity map is
always contractible (Exercise 1.5.2 of [14]) we see that I is a direct summand of a contractible complex. Therefore I is also
contractible.

Note that themapping cone construction C(1W ) also shows that there are enough projective–injective objects in Ch(R)dw .
It follows that both (A, W) and (W, A) are complete cotorsion pairs in Ch(R)dw . By Corollary 3.4 and Proposition 4.8
they induce a Frobenius model structure with (trivial) cofibrations and (trivial) fibrations as we described. Note that
Proposition 4.8 says that two chain maps f , g : X −→ Y are homotopic in this model structure if and only if g − f factors
through a contractible complex. This corresponds to the usual fact that a map X −→ Y is null homotopic if and only if it
extends to a map from C(1X ) to Y as in Exercise 1.5.2 of [14]. So the homotopy relation in this model category coincides
with the usual notion of chain homotopy equivalence.

Now Extdw is the usual derived functor of HomCh(R)dw and so Extdw can be computed as maps in HoCh(R)dw . In particular,
we have the isos Extndw(X, Y ) ∼= HoCh(R)dw(QX, RΣnY ) ∼= HoCh(R)dw(X, ΣnY ) ∼= Ch(R)(X, ΣnY )/ ∼. �
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