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1. Introduction

Koolen [9] classified the distance-regular graphs with smallest eigenvalue −1 − b1
2
.

Theorem 1.1 [9]. Let � be a distance-regular graph with diameter D at least two and smallest eigenvalue

−1 − b1
2
. Then either a1 � 1 or one of the following holds:

(I) D = 2 and

(a) � is a complete multipartite graph Kn×t with n � 4, t � 2;

(b) � is the complement of an n × n grid with n � 4;

(c) � is the complement of a triangular graph T(n), with n � 5;

(d) � is the complement of the Petersen graph;

(e) � is the complement of the Shrikhande graph;

(f) � is the complement of one of the three Chang graphs;
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(II) D = 3 and

(a) � is the Johnson graph J(6, 3) with intersection array {9, 4, 1; 1, 4, 9};
(b) � is the distance-2 graph of the halved 6-cube with intersection array {15, 8, 1; 1, 8, 15};
(c) � is the Gosset graph with intersection array {27, 16, 1; 1, 16, 27};

(III) D = 4 and � is the Conway–Smith graph with intersection array {10, 6, 4, 1; 1, 2, 6, 10}.
Note that Case II of Theorem 1.1 was forgotten in [9].

For avertex xof agraph�, let�(x)be the local graphof�, i.e. the subgraph inducedon theneighbors

of x. In this paper, we extend this Theorem 1.1 as follows. We determine the distance-regular graphs

such that for all x the second largest eigenvalue of �(x) is at most one. Our main result is:

Theorem 1.2. Let � be a distance-regular graph with diameter D such that for all vertices x, the second

largest eigenvalue of the local graph of x, �(x), is at most one. Then, either a1 � 1 or, one of the following

holds:

(I) D = 1 and � is the complete graph Kn with n � 4;

(II) D = 2 and

(a) � is a complete multipartite graph Kn×t with n � 4, t � 2;

(b) � is a complement of an n × n grid with n � 4;

(c) � is the complement of a triangular graph T(n), with n � 5;

(d) � is the complement of the Petersen graph;

(e) � is the complement of the Shrikhande graph;

(f) � is the complement of one of the three Chang graphs;

(g) � is the Shrikhande graph;

(h) � is the Clebsch graph;

(i) � is the Paley graph with 13 vertices;

(j) � is the Paley graph with 17 vertices;

(k) � has possibly {12, 6; 1, 6}, {15, 8; 1, 6}, {18, 10; 1, 6}, {21, 12; 1, 6}, {21, 12; 1, 9} or {27, 16;
1, 12} as its intersection array;

(III) D = 3 and

(a) � is the icosahedron with intersection array {5, 2, 1; 1, 2, 5};
(b) � is the Johnson graph J(6, 3) with intersection array {9, 4, 1; 1, 4, 9};
(c) � is the Doro graph with intersection array {10, 6, 4; 1, 2, 5};
(d) � is the distance 2-graph of the halved 6-cube with intersection array {15, 8, 1; 1, 8, 15};
(e) � is the unique locally folded 5-cube distance-regular graph with intersection array

{16, 10, 1; 1, 5, 16};
(f) � is the Gosset graph with intersection array {27, 16, 1; 1, 16, 27};

(IV) D = 4 and � is the Conway–Smith graph with intersection array {10, 6, 4, 1; 1, 2, 6, 10}.
As a consequence of Theorem 1.2 and some results of Terwilliger and Hoffman, we can also extend

Theorem 1.1 (and [3, Theorem 4.4.3]) in the following way.

Theorem 1.3. Let 0 < α < 1 + √
2. Then there exists K = K(α), such that any distance-regular graph

with diameter D at least three, valency k � K, a1 � 2 and smallest eigenvalue at most −1 − b1
α

is one of

the following graphs:

(I) D = 3 and

(a) � is the icosahedron with intersection array {5, 2, 1; 1, 2, 5};
(b) � is the Johnson graph J(6, 3) with intersection array {9, 4, 1; 1, 4, 9};
(c) � is the distance-2 graph of the halved 6-cube with intersection array {15, 8, 1; 1, 8, 15};
(d) � is the Gosset graph with intersection array {27, 16, 1; 1, 16, 27};

(IV) D = 4 and � is the Conway–Smith graph with intersection array {10, 6, 4, 1; 1, 2, 6, 10}.
This paper is organized as follows: in the next section we give definitions and preliminaries, in

Section 3, we give some results that we use in the proofs of Theorems 1.2 and 1.3. In Section 4 we give
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the proof of Theorem 1.2, in the first part we consider diameter at least three and the second part we

consider diameter two. In the last section, we show Theorem 1.3.

2. Definitions and preliminaries

All the graphs considered in this paper are finite, undirected and simple (for unexplained terminol-

ogy and more details, see [3]). Suppose that � is a connected graph with vertex set V(�) and edge set

E(�), where E(�) consists of unordered pairs of two adjacent vertices. The distance d(x, y) between

any two vertices x, y of � is the length of a shortest path connecting x and y in �. We denote by � the

complement of �.

Let � be a connected graph. For a vertex x ∈ V(�), define �i(x) as the set of vertices which are at

distance precisely i from x (0 ≤ i ≤ D), where D := max{d(x, y) | x, y ∈ V(�)} is the diameter of

�. In addition, define �−1(x) = �D+1(x) = ∅. We write �(x) instead of �1(x). The adjacency matrix

A of graph � is the (0,1)-matrix whose rows and columns are indexed by the vertex set V(�) and the

(x, y)-entry is 1 whenever x and y are adjacent (denoted by x ∼ y) and 0 otherwise. The eigenvalues

(respectively, the spectrum) of the graph � are the eigenvalues (respectively, the spectrum) of A. We

denote the second largest eigenvalue of respectively a graph � or a square matrix Q with only real

eigenvalues by θ1(�), respectively θ1(Q).
For a connected graph�, the local graph�(x) of a vertex x ∈ V(�) is the subgraph induced on�(x)

in �.

For a graph�, a partition� = {P1, P2, . . . , P�} of the vertex set V(�) is called equitable if there are

constants βij such that each vertex x ∈ Pi has exactly βij neighbors in Pj (1 � i, j � �). The quotient

matrix Q(�) associated with the equitable partition � is the � × � matrix whose (i, j)-entry equals

βij (1 � i, j � �). Note that the eigenvalues of the quotient matrix Q(�) are also eigenvalues (of the

adjacency matrix A) of �.

A connected graph � with diameter D is called distance-regular if there are integers bi, ci (0 �
i � D) (where bD = 0 = c0) such that for any two vertices x, y ∈ V(�) with d(x, y) = i, there

are precisely ci neighbors of y in �i−1(x) and bi neighbors of y in �i+1(x). In particular, any distance-

regular graph is regular with valency k := b0. Note that a non-complete, connected strongly regular

graph is just a distance-regular graph with diameter two. In this case we say that θ1 and θ2 are the

non-trivial eigenvalues. We define ai := k − bi − ci (1 � i � D) for notational convenience. Note

that ai =| �(y) ∩ �i(x) | holds for any two vertices x, ywith d(x, y) = i (1 � i � D). For a distance-

regular graph � and a vertex x ∈ V(�), we denote ki := |�i(x)|. It is easy to see that ki = b0b1···bi−1

c1c2···ci
and hence ki does not depend on the vertex x. The numbers ai, bi−1 and ci (1 � i � D) are called the

intersection numbers of the distance-regular graph �, and the array {b0, b1, . . . , bD−1; c1, c2, . . . , cD}
is called the intersection array of �.

The next lemma gives some elementary properties concerning the intersection numbers.

Lemma 2.1 (Cf. [3, Proposition 4.1.6]). Let � be a distance-regular graph with valency k and diameter

D. Then the following holds:

(1) k = b0 > b1 � · · · � bD−1;
(2) 1 = c1 � c2 � · · · � cD;
(3) bi � cj if i + j � D.

We will refer to the following theorem as the interlacing theorem.

Theorem 2.2 (Cf. [7, Theorem 9.1.1]). Let m � n be two positive integers. Let A be an n × n matrix,

which is similar to a (real) symmetric matrix, and let B be a principal m × m submatrix of A. Then, for

i = 1, . . . ,m,

θn−m+i(A) � θi(B) � θi(A)
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holds, where A has eigenvalues θ1(A) � θ2(A) � · · · � θn(A) and B has eigenvalues θ1(B) � θ2(B) �
· · · � θm(B).

For � = {P1, P2, . . . , Pt} a partition of the vertex set of a graph � the quotient matrixwith respect

to � is the t × t-matrix B whose (i, j)-entry equals
∑

x∈Pi

(# of neighbors of x in Pj)
|Pi| .

We also need the following interlacing result.

Theorem 2.3 (Cf. [7, Lemma 9.6.1]). Let � be a graph with ν vertices and eigenvalues θ0 � θ1 � · · · �
θν−1. Let � = {P1, P2, . . . , Pt} be a partition of the vertex set of � with quotient matrix B with respect to

� Then, for i = 1, . . . ,m,

θν−t+i � θi(B) � θi

holds, where B has eigenvalues θ1(B) � θ2(B) � · · · � θt(B). Moreover if the interlacing is tight (there

exists � such that θi(B) = θi for i � � and θi(B) = θν−t+i for i > �), then � is equitable.

The following theorem summarizes some elementary results on strongly regular graphs.

Theorem 2.4 (Cf. [3, Theorem 1.3.1 and Proposition 1.3.2]). Let � be a non-complete connected strongly

regular graph with ν vertices, distinct eigenvalues k > θ1 > θ2 and intersection numbers c2 and b1. Then

the followings hold;

(i) k = c2 − θ1θ2;

(ii) the multiplicity of θ1 equals
(θ2+1)k(k−θ2)

c2(θ2−θ1)
;

(iii) (θ1 + 1)(θ2 + 1) = −b1;

(iv) If � is not a conference graph, then θ1 and θ2 are integers;

(v) If � contains a coclique C of size γ , then θ1 � (ν−γ )(k−c2)
γ k

.

The next theorem summarizes the results on regular graphs with smallest eigenvalue at least −2

and is in essence due to Cameron et al. [5].

Theorem 2.5 (Cf. [3, Proposition 3.12.2]). Let � be a connected regular graph with ν vertices, valency k,

and smallest eigenvalue at least −2. Then one of the following holds:

(i) � is the line graph of a regular connected graph;

(ii) � is the line graph of bipartite semiregular connected graph;

(iii) ν = 2(k + 2) � 28 and � is an induced subgraph of E7(1);
(iv) ν = 3

2
(k + 2) � 27 and � is an induced subgraph of Schläfli graph;

(v) ν = 4
3
(k + 2) � 16 and � is an induced subgraph of Clebsch graph;

(vi) ν = k + 2 and � is a Km×2 for some m � 3.

Remark 2.6. (i) There are 187 regular connected graphs with smallest eigenvalue at least −2, which

are not line graphs, see for example [4, p. 91].

(ii) In Cases (iii)–(v) of Theorem 2.5, one can say more by inspecting the 187 regular graphs of (i),

namely there are only 5 graphs (all of which have 22 vertices) which are not an induced subgraph of

one of the Schläfli graph or the three Chang graphs.

The following result was originally shown by Seidel [10].

Theorem 2.7 (Cf. [3, Proposition 3.12.4]). Let � be a connected strongly regular graph with smallest

eigenvalue −2. Then � is a triangular graph T(n) (n � 5), a square grid n × n (n � 3), a complete

multipartite graph Kn×2 (n � 2), or one of the graphs of Petersen, Clebsch, Schläfli, Shrikhande, or Chang.
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Terwilliger [11] showed the following diameter bound for distance-regular graphs containing an

induced quadrangle.

Theorem2.8 (Cf. [3, Theorem5.2.1 andCorollary 5.2.2]). Let� be a distance-regular graphwith diameter

D. If � contains an induced quadrangle, then

ci − bi � ci−1 − bi−1 + a1 + 2 (i = 2, . . . ,D).

In particular,

D � k + cD

a1 + 2
� 2k

a1 + 2
.

Terwilliger [13] also determined the graphs which reach this diameter bound.

Theorem 2.9 (Cf. [3, Theorem 5.2.3]). Let � be a distance-regular graph with diameter D at least
k+cD
a1+2

.

Then one of the following holds:

(i) � is a Terwilliger graph;

(ii) � is a strongly regular graph with smallest eigenvalue −2;

(iii) � is a Hamming graph, a Doob graph, a Johnson graph, a halved cube, or the Gosset graph.

Tewilliger [12] also showed the following result on the eigenvalues of a distance-regular

graph.

Theorem 2.10 (Cf. [3, Theorem 4.4.3]). Let � be a distance-regular graph with diameter D at least three

and distinct eigenvalues k = θ0 > θ1 > · · · > θD. Let x be a vertex of � and let �(x) have eigenvalues

a1 = λ1 � λ2 � · · · � λk. Then −1 − b1
θD+1

� λ2 � λk � −1 − b1
θ1+1

.

Recall that a Terwilliger distance-regular graph is a distance-regular graph such that the induced

subgraph on the common neighbors of any two vertices at distance two is complete.

Koolen [9] showed:

Proposition 2.11 [9, Proposition 9]. Let � be a distance-regular Terwilliger graph with c2 � 2. If � has

a vertex x such that θ1(�(x)) � 1, then � is one of the following:

(i) the icosahedron with intersection array {5, 2, 1; 1, 2, 5};
(ii) the Doro graph with intersection array {10, 6, 4; 1, 2, 5};
(iii) the Conway–Smith graph with intersection array {10, 6, 4, 1; 1, 2, 6, 10}.

The following result shows a construction of antipodal distance-regular graphs with diameter

three.

Proposition 2.12 [3, Proposition 12.5.3]. Let q = rm + 1 be a prime power, where r > 1 is an integer

and either m is even or q is a power of two. Let V be a vector space of dimension two over the finite field

with q elements, GF(q). Let V be provided with a non-degenerate symplectic form B. Let K be the subgroup

of the multiplicative GF(q)∗ = GF(q) \ {0} of index r, and let b ∈ GF(q)∗. Then the graph � with vertex

set {Kv | v ∈ V \ {0}}, where {Ku, Kv} is an edge if B(u, v) ∈ bK and Ku 	= Kv is distance-regular

with diameter three, with r(q + 1) vertices and intersection array {q, q − m − 1, 1; 1,m, q}, and it is

anantipodal r-cover of the complete graph Kq+1.

Remark 2.13. For q = 16 and r = 3 we obtain a locally folded 5-cube distance-regular graph with

intersection array {16, 10, 1; 1, 5, 16}. This is the only known example of a distance-regular graph
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with this intersection array. We will show in Proposition 3.8 that there is a unique distance-regular

graph with intersection array {16, 10, 1; 1, 5, 16}, that is locally the folded 5-cube, a result that also

was obtained by [2], cf. [3, p. 386].

3. Some useful results

In this section we give some results which will be helpful to show our main results. First we give

some sufficient conditions for a local graph of a distance-regular graph to be connected and cocon-

nected, that is its complement is connected.

Proposition 3.1. Let t be a positive integer. Let � be a distance-regular graph such that the local graph

�(x) has second largest eigenvalue at most t for any vertex x of �. Then the following statements hold:

(i) If a1 > t, then for any vertex x, the local graph �(x) is connected;

(ii) If � is not complete multipartite, then for any vertex x, the complement of �(x), �(x), is con-

nected.

Proof. (i): This follows immediately from Theorem 2.2. (ii): If the complement of �(x) is not con-

nected, then θmin(
(x)) = −1− b1. This means that θmin(�) � −1− b1, and hence, by [3, Theorem

4.4.4], for all vertices x, the second largest eigenvalue of�(x) is at most−1− b1
1+(−1−b1)

= 0. So�(x)

is a disjoint union of cliques. This means that �(x) is complete multipartite for all x and hence � is

complete multipartite. �

In the next lemma we show a lower bound for the intersection number c2 for a distance-graph �

such that for some vertex x, the local graph �(x) is the complement of a line graph.

Lemma 3.2. Let � be a distance-regular graph with valency k such that for a vertex x the complement of

�(x) is the line graph of a graph �.

(i) If � is t-regular, with t � 2, then c2 � k − 3t + 3.

(ii) If � is semiregular, with degrees s, t satisfying 2 � s < t, then c2 � k − 2s − t + 3.

Proof. (i) Take two distinct edges uv and uw of �. The number of edges that contain one of {u, v,w}
is at most 3t − 4. This shows (i).

(ii) Similar argument. �

As a consequence of Theorem 2.7, we have:

Proposition 3.3.

(i) If � is a strongly regular graph with a1 � 2with smallest eigenvalue at least −2 and if for any vertex

x the eigenvalue θ1(�(x)) is at most one, then � is the Shrikhande graph or the Clebsch graph.

(ii) If � is a coconnected strongly regular graph with a1 � 2 such that θ1 � 1, then � is the complement

of an n × n grid (n � 4), a triangular graph T(n) (n � 5), the Petersen graph, Shrikhande graph or

a Chang graph.

In the next result, we classify the Taylor graphs such that for some vertex x the local graph of x,

�(x), has second largest eigenvalue at most one.

Proposition 3.4. Let � be a Taylor graph with a1 � 2 such that for some vertex x, θ1(�(x)) � 1.

Then � is one of the following graphs:
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(i) the icosahedron with intersection array {5, 2, 1; 1, 2, 5};
(ii) the Johnson graph J(6, 3) with intersection array {9, 4, 1; 1, 4, 9};
(iii) the distance-2 graph of the halved 6-cube with intersection array {15, 8, 1; 1, 8, 15};
(iv) the Gosset graph with intersection array {27, 16, 1; 1, 16, 27}.
Proof. Let� be aTaylor graphwith a1 � 2 such that for somevertex x, θ1(�(x)) � 1. Thenby [3, Theo-

rem1.5.3], it is known that�(x) is a strongly regular graph, saywith parameters (v = k, k = a1, λ, μ),
where 2μ = k = a1 holds. As θ1(�(x)) � 1, it means that the complement of the local graph of

x, �(x), has smallest eigenvalue at least −2. Hence, by Theorem 2.7 and the fact that the only non-

complete strongly regular graph with smallest eigenvalue bigger than −2 is the pentagon, we obtain

that the complement of the local graph of x, �(x), is one of the pentagon, the 3 × 3 grid, the Clebsch

graph or the Schläfli graph. This shows that� has one of the four intersection arrays in the proposition

and for each intersection array, there is a unique graph. �

Lemma 3.5. Let � be a k-regular graph with ν vertices and second largest eigenvalue at most one. Let

{A, B} be a partition of the vertex set of� such that a := #A > 0 and b := #B. Let Q =
⎡
⎣ k − α α

β k − β

⎤
⎦

be the quotient matrix of the partition {A, B}. Then α � (k−1)b
ν

and, if equality holds, then the partition

{A, B} is equitable.
Proof. By interlacing (Theorem 2.3), we obtain that α + β � k − 1 as θ1(Q) � θ1(�) � 1. Since the

size of A is a and the size of B is b, we have αa = βb. These two formulae imply that β � (k−1)a
ν

and

α � (k−1)b
ν

. Moreover, if equality holds, then the interlacing is tight, and hence {A, B} is an equitable

partition of �. �

An immediate consequence of Lemma 3.5 is the following:

Lemma 3.6. Let � be a strongly regular graph with parameters (ν, k, λ, μ) such that θ1(�(x)) � 1 for

any vertex x and let u and v be two fixed vertices at distance 2. Let Q =
⎡
⎣ λ − α α

β λ − β

⎤
⎦ be the quotient

matrix of the partition {A, B} of V(�(v)), where A = �1(u) ∩ �1(v) and B = �2(u) ∩ �1(v). Then

β � (λ−1)μ
k

and α � (λ−1)(k−μ)
k

. Moreover, if equality holds in either of them, then {A, B} is an equitable

partition.

As another consequence of Lemma 3.5, for regular subgraphs of the complement of the Schläfli

graph, we obtain the following lemma.

Lemma 3.7. Let � be the complement of the Schläfli graph. Let � be a (t + 2)-regular subgraph of �

with 3(t + 1) vertices, for some t = 0, 1, . . . , 7. Then the induced subgraph �′ on V(�) \ V(�) is a

(9 − t)-regular subgraph (with 24 − 3t vertices).

Proof. It follows immediately from Lemma 3.5, as α = t + 24 and β = 9 − t, where A = V(�) and
B = V(�) \ V(�). �

The following result was shown by Böinck [2], but for the convenience of the reader we include its

proof.

Proposition 3.8. There is a unique distance-regular graph � that is locally the folded 5-cube and with

intersection array {16, 10, 1; 1, 5, 16}.
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Proof. We already have seen the existence of such a graph (Remark 2.13).

Now we will show the uniqueness of �.

Fix x a vertex. Wewill label the vertices of �(x) by the subsets of {1, 2, 3, 4, 5} of size at most two,

where two subsets A and B are adjacent if |A
B| = 1 if one of A, B has size at most one, or if A and B

have both size two, then A and B are adjacent if A ∩ B = ∅. Instead of ∅ we write 0, instead of {i} we

write i and instead of {i, j} we write ij.

For y ∈ �2(x), let C(y) := �(x) ∩ �(y) and we define C := {C(y) | y ∈ �2(x)}. Then the induced

subgraph on C(y) is a pentagon of �(x).
We first give some properties of the set C, which are easily checked.

(i) |C(y) ∩ C(z)| � 2 for all y, z ∈ �2(x);
(ii) For each edge uv of �(x), there are exactly four y ∈ �2(x) such that u, v ∈ C(y);
(iii) For fixed 1 � i < j � 5, there are exactly ten y ∈ �2(x) such that C(y) contains i, j;
(iv) For fixed 1 � i � 5, there are exactly two y ∈ �2(x) such that C(y) ∩ {1, 2, 3, 4, 5} = {i};
(v) There are exactly two y ∈ �2(x) such that C(y) ∩ {1, 2, 3, 4, 5} = ∅;
(vi) For u, v,w ∈ �(x) such that u ∼ v ∼ w there is a unique y ∈ �2(x) such u, v,w ∈ C(y).

We will call pentagons of (iii), pentagons of type 1, pentagons of (iv), pentagons of type 2 and

pentagons of (v), pentagons of type 3.

We will show the set C is unique up to isomorphism.

Let 0′, 0′′ ∈ �3(0). Then C(0′) and C(0′′) are pentagons of type 3 and C(0′) ∩ C(0′′) = ∅.
LetP be the subgraph inducedon�(x)∩�2(0). ThenP is a Petersengraph.Moreover, everypentagon

of type 1 contains a unique edge of P and every pentagon of type 2 contains a path of length three in P.

Now every edge of P can only be the edge of two type 1 pentagons, (by Property (vi)). Also every

edge of a pentagon of type 3 is contained in at least one pentagon of type 1.

Claim 1. There are only two cases, namely

(i) each edge of a type 3 pentagon is contained in exactly two pentagons of type 1, and the other edges

are contained in zero pentagons of type 1; and

(ii) each edge of a type 3 pentagon is contained in exactly one pentagon of type 1, and the other edges are

contained in two pentagons of type 1.

Proof of Claim 1. For an edge uv of P we define w(uv) as the number of times uv is in a pentagon of

type 1. For uv an edge of a type 3 pentagon we have 1 � w(uv) � 2 and for the other edges uv we

have 0 � w(uv) � 2. We have
∑

uv∈E(P) w(uv) = 20. If an edge uv of a type 3 pentagon has weight 2,

then both edges incident to uv, but not lying in a type three pentagon, have weight at most one, which

in turn implies that

∑

uv not in a pentagon of type 3

w(uv) � 6.

This, in turn, implies that there are two incident edge uv and uw of a type both with weight 2. We

obtain that the third edge of P, containing u has to have weight 0, and hence

∑

uv not in a pentagon of type 3

w(uv) � 4.

Continuing in this matter we obtain that all edges which do not lie in a type 3 pentagon must have

weight 0 and the rest weight 2. This shows the claim. �

Claim 2. Case (ii) of Claim 1 is not possible.

Proof of Claim2.Without loss of generalitywemay assume that the vertices of C(0′) are 12, 34, 15, 23
and 45. The path 12, 34, 25 must be in a pentagon of type 2 and hence the fourth vertex of this
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pentagon contained in P must be 13 or 14. In similar fashion the path 35, 12, 34must be in a pentagon

of type 2 and hence the fourth vertex of this pentagon contained in P must be 24 or 14. This means

that 2 ∼ 12 ∼ 34 ∼ 3 must lie in a pentagon of type 1. In similar fashion we see that for each edge

of a pentagon of type 3, the neighbors of this edge in {1, 2, 3, 4, 5} are uniquely determined. Now for

the edges of P not in a pentagon of type 3 are edges of two pentagons of type 1. Now, for example, for

the edge 12, 35 either one of these pentagons contains 1, 3, 12 and 35 and the other one 2, 5, 12 and

35. But the edge 35, 24 lies in a pentagon of type 1 also containing 2 and 5 and the edge 35, 14 lies in

a pentagon of type 1 also containing 1 and 3. But as a pentagon has an odd number of edges, we can

not finish the set C in this case. �

Claim 3. C is uniquely determined up to isomorphism.

Proof of Claim 3. First we note that the type 2 pentagons are determined by the type 3 pentagons.

Now fix a type 2 pentagon C. Then there is a unique vertex u of �(x) at distance 2 from this penta-

gon C. This determines one new pentagon of type 3 with respect to u and at least 4 new pentagons

of type 2with respect to u. Continuing in this fashion one easily sees that C is uniquely determined. �

Now the proof is easy to complete. We know the neighbors y1, . . . , y10 of 0 in �2(x), and yi ∼ yj if

and only if i 	= j and C(yi) ∩ C(yj) ∩ {1, 2, 3, 4, 5} = ∅. As 0 is any vertex of �(x) we have shown all

the edges in x ∪ �(x) ∪ �2(x). Now an easy induction argument completes the proof. �

4. Proof of Theorem 1.2

Wewill give a proof of Theorem1.2 in this section. Firstwewill consider the distance-regular graphs

with diameter at least three, and later we will consider the strongly regular graphs.

4.1. Distance-regular graphs with diameter at least three

Let � be a distance-regular graph with ν vertices, diameter D at least three, a1 � 2 such that

θ1(�(y)) � 1 for any vertex y of �. Clearly c2 � 2, otherwise a1 � 1. Let x be a fixed vertex of �. By

Propositions 3.4 and 2.11, wemay assume that� is neither a Taylor graph, nor a Terwilliger graph, and

hence we have c2 < b1, by [3, Theorem 1.5.5]. Since �(x) is connected, by Proposition 3.1, we have

the following six cases by Theorem 2.5.

Case (1) �(x) is the line graph of a t-regular graph with t + α vertices where α � 1 is an integer.

Then k = 1
2
t(t + α), b1 = 2t − 2 and by Lemma 3.2, c2 � 1

2
t(t + α) − 3t + 3. Since b1 > c2, we

have 1
2
t(t + α) < 5t − 5. Hence the only possible pairs of (t, α) are (4, 3), (t = 2, 4, 6 and α = 2),

and (2 � t � 7 and α = 1). As k2 = kb1/c2 (with c2 < b1) is an integer and a1 � 2, the only

possibilities are: 4 � t � 6 andα = 1, and t = 4 andα = 2. By Theorems 2.8 and 2.9, we see that the

diameter D is three (as for (α, t) = (1, 4)we have k = 10, b1 = 6, and hence D � 2× 10/3 + 2 = 4,

but equality can not occur). It is easy to check that the number of vertices of � is at most 162. Hence,

by the tables of [3, Chapter 14], we see that � cannot be primitive, and we already assumed � is not

a Taylor graph, so � must be an antipodal r-cover with diameter three, and r � 3. But this means

that 2c2 � b1, and the only possible intersection arrays are: {12, 6, 1; 1, 3, 12}, {15, 8, 1; 1, 4, 15},
{10, 6, 1; 1, 2, 10} and {10, 6, 1; 1, 3, 10}. But there is no distance-regular graph with any of these

intersection arrays, see for example [6, Table 1].

Case (2) �(x) is the line graph of a bipartite semiregular graph of valency s, t with 2 � s < t (as

a1 � 2) and, with σ t = τ s vertices (σ � s, τ � t).
Then k = σ t, b1 = s + t − 2 and by Lemma 3.2, we have c2 � σ t − 2s − t + 3. Since b1 > c2, it

follows t(σ − 2) < 3s − 5. It follows that σ = s = 2. But, then k = 2t, b1 = t and c2 = t − 1, and

hence t = 3. By Theorems 2.8 and 2.9, this is impossible.
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Case (3) �(x) is a subgraph of E7(1). Then the possible pairs for (k, b1) are (2t + 4, t) with

12 � t � 3. By Theorem 2.8, we obtain t � 7 and D = 3. As � is not Terwilliger we obtain

c2 � 2(a1 + 1)− k+ 1+ 1 = 6. This means that � has at most 1+ 28+ 2.28+ 4.28 = 197 vertices.

Hence, by the tables of [3, Chapter 14], we see that � cannot be primitive, and we already assumed

� is not a Taylor graph, so � must be an antipodal r-cover with diameter three, and r � 3. But this

means that 2c2 � b1, and the only possible intersection array is: {28, 12, 1; 1, 6, 28}. But there is no

distance-regular graph with this intersection array, as by [3, p. 431], its eigenvalues must be integer,

but this is not the case.

Case (4)�(x) is a subgraph of the Schläfli graph. Then the possible pairs for (k, b1) are (3(t+1), 2t)
with 8 � t � 2. By Theorem 2.8, we obtain D � 4 if t � 5 and D = 3 otherwise. Again, with Theorem

2.8 we also see b2 − c2 � t − 5 � 3. This means that
b2
c2

� 5
2
. This means that we have one of the

following:

(a) D = 3 and n � 784;

(b) D = 4 and n � 2134. So this means, again by [3, Chapter 14] that � must be an antipodal r-cover

with r � 3. As one of a1 = c2 and the eigenvalues are integral holds, we obtain that � has one of

the following intersection arrays: {27, 16, 1; 1, 4, 27}, {24, 14, 1; 1, 7, 24}, {21, 12, 1; 1, 4, 21} and

{15, 8, 1; 1, 4, 15}, but no distance-regular graphs exist with intersection array {21, 12, 1; 1, 4, 21}
and {15, 8, 1; 1, 4, 15}, as the first one has non-integral multiplicities and the second one does not

exist, by [6, Table 1]. So the two remaining intersection arrays are {27, 16, 1; 1, 4, 27}, and {24, 14, 1;
1, 7, 24}.

Case (5) �(x) is a subgraph of Clebsch graph. Then (k, b1) = (4t + 4, 3t + 1), with 1 � t � 3.

Then by Theorem 2.8 we obtain D � 4 and n � 1 + 16 + 5.16 + 25.16 = 497 if D = 3 and

n � 497 + 125.16 = 2497 if D = 4. So again we only need to look at the antipodal r-covers with

r � 3, and in similar fashion as in previous case we obtain that � has {16, 10, 1; 1, 5, 16} as its in-

tersection array. But then � is locally the folded 5-cube and there is a unique such distance-regular

graph, by Proposition 3.8.

Case (6) If 
(x) is a Km×2, then a1 = 1.

So the theorem is shown if the diameter is at least three except that � can still have two re-

maining intersection arrays {27, 16, 1; 1, 4, 27}, and {24, 14, 1; 1, 7, 24} as its intersection array. As

both occur only in Case (4), we see that in the first case � is locally the complement of the Schläfli

graph and in the second case locally the subgraph of the complement of Schläfli graph in which a

triangle is removed (Lemma 3.7). But that means that in both cases the subgraph on the common

neighbors of two vertices at distance two has minimal degree at least four, but that means that this

subgraph has triangles, which is a contradiction with the fact that the complement of the Schläfli

graph has no induced K2,1,1. This completes the proof of the theorem in case the diameter is at least

three. �

4.2. Distance-regular graphs with diameter two

Let � be a distance-regular graph with diameter two, a1 � 2 and with non-trivial eigenvalues

θ1 > θ2 such that θ1(�(x)) � 1 for any vertex x. We may assume that � contains a quadrangle and

that it is not complete multipartite and let x be a fixed vertex. By Theorem 2.7 and Proposition 3.3, we

may assume θ1 > 1 and θ2 < −2. Either � has only integral eigenvalues or � has intersection array

{2t, t; 1, t} with t � 1 an integer (Lemma 2.4 (iv)). For t � 2, the smallest eigenvalue θ2 is at least

−2. For t = 3 and t = 4 there exists a unique graph (see [1]) namely the Paley graph on, respectively,

13 and 17 vertices. In each case it is easy to check that θ1(�(x)) � 1 for all vertices x. Also (see [1])

there does not exist such a graph with intersection array {21, 10, 1, 10}. So we may assume θ1 � 2

and θ2 � −3.
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Foravertexx, thenumbermxwilldenote themultiplicityof1asaneigenvalueof�(x). Ifmx � k2+2

for some vertex x, then, by interlacing (Theorem 2.2), we see that θ1 = 1. So, from now on, we may

assume that mx is at most 1 + k2 for any vertex x.

We first will show:

Claim: � has possibly one of the following intersection arrays: {45, 16, ; 1, 24}, {28, 12; 1, 16}, {27,
16; 1, 6}, {27, 16; 1, 12}, {24, 12; 1, 6}, {21, 12; 1, 6}, {21, 12; 1, 9}, {18, 10; 1, 6}, {15, 8; 1, 6}, and
{12, 6; 1, 6}.
Proof of Claim. As � has smallest eigenvalue at most −3 and second largest eigenvalue at least two,

we find by Theorem 2.4, that b1 � 6.

Fix x a vertex of�. Since�(x) is connected for any vertex x (Proposition 3.1), we have the following

six cases to consider, by Theorem 2.5.

Case (1) �(x) is the line graph of a t-regular graph � with t + α vertices. By looking at the vertex-

edge incidence matrix of � one sees: 1
2
t(t + α) − (t + α) � mx . We also obtain b1 = 2t − 2 � 6,

k = 1
2
t(t + α) and, by Lemma 3.2, c2 � k− 3t + 3. Suppose that k is at most 5t − 6. Then 4 � t � 7.

Suppose that k is at least 5t − 5. Then mx � 1 + k2 � 1 + 2t−2
k−3t+3

k, as c2 � k − 3t + 3 and

b1 = 2t − 2 � 6. This implies 1
2
t(t + α) − (t + α) � 1 + k2 � 1 + 2t−2

k−3t+3
k. Then 4 � t � 10.

So, in conclusion, we have 4 � t � 10.

If � is a conference graph, then
t(t+α)

2
= k = 2b1 = 4t − 4, and hence � has intersection array

{12, 6; 1, 6} (as t � 4). Now we may assume that � has integral eigenvalues. If t = 4, 5, 6, 8, then
the non-trivial eigenvalues of � are −3 and t − 2 (Theorem 2.4(iii)) and hence c2 = k − 3(t − 2), by
Theorem 2.4(i). This implies (using k − t − α � k2 + 1, and c2 = k − 3(t − 2) for t = 4, 5, 6, 8 and

c2 � k − 3t + 3 otherwise) that for the pair (t, α), we have only the following possibilities: (t = 4

and α � 5), (t = 5 and α = 1, 3), (t = 6 and α = 1, 2, 3), (t = 7 and α = 1, 3, 5) and (t = 8, 9, 10
and α = 1). By checking the tables of [1], we see that � has one of the following intersection arrays:

{45, 16; 1, 24}, {28, 12; 1, 16}, {15, 8; 1, 6} and {12, 6; 1, 6}.
Case (2) �(x) is the line graph of a bipartite semiregular graph � with valencies s, t (2 � s < t)

and σ t = τ s edges. Then we obtainmx � σ t − σ − τ , b1 = s + t − 2, k = σ t = τ s and, by Lemma

3.2, we have c2 � k − 2s − t + 3. As b1 � 6, we obtain t � 5.

If σ � 3, then 3 � σ � s, and hence s = 2, 3. Now� has a coclique of size at least t. As θ1 � 2, we

obtain, by Theorem 2.4(v), that � has more then 5t − 4 vertices, if σ = 2, and � has at least 6t2

t+3
+ t

vertices, if σ = 3. As c2 � t − 1, if σ = 2, and c2 � 2t − 3, if σ = 3, we see that one of the following

holds: σ = 2 and t � 7; σ = 3 and t � 6. As b1 � 6 we see that the only possibilities for (s, t, σ )
are (2, 6, 2), (2, 6, 3), (2, 7, 2), (3, 5, 3) and (3, 6, 3).

We now consider the case σ � 4. Then � cannot be a conference graph as k 	= 2b1, so � has

integral eigenvalues.

Suppose that k is at most 3s + 2t − 6. Then t(σ − 2) � 3s − 6. Since 2 � s < t and σ � s, we

obtain σ = 2.

So, we assume that k is at least 3s + 2t − 5. Then 1 + k2 � 1 + s+t−2
k−2s−t+3

k � 3s + 2t − 4

as s+t−2
k−2s−t+3

k is decreasing in k. As mx � k2 + 1, we find τ s − σ − τ � 3s + 2t − 4, and hence

(s − 2)τ + 5 � 3s + 2t, as σ < τ . Now, as τ � t, we obtain: (s − 4)t + 5 � 3s.

So, if s � 5, then for the pair (s, t) we obtain the following possibilities: s = 5 and 6 � t � 10.

Moreover, if s = 5, then 3τ + 5 � 2t + 15, so 6 � t � τ � 10. This in turn implies σ = 5 and τ = t

as σ t = τ s.
For s = 4 we obtain 2τ + 5 � 2t + 12 and this implies τ � t + 3. As τ s − σ − τ � 3s + 2t − 4

and σ t = k = 4τ � 4t + 12, we obtain σ = s = 4 and τ = t.

Before we treat s = 2, 3, we first look at the case 4 � s = σ � 5, and hence t = τ . Using
1 + k2 � 1 + s+t−2

k−2s−t+3
k and k = st, we obtain st − s − t � 1 + s+t−2

st−2s−t+3
st. It is easy to see that
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there is no solution for s = 5, for s = 4, one has t = 5, 6, but t = 5 is impossible, as then b1 would

be a prime.

Now let us return to the case s = 3 (and σ � 4)). Using τ + 1 � 2τ −σ = k− τ −σ � 1+ k2 �
1 + 3τ t+1

(σ−1)t−3
, we obtain 4 = σ or t � 6. In case σ = 4, in similar fashion as above, one again

obtains t � 6. As b1 = t+1 is a composite at least 6, we obtain t = 5. Now the non-trivial eigenvalues

are −3 and 2 and hence k2 = 5σ 6
5σ−6

is an integer, but there are no solutions for σ .

So we are left with the case s = 2. Then b1 = t, k = σ t = 2τ . Then, as above, k − σ − τ �
1 + s+t−2

k−2s−t+3
k, and hence we obtain σ = 4 and t = 6, 8 (as b1 = t � 6 and composite).

Summarizing for this case: for the pair (k, b1) we have the following possibilities: (32, 8), (24, 8),
(24, 6), (18, 7),(18, 6), (15, 6), (14, 7) and (12, 6).

By checking the tables of [1], in this case � has possibly one of the following intersection arrays:

{12, 6; 1, 6}, {14, 7; 1, 7}, and {15, 6; 1, 9}. But the two intersection arrays {2t, t; 1, t} (t = 6, 7)
are impossible in this case, as � would have a coclique of size t and hence second largest eigen-

value smaller than two, by Theorem 2.4 (v), a contradiction. And the intersection array {15, 6; 1, 9} is
impossible, as then the coclique size would be 5, and again this contradicts Theorem 2.4 (v).

Case (3)�(x) is a subgraph of E7(1). Then the possible pairs of (k, b1) are (2t+4, t) (1 � t � 12).
As � is not a conference graph, we find that the eigenvalues of � must be integral and θ1 � 2 and

θ2 � −3. Hence b1 � 6 and a composite. Using c2 − k = θ1θ2 and k2 is an integer, we have the

following remaining cases: {24, 10; 1, 12} and {28, 12; 1, 16}, but the first case cannot happen, see

the tables of [1].

Case (4)�(x) is a subgraphof the Schläfli graph. Then the possible pairs of (k, b1, c2) are (3t+3, 2t)
(1 � t � 8). Then � has integral eigenvalues. Now in similar fashion as the previous case, we obtain

the following possible intersection arrays: {27, 16; 1, 6}, {27, 16; 1, 12}, {24, 12; 1, 6}, {21, 12; 1, 6},
{21, 12; 1, 9}, {18, 10; 1, 6}, {15, 8; 1, 6} and {12, 6; 1, 6}.

Case (5) �(x) is a subgraph of the Clebsch graph. Then the possible pairs of (k, b1) are (16, 10),
(12, 7), (8, 4) and (4, 1). Now in similar fashion as in Cases (3) and (4), there are no possible intersec-

tion arrays.

Case (6) �(x) is the Km×2. Then a1 = 1.

This finishes the proof of the claim. �

Tofinish theproof of the theoremwhen thediameter is two,we still need to rule out the intersection

arrays: {45, 16; 1, 24}, {28, 12; 1, 16}, {27, 16; 1, 6}, and {24, 12; 1, 6}.
When k = 28, then we see that we are in Case (1) or Case (3). In either case, for any vertex x, the

local graph �(x) is the complement of a Chang graph or the complement of J(8, 2). This means that

�(x) is strongly regular and has μ = 10 and hence for the α in Lemma 3.6, we have 6 < α = 6, a

contradiction. In similar fashion, the case k = 45 is ruled out.

The intersection arrays {27, 16; 1, 6}, and {24, 12; 1, 6} are ruled out in the same manner as for

the intersection arrays {27, 16, 1; 1, 4, 27}, and {24, 14, 1; 1, 7, 24} in the diameter three case. �

5. Proof of Theorem 1.3

In this section we give a proof of Theorem 1.3. First we recall a result of Hoffman. Hoffman [8]

showed:

Theorem 5.1 Cf. [3, Theorem 3.12.5]. Let σk be the supremum of the smallest eigenvalues of graphs with

minimal valency k and smallest eigenvalue< −2. Then (σk)k forms a monotone decreasing sequence with

limit −1 − √
2.
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Proof of Theorem 1.3. Let α < 1 + √
2. Let � be a distance-regular graph with diameter at least

three and smallest eigenvalue at most −1 − b1
α
. Let x be a vertex of �. Then �(x) has second largest

eigenvalue at most α − 1. Now the complement of �(x), �(x) has smallest eigenvalue at least −α
and valency b1. As D � 3 b1 � (k + 1)/3 (as b1 � c2 � 2a1 + 2 − k + 1 = 2b1 + k + 1). Theorem

5.1 shows that there exists a K = K(α) such that if k � K , then �(x) has smallest eigenvalue at least

−2, that is �(x) has second largest eigenvalue at most one. Now by checking the graphs of Theorem

1.2 we obtain Theorem 1.3. This completes the proof. �

We end this paper with a remark.

Remark 5.2. (i) A strongly regular graph satisfies (θ1 + 1)(θ2 + 1) = −b1 and only the conference

graphs have non-integral eigenvalues. Therefore Theorem 1.3 is not interesting for D = 2.

(ii) Question: For given 1 < β are there only finitely many distance-regular graphs with diameter at

least three, a1 � β and smallest eigenvalue at most −1 − b1
β
?
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