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The earliest indications for paternally induced transgenerational effects from the environment to future
generations were based on a small number of long-term epidemiological studies and some empirical
observations. Only recently have experimental animal models and a few analyses on human data
explored the transgenerational nature of phenotypic changes observed in offspring. Changes include
multiple metabolic disorders, cancer and other chronic diseases. These phenotypes cannot always be
explained by Mendelian inheritance, DNA mutations or genetic damage. Hence, a new compelling theory
on epigenetic inheritance is gaining interest, providing new concepts that extend Darwin's evolutionary
theory. Epigenetic alterations or “epimutations” are being considered to explain transgenerational in-
heritance of parentally acquired traits. The responsible mechanisms for these epimutations include DNA
methylation, histone modification, and RNA-mediated effects. This review explores the literature on a
number of time-dependent environmentally induced epigenetic alterations, specifically those from di-
etary exposures. We suggest a role for the male germ line as one of nature's tools to capture messages
from our continuously changing environment and to transfer this information to subsequent generations.
Further, we open the discussion that the paternally inherited epigenetic information may contribute to
evolutionary adaptation.

© 2015 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(Nelson and Nadeau, 2010; Pembrey, 2010; Soubry et al., 2014).
While some observational studies in the 1930s and 70s have led to
the suggestion of a paternal role in this transgenerational process
(Fabia and Thuy, 1974; Price, 1939), the focus of most research
studies in the last decade was on influences from periconceptional
or in vitro exposures through the mother. Numerous animal and
epidemiological data on mothers and their offspring have provided
evidence that besides genetic damage also epigenetic features may
be affected by environmental changes, leading to heritable
phenotypic alterations that persist through multiple generations.
The biological mechanism underlying this transgenerational in-
heritance has been proposed to involve the epigenome. Only in the
last few years have some researchers started to invest in a search
for potential paternal contributions in epigenetic inheritance of
environmental exposures. Some of the controversial literature and
theories on paternally inherited phenotypic changes from occu-
pational harmful exposures include paint, industrial solvents,
agriculture, war, and ionizing radiation but also effects from
paternal diet or life-style and environmental pollution have been
reported (Soubry et al., 2014). The physiological consequences in
children or even grandchildren have often been attributed to DNA
damage or mutations in paternal germ cells but to date this has not
always been proven. Increasing evidence supports the idea that at
least some epigenetic marks acquired during spermatogenesis may
be sustained through embryonic development. Fig. 1 links the ef-
fects of several environmental exposures with potential molecular
changes during male gametogenesis, causing persistent epigenetic
alterations and phenotypic consequences in the next generation(s).
The sperm epigenetic machinery includes DNA methylation, his-
tone modifications, and transcription of non-coding RNAs (such as
microRNAs) (Jenkins and Carrell, 2011). During gametogenesis,
from primordial germ cells (PGCs) to spermatozoa (SZ) (Fig. 1),
epigenetic marks are created in a sex-specific way (Marques et al.,
Fig. 1. The sperm epigenome: a messenger of ancestral exposures. Schematic overview of e
paternal germ line. Examples of studies on transgenerational inheritance include exposures
2006)), low-protein diet (Carone et al., 2010), vitamin or micronutrient deficiencies (Mejo
(Manikkam et al., 2013), obesity (Soubry et al., 2013b), smoking (Northstone et al., 2014), stre
and Sinks, 1984), pesticides (Skinner et al., 2013), ionizing radiation (Gardner et al., 1990; Kot
largely known, it is unclear how they are interlinked and how or when the environment inte
spermatogonia (SG) before puberty. They further differentiate to spermatocytes (SC) and fina
important in sperm development include DNA methylation, histone modifications, and non-
histone deacetylases (HDACs), often form a link between these components; they are imp
generation may also to trigger this fine-tuning. Environmental messages are able to alter the
either beneficial (green), they may disturb homeostasis or metabolism (orange), or they m
2011; Niemitz and Feinberg, 2004). Imprinted genes are perfect
candidate genes to capture and keep the environmental messages,
since they escape the large-scale DNA methylation erasure after
fertilization. However, other yet unidentified genes or gene pro-
moters cannot be excluded from this selective protection. Modifi-
cation and retention of histones and/or retention of other proteins
or enzymes at specific DNA sequences are possible mechanisms to
regulate the inheritance of environmentally induced epigenetic
changes (Jenkins and Carrell, 2012; Jirtle and Skinner, 2007; Miller
et al., 2010). In the fetus (not presented in the figure), after em-
bryonic reprogramming, primordial germ cells lose their epigenetic
marks as they migrate to the genital ridge. Complete epigenetic
erasure is suspected, including erasure of imprint regulatory re-
gions. Hence, theoretically, a new epigenetic pattern is created in
the second generation and DNAmethylation is guaranteed in a sex-
specific manner (Murphy and Jirtle, 2003). However, some studies
indicate that “permanent” epigenetic alterations induced by the
environment are possible; germ cells may harbor this ancestral
environmental information as epigenetic alterations, and subse-
quently transfer this to the next generations (Manikkam et al.,
2013; Tracey et al., 2013). It should be noted that the terminology
used to describe transmission of parental exposures varies. Terms
like transgenerational, multigenerational and intergenerational are
used interchangeably (Burton and Metcalfe, 2014; Skinner, 2008).
The term “transgenerational effect” has generally been used if the
effect is (still) present in the generation that was not exposed
directly. If it was the germ line that was exposed, the effect can only
become “transgenerational” if a permanent reprogramming
occurred. This can only be verified if phenotypic consequences are
analyzed in the next (non-exposed) generation (Skinner et al.,
2014); which is not always feasible in studies on humans.
Althoughwe do not exclude any effects through themother and the
female germ line, studies on paternal exposures make it possible to
nvironmentally acquired epigenetic changes and disorders in the offspring through the
to malnutrition (such as famine (Heijmans et al., 2008) or overnutrition (Pembrey et al.,
s et al., 2013), high fat diet (Ng et al., 2010; Wei et al., 2014), plastic-derived toxins
ss (Gapp et al., 2014; Rodgers et al., 2013), paint and solvents (Reid et al., 2011; Wilkins
urbash et al., 2006), and war (Ngo et al., 2010). Although the molecular components are
rferes in these processes. Male germ cells develop from primordial germ cells (PGCs) to
lly spermatozoa (SZ) during each reproductive cycle. Candidate epigenetic components
coding RNAs (e.g. microRNAs). Enzymes, such as DNA methyltransferases (DNMTs) and
ortant to fine-tune intermolecular effects. Unbalanced reactive oxygen species (ROS)
epigenetic machinery in male germ cells. If the effects persist, these alterations may be
ay be harmful (red) to the next generations.
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easily separate preconceptional from in utero exposures. Obviously,
sperm cells are easier to access than oocytes. Furthermore, because
spermatogenic stem cells develop in utero, stay mitotically quies-
cent until the peri-pubertal period and are subsequently able to
undergo perpetual renewal and/or differentiation throughout the
reproductive lifespan, they are excellent tools to capture time-
related messages, as well as chronic messages, from the environ-
ment. Earlier we described a number of critical developmental time
points at which themale germ linemay be susceptible to epigenetic
alterations through several environmentally induced exposures
(Soubry et al., 2014). In the current review we focus on reports
concerning dietary influences, the timing of the exposure, and the
molecular, epigenetic, and phenotypic effects in the offspring, in
sperm cells and in the embryo.

2. Time-related exposures to paternal dietary conditions and
the epigenetic effects

2.1. Effects in the offspring

Historical data from the isolated municipality of €Overkalix in
Sweden have revealed effects of early influences from grandparents
to grandchildren. Longevity of grandsons was determined by the
paternal grandfather's diet during pre-puberty (Pembrey et al.,
2006). These data suggest that information acquired from the
environment in early life, when paternal sperm cells are developing
from PGCs to spermatogonia, can be stored and transmitted to the
next generations. In the long-term cohort of the Framingham Heart
Study, an association was observed between early-onset paternal
obesity and elevated serum alanine aminotransferase (ALT) levels
in the offspring. High levels of ALT predict metabolic complications.
Interestingly, late-onset paternal and maternal obesity were not
associated with elevated ALT levels in the offspring (Loomba et al.,
2008). The study did not clarify whether the fathers had already
been obese during childhood. Periconceptional nutrient depriva-
tion, especially during famine, has been associated with increased
risk of obesity (Ravelli et al., 1976), hypertension (Roseboom et al.,
1999), elevated lipid profiles (Lumey et al., 2009), cardiovascular
diseases (Painter et al., 2006b) and cancer (Painter et al., 2006a) in
the offspring. Exposures to these adverse nutritional conditions
have been related to aberrant methylation at the IGF2 imprint
regulatory region in the offspring more than forty years later
(Heijmans et al., 2008). Similarly, a study in Gambian children
showed that DNA methylation at several metastable epialleles can
be altered by seasonal nutritional circumstances at the time of
conception (Waterland et al., 2010). These studies did not discuss a
potential effect of paternal diet. Instead, the authors interpreted
their findings as a result of maternal influences and left the ques-
tion open if the effect was caused by pre- or postconceptional ex-
posures. Hence, it is unclear if these dietary conditions caused an
indirect epigenetic effect (through the parental germ cells) or a
direct epigenetic effect (on the early embryo).

The first human evidence for a paternally induced epigenetic
effect in the offspring through nutritional conditions or life-style
originates from the Newborn Epigenetics Study (NEST). We have
recently explored this birth cohort for potential associations be-
tween epigenetic changes in the offspring and paternal peri-
conceptional body mass index. We found significant differences in
DNA methylation at differentially methylated regions (DMRs) of
several imprinted genes if the father was obese (Soubry et al.,
2013a, 2013b). DNA methylation marks are known to establish
during gametogenesis and deregulation of methylation at DMRs is
related to chronic diseases or metabolic disorders in the offspring
(Jirtle and Skinner, 2007; Murphy and Jirtle, 2003). Although the
NEST data suggested a transgenerational influence of paternal diet
(or lack of exercise) on the progeny through sperm, metabolic ef-
fects or other implications for children of these obese fathers have
not been studied yet.

In a mice model, a transgenerational effect on metabolic- and
growth-related parameters in the offspring was first shown if fa-
thers suffered from preconceptional food deprivation (Anderson
et al., 2006). Although a role for epigenetic reprogramming as a
potential underlying mechanism was suggested, epigenetic tests
were only included in later experimental studies. In 2010, Carone
et al. reported that male mice consuming a low-protein diet from
weaning (3 weeks of age) until sexual maturity produced offspring
with increased methylation at a putative enhancer for a key lipid
regulator, PPARalpha, in the liver. In the same year, Ng et al. pub-
lished their results on male mice that were overfed through a high-
fat diet from 4weeks of age. These mice not only became heavier or
had impaired glucose tolerance and insulin sensitivity, but their
female offspring also developed impaired glucoseeinsulin ho-
meostasis. Furthermore, expression levels of several genes impor-
tant in glucoseeinsulin homeostasis or other regulatory pathways
were altered and the interleukin 13 receptor alpha 2 (Il13ra2) gene
was hypomethylated (Ng et al., 2010). Further analyses revealed
changes in the transcriptomes of retroperitoneal adipose and
pancreatic islet tissues in female offspring (Ng et al., 2014). Most
recently, Wei et al. confirmed an effect on the offspring's metabolic
status in a pre-diabetic mouse model with male mice on a high-fat
diet from 3weeks of age. Offspring of pre-diabetic fathers exhibited
impaired glucose tolerance and insulin insensitivity. Gene expres-
sion profiling showed altered expression of genes involved in
glucose metabolism and differential DNA methylation patterns
were observed in the pancreatic islets of offspring from pre-
diabetic fathers (Wei et al., 2014). Interestingly, similar observa-
tions have been reported on other dietary compounds or de-
ficiencies. Mejos et al. showed that a folate-deficient diet in male
rats resulted in a decrease in global DNA methylation in liver of the
offspring (Mejos et al., 2013).

2.2. Effects in sperm

In mice, Lambrot et al. provided evidence that very early expo-
sure to folate-deficiency may cause altered sperm DNA methyl-
ation. The effect was seen if a low-folate diet was administered to
females through pregnancy and lactation (Lambrot et al., 2013).
Hence, males were already exposed during in utero development,
when epigenetic patterning in germ cells begins to form. A similar
observation has been reported recently when pregnant mice suf-
fered undernourishment; their male offspring showed an altered
sperm methylome (Radford et al., 2014). In Carone et al.'s mouse
model, where males were fed a low-protein diet, sperm samples
showed different chromatin packaging and RNA content, as
compared to sperm from control males (Carone et al., 2010). Others
have confirmed a diet-induced impact onmale germ cells. Wei et al.
linked a high-fat diet to altered methylation patterns in sperm cells
(Wei et al., 2014). Lane's research group showed that male mice on
a high-fat diet from 5 weeks of age onwards had a significant
reduction in global DNA methylation and modulated sperm
microRNA content. In some cases the effects were still measured in
the second generation (Fullston et al., 2013). Interestingly, micro-
RNAs are able to regulate DNAmethylation (Sinkkonen et al., 2008).
For instance, an increase in miR-29 has been associated with a
decrease in methylation of repeat elements in the male germline.
Members of this family of microRNAs have been predicted to
downregulate DNA methyltransferase-3a (DNMT3a), an enzyme
necessary for establishing genomic methylation (Filkowski et al.,
2010; Takada et al., 2009). Although not reported via dietary ex-
posures, Gapp et al. demonstrated a causal link between sperm
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RNAs and metabolic and behavioral alterations in the offspring.
Microinjecting purified RNAs from sperm from mice exposed to
traumatic stress into wild-type fertilized oocytes resulted in
offspring with the same outcomes as if their parents were exposed.
This supports the hypothesis that environmentally induced
changes in sperm microRNAs can serve as a vector modifying other
epigenetic marks, such as DNA methylation and/or histone modi-
fications, for further transmission (Gapp et al., 2014). Lane further
reported an obesity-related increase in histone acetylation in
spermatids (Palmer et al., 2011). Acetylated histones represent an
epigenetic component of the chromatin. Acetylation during late
spermatogenesis transforms the chromatin in a more relaxed
structure and facilitates removal of histones, so they can be
replaced by protamines. If this process is disturbed and acetylation
occurs too early in sperm development the rate of DNA damage
increases, which contributes to poor sperm characteristics. Indeed,
male mice receiving a high-fat diet fromweek 6 to week 15 showed
an increase in sperm DNA damage and a decrease in percentage of
motile spermatozoa (Bakos et al., 2011b). Diet-induced impaired
spermatogenesis can also be attributed to unbalanced reactive
oxygen species (ROS) generation. High levels of ROSweremeasured
in sperm of mice fed with a high-fat diet (Bakos et al., 2011b). ROS
are normal by-products of metabolism. However, it is known that
when ROS production exceeds the cell's ability to metabolize or
detoxify them, a state of oxidative stress emerges. This contributes
to DNA damage and ineffective DNA repair mechanisms.

In humans, obesity has been related to a decrease in sperm
quality while some fail to detect this association (Sermondade et al.,
2013). An abnormally high content of unesterified, unsaturated
fatty acids in defective sperm has also been linked with ROS pro-
duction (Koppers et al., 2010). A negative correlation was found
between ROS production and global DNA methylation in human
sperm. Supplementation with antioxidants significantly improved
sperm DNA methylation (Tunc and Tremellen, 2009). The mecha-
nism of how changes in ROS can modulate DNA methylation in
sperm is still unknown. However, Lim et al. suggested from an
in vitro experiment in cancer cells that a ROS-induced site-specific
DNA hypermethylation occurs through altered activity of histone
deacetylase 1 (HDAC1) and DNMT 1 (Lim et al., 2008). The here-
described mechanistic components of the epigenetic machinery
in sperm are depicted in Fig. 1.

2.3. Effects in the embryo and pregnancy outcomes

Pre-diabetic male mice on a high-fat diet not only showed
altered methylation patterns in their sperm cells compared to
controls, a partial inheritance of DNA methylation was also detec-
ted in E3.5 blastocysts at genes not reported as being imprinted
(Wei et al., 2014). The latter, amongst others (Lambrot et al., 2013;
Ng et al., 2010, 2014), suggests that the theory on complete
reprogramming of non-imprinted genes after fertilization may
have some exceptions. Some acquired changes may withstand
reprogramming and explain the transgenerational character of
inherited environmental messages. Binder et al. provided evidence
for a diet-induced change in blastocysts' carbohydrate metabolism,
with significantly increased glycolysis if the fathers were obese
(Binder et al., 2012b). Other observations in these diet-induced
obese male mice were impaired sperm quality, delayed cell cycle
progression during preimplantation, reduced implantation rate,
affected placental size, and smaller offspring (Binder et al., 2012a,
2012b). Interestingly, improving metabolic health through diet
and/or exercise 9 weeks before conception restored embryo and
fetal growth (McPherson et al., 2013).

If observations from mice can be translated to humans, it might
have important implications regarding public health
recommendations. Studies on diet or exercise intervention in obese
future fathers may help us understand if there are any effects in
humans. To our knowledge, few studies have focused on male
obesity in relation to embryonic development and/or quality in
humans and those that have done so report conflicting results.
While Merhi et al. failed to detect an association between male
obesity and early embryo development (Merhi et al., 2013), others
showed that BMI negatively influences blastocyst development and
live birth after IVF treatment (Bakos et al., 2011a; Petersen et al.,
2013). Growth of the fetus has been associated with paternal BMI
in a sex-specific manner (Chen et al., 2012). A potential effect of
paternal obesity has been ratified by others (Anifandis et al., 2013;
Bellver, 2013).

The obese population generally eats an energy-dense and
nutrient-poor diet, hence their vitamin status can be considered to
be inadequate (Aasheim et al., 2008; Drewnowski, 2009). It has
been reported that folate deficiency of male mice is associated with
increased birth defects in the offspring (Lambrot et al., 2013).
Supplementation of folic acid (the synthetic form of folate) to future
mothers to reduce the risk of congenital defects has been a major
focus of public health agencies for many years, but the potential
effects of paternal folate deficiencies have not attracted any
attention yet. Little is known about the consequences of low or high
dietary folate concentrations on sperm and its DNA methylation
patterns. Hence, currently future fathers do not receive any public
health recommendations.

3. Epigenetic inheritance of paternal dietary conditions and
potential effects on evolution

As described above, multiple studies indicated that dietary
conditions can induce epigenetic changes through the male germ
line. These changes can be transferred to the embryo, inducing
phenotypic or metabolic perturbations in the offspring. In some
cases the phenotypic alterations sustain for several generations.
Although the biological mechanisms remain to be elucidated, a
growing number of reports support the hypothesis that the ac-
quired inherited epigenetic signatures may be nature's way to steer
development and to adapt relatively quickly to environmental
variations or changes. The epigenetic output and accompanying
changes in gene expression patterns and phenotypes, evolving
from ancestral (chronic) exposures, are most likely supposed to
benefit evolution (Colaneri et al., 2013; House, 2014; Hunter, 2008;
Jablonka, 2013; Mazzio and Soliman, 2014; Mendizabal et al., 2014;
Rebollo et al., 2010; Richards, 2006; Varriale, 2014). However, a side
effect of this yet unrevealedmechanismmay be that if an individual
is exposed to a contradictory environmental insult or trait, such as
famine, malnutrition, a new chemical, pollutant or pathogen during
a particular developmental stage in life, the risk of developing
diseases or metabolic disorders in the next generation(s) increases.
A compelling question is whether and how environmentally
induced epigenetic changes are able to persist or eventually accu-
mulate over longer evolutionary time periods; ultimately contrib-
uting to the formation of new species. Some links have been
reported between environmental inheritance and evolution; in
some cases epigenetic mechanisms have been suggested. Sup-
porting evidence originates from observations in plant populations.
Epigenetic variation in plants may be subject to natural selection,
resulting in novel phenotypes of ecological isolated micro-
populations or populations exposed to certain environmental
conditions (Hirsch et al., 2012; Schmitz et al., 2013). One of the
underlying causes may include polymorphisms or insertions of
repetitive sequences (such as transposable elements or TEs) influ-
encing the surrounding epigenome (Martin et al., 2009; Schmitz
et al., 2013), or epigenetically driven mobilization of TEs (Rebollo
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et al., 2010). Transgenerational (epigenetic) inheritance of envi-
ronmental factors has also been suggested to contribute in envi-
ronmental adaptation of other species, such as birds (Skinner et al.,
2014), insects (Bonduriansky and Head, 2007), mammals, fishes
and reptiles (Pfennig and Servedio, 2013; Varriale, 2014). Genomic
imprinting, an epigenetic mechanism that is crucial in develop-
ment and sensitive to periconceptional nutritional conditions from
mother and father (Soubry et al., 2013a), has been implicated in the
evolution of human health (Das et al., 2009), but also in acceler-
ating mammalian speciation (Hunter, 2007). Crossing two rodent
species (Peromyscus) resulted in loss of imprinting and skewing of
X-chromosome inactivation in hybrids. These results from Vrana
et al. demonstrated how imprinting might have enforced separa-
tion between two closely related species, suggesting a role for
epigenetic gene regulation in the establishment and maintenance
of reproductive isolation barriers in mammals (Vrana et al., 2000).
Although the following is speculative, it is possible that nutritional
differences in the environment alter the epigenome (given its
malleable characteristics) in such way that this change contributes
to speciation and evolution (Hunter, 2007; Mazzio and Soliman,
2014). Epigenetics and genetics may jointly promote evolution. It
has been suggested that epigenetic shifts influence and accelerate
genetic variation such that both drive transformation or develop-
ment of the organism (Pfennig and Servedio, 2013; Shea et al., 2011;
Skinner et al., 2014). A more controversial theory suggests that
epigenetic changes can influence evolutionary novelty indepen-
dent of changes in DNA sequences (Badyaev and Uller, 2009;
Pfennig and Servedio, 2013). One possible explanation has been
suggested via entrenched parental effects (Badyaev and Uller,
2009). Parent-related epigenetic inheritance may accelerate the
likelihood that populations diverge in a way that contributes to
reproductive isolation such that speciation may occur (Pfennig and
Servedio, 2013). Bonduriansky et al. showed in flies (T. angusticollis)
that if males were administered a specific diet they produced larger
offspring, influencing fecundity of female offspring and mating
success of male offspring (Bonduriansky and Head, 2007). Paternal
dietary effects were also found in offspring of other flies species,
such as in D. melanogaster (Valtonen et al., 2012). Based on these
findings, Bonduriansky and Day investigated a model allowing to
question the role of non-genetic paternal effects in the evolution of
female preferences (Bonduriansky and Day, 2013). Their research
supports evidence that epigenetic inheritance has the potential to
generate and maintain heritable variation in fitness, as an alter-
native to genetic variation in fitness (Bonduriansky and Day, 2013;
Bonduriansky and Head, 2007). Herewith, a new and exciting sci-
entific area has been entered that undoubtedly will continue the
debate that started more than a century ago on the “origin of
species”.

4. Conclusive remarks and future directions

The idea that paternally acquired exposures can be captured and
transmitted to the next generation has been considered a possi-
bility for many years. Historically obtained human data suggested a
potential link between paternal environmental exposures and
phenotypic outcomes in the offspring, but they generally lacked the
exploration for molecular mechanisms behind their observations;
mainly due to the inevitable limitations of (longitudinal) epide-
miological studies. Hence, animal experiments were mostly indis-
pensable to provide proof. Over the last 5 years, an increasing
number of animal model studies has indicated that early-onset
exposures to dietary conditions, but also to harmful environ-
mental pollutants (Soubry et al., 2014), affect male gametogenesis,
change gene programming, and thereby disturb homeostasis,
metabolic balances and/or increase risk of disease in the offspring.
Other exposures affecting sperm and offspring's epigenome and/or
health status, not discussed in this review, include social and
behavioral interactions, stress, and other psychological adversities
(Gapp et al., 2014; Rodgers et al., 2013; Szyf, 2013a, 2013b). Liter-
ature suggests that timing of the exposure is crucial. During some
stages in life the epigenomemay bemore susceptible to permanent
changes. The fact that the epigenome is malleable, that epigenetic
variation exists and that environmentally induced epigenetic al-
terations can be inherited through multiple generations are good
reasons to think that the epigenome plays a role in long-term
evolutionary trends. If it is true that the epigenetic machinery is
involved in evolution, unraveling the epigenetic mechanisms and
the potential epimutations from environmental events in devel-
oping germ cells and the early embryo is of great interest. In order
to gain a better understanding of the molecular mechanisms of
transgenerational inheritance of early environmental exposures
recommendations to improve study designs have been suggested
recently (Lecomte et al., 2013). We further recommend that it
would be worthwhile if researchers explored their environmental
factor of interest by timing of the exposure, for instance through a
comparison of exposures at different stages of female and male
germ cell development in animal models. This would provide in-
sights into which timewindows of life are most decisive in creating
persistent epigenetic alterations. Furthermore, more research is
needed to understand the mechanisms of how the acquired envi-
ronmental message withstands developmental processes, and
persists through multiple generations. Future research on organ-
isms that reproduce rapidly may further clarify this transgenera-
tional process.

Since epigenetics has been considered as the underlying
mechanism of transgenerational effects, the original concept of the
gene as the sole tool for inheritance of ancestral characteristics is
changing. Primordial germ cells possess the capacity to give rise to
a new individual through successive epigenetic events, while
enduring a link with ancestral experiences. The plasticity of the
epigenome during development of these germ cells is most likely
strongly involved in the “fine-tuning” or adaptation to our envi-
ronment. We suggest that depending on timing of the exposure, for
instance to changing nutritional circumstances, this environmental
message may be successfully transferred to the next generation(s).
Although the mechanisms have not yet been elucidated, we do not
exclude a potential role for the sperm epigenome as one of the
drivers of evolution. Future research is necessary to confirm this
hypothesis.
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