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A b s t r a c t - - I n  this paper, some approximate methods for solving linear convection-diffusion problems 
axe presented. The methods ceml~t in discretizing with respect to time and solving the resulting 
convectien dominated elliptic problem for fixed time by least squares finite element methods. An 
analysis of least squares approximations is give~, includin~ optimal ordeT estimates for piecewise 
polynomial approxinmtion spaces. The model problem ccwfidered is the time-dependent convection 
dominated linear convection-diffusien equation. Numerical results for the Burgers' equation will also 
be presented. 

1. I N T R O D U C T I O N  

As a model for time-dependent convection-dominated linear convection-diffusion problem, con- 
sider the following problem: find the scalar function u(z, t) such that  

ut + u  a - e A u  = f ,  in f~ x I, 

u(x, o) = uo(x), ,,, e ~, 
u(x, t)  = O, x ~. F, t ~. I, 

(1.1) 

0 u  where f~ is a bounded domain in R 2 with boundary F, ut = "bT, u# = ~ .Vu with V the gradient 
with respect to z - (z l ,z2)  E R 2, ~ - (/~1,~2) is a given smooth vector field, and ¢ > 0 is a 
small constant. Farther, f and u0 are given data, and I = (0, T) is a given time interval. Note 
that  for simplicity zero boundary data  is considered here. 

By replacing the time derivative in (1.1) by a backward-difference quotient, we define an 
approximate solution uk(z , t )  for t = nk - nAt ,  n = 0, 1 , 2 , . . . ,  by 

u~(x,t + k) - u~(x,0 
+ u~(z, t + k) - ~Auk(z, t + k) = f ,  in f~ x I ,  

k 
uk(z,O) = uo(x) ,  z e fl ,  (1.2) 

uk(z , t )  = O, x E F, t ~ I. 

With uk(z, t )  = v, u~(z , t  + k) = w, we then have the following equation to solve for w, when 
v is known: 

w + k w ~ - k ~ A w = v + k f ( z , t + k ) ,  i n f i x / ,  
(1.3) 

w = 0 ,  z E F ,  t E L  

If we consider, instead of (1.2), the Crank-Nicolson formula 

k + ~ u ~ ( z , ~ + k ) - e  zx~kO:,t + k) + ~ Afik(z,t)  / ,  
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30 T.-F. CHEN 

the problem (1.3) changes into 

1 1 1 1 1 
w + ~ k w # - ~ k e A w = v - ~ k v ~ + ~ k e A v + k f ( z , t + 2 k ) ,  in~xl, (1.4) 

w = 0 ,  z6. r, t e l .  

Note that when e > 0 and k is bounded away from zero, the problema (1.3) and (1.4) admit a 
unique solution u k and ~k, respectively, and it can be shown that, for sufllciently smooth initial 
va lues  ~), 

sup Iluk(.,O- u(-,OII - o ( t )  as t - .  o, and 
o_<t<T 

(1.5) 
sup - u(.,t)ll = o ( k  2) as k -. 0, 

o < t < T  

where 1,.,, denotes the norm in L2(fl), ,[vl[ = ( f  ,v(z), 2 dr) 112 . 
% ~ t 0  J 

When the Galerkin method is applied to (1.3) or (1.4), it may produce an oscillatory solution 
if e < h, where h is the spatial mesh size and the exact solution is not smooth. The difficulty is 
that the method only works well for equations which are diffusion dominated, in the sense that 
e > h. In particular, the error made in using the Galerkin method (with linear test functions) 
for this problem is O (h2/e), which indicates that the method is ineffective for very small e. 
One possible solution is to replace e with g, which will keep the equation diffusion-dominated. 
This corresponds to the backward spatial differencing in the finite difference calculations. In 
the context of finite element methods, test functions were selectively modified in the convective 
term ('upwinding') to simulate the directional properties of the reduced hyperbolic problem. 
Further generalization to this approach were developed and led to the Petrov-Galerkin methods 
which uses different finite dimensional subspaces for the trial and test functions [1-5]. However, 
there are several detractions to these methods. The most significant is the lack of a systematic 
procedure to extend the methods to more general linear and nonlinear problems. The need to 
optimize certain parameters to control oscillations and dissipation is also a limitation. 

Semidiscrete least squares methods to the heat equation were considered by Bramble and 
Thomde [6]. They approximated the solution of the heat equation by minimiaing the L2 norm of 
the residual functionals obtained from (1.3) and (1.4). Restrictions on the relation between the 
spatial mesh size h and k( = At) were needed in their analysis. In addition, with the presence 
of the diffusion term - e  Aw, linear test functions can not be used in the approximations. In the 
following, we describe the least squares method which allows the use of the linear test functions. 
Throughout the paper, only the Crank-Nico]son scheme (1.4) will be considered. The analysis 
of the purely implicit scheme (1.3) follows directly from that of (1.4). To approximate (1.4), for 
simplicity, we assume that/3 is a constant vector and let 

Thus, 

u=wfl-eVw. 

u - w f l + e V w = O ,  
1 1 

w +  ~ k  div u = v -  ~ k div z, 

Our approximation is then obtained by minimizing 

/( I lu-wfl+eVwl2 + w+~k  div 
n 

where z = v fl - e Vv. 
(1.6) 

l 0l } 
u - (v ~ k div (1.7) 

over all u and w with appropriate boundary conditions. This is referred as the least squares (LS) 
method. We also consider minimizing a variation of (1.7) (referred as the weighted least squares 
(WDLS)  method) 

/{ t 1 XlU-Wfl+eVw[ a +  w + ~ k d i v u -  v - ~ d i v z  (1.8) 

n 
where X is a positive weighting function. 
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Variational principles of the least squares types have a number of valuable computational prop- 
erties. For example, the algebraic system generated is always Hermitian semidefinite. In addition, 
such schemes, if properly formulated, are insensitive to the type of the partial differential equa- 
tion, i.e., the computational algorithm is the same in elliptic and hyperbolic regions. Successful 
applications to the transonic flow problems based on the formulation were presented in [7] and [8]. 
In addition, an analysis of the least squares approximation to elliptic boundary value problems 
were presented in [7]. Based on the theoretical framework, the stability and error estimates of 
the method can be established for (1.7) and will be discussed. 

Following this introduction, the remaining is divided into four sections. Section 2 introduces 
the variational formulation based on (1.7) and the necessary assumptions which includes a special 
grid decomposition property introduced in [9]. In Section 3, we will provide an error analysis 
for the least squares (LS) method which gives the optimal error estimates for both u and w, 
if a special regularity property is satisfied and k = Ch. In the case when e is close to zero, 
u ~ w/~ and the estimate in u does not reflect how well Vw is approximated. Thus the weighted 
least squares method (WDLS) with appropriate weighting function X will be introduced and 
analyzed in Section 4. With the proper choice of the weighting function X, unlike the (LS) 
method, this new formulation will give optimal order error in both w and u without using the 
grid decomposition property. Finally, in Section 5, numerical results for the Burgers' equation 
will be presented and compared to the upwinded method in [1]. In order to handle the boundary 
layer effect when e is close to zero, a variation of (LS) and (WDLS) will also be introduced 
in Section 5. It is demonstrated that this new approach acts naturally in a manner similar to 
upwinding and requires no "free" parameters. 

2. F O R M U L A T I O N  O F  P R O B L E M  A N D  A S S U M P T I O N S  

For clarity, instead of (1.5), we consider least squares approximation to the following: given a 
function g and step size k = At, we seek a suitably smooth function ~b satisfying 

1 1 k ¢p+~k#b/~-~ eV~b=g, inf,, (2.1) 

~b = O, on r ,  (2.2) 

or what is the same 

u - ~b/~ + e V~b = 0, in f~, (2.3) 

1 
+ ~ k div u = 9, in [~, (2.4) 

= o, on r.  (2.5) 

Note that,  for simplicity, we assume that fl is a constant vector. When/~  = (fll,fl2) is not a 
constant vector, we still have u - ¢  ~ + ¢  f i e  = 0 and (2.4) becomes ~ + ½ k div u - ½  k ~ div/~ = g. 
To be precise, we assume g E L2(f~) and we seek solution ¢, u to (2.3)-(2.5) in 

S I = { ¢ [ ¢ E H I ( f ~ ) ,  ¢ - - 0 o n r }  on V 0 = { v [ v E H l ( a ) } .  

Let II" II, I-I be norms on V0, St with (., .), (., .) being inner products. Here [[. II and I" I a re  
n o r  IT~. 

To approximate, we introduce finite dimensional subspaces 

Sh c_ S~, Vh C_ Vo. 

We determine uh E Vh, ~h E Sh by minimizing 

IIv~ - Ch/~ + ~ VChl[ 2 + ¢ .  + ~ k div 

24z11-C 

Vh -- gl 2 (2.6) 
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over vh in gh and ~bh in Sh. Taking the first variation gives 

( u h - - ~ h ~ + s V ~ h ,  vh- -~bh~+~vch)+<c~h+lkd ivuh ,  c h + l k  div vh> 

< 1 > = g, ~b h + ~ k d i v v  h , 
(2.7) 

a relation which holds for all v ~ E Vh and Ch E Sh. A useful fact is that  (2.7) remains valid 
when @a is replaced by ~b and uh is replaced by u, where {fb, u}, ~ E $1, u E Vo is the solution 
of (LS), i.e., 

1 ~b h 1 > (u-~b/~+¢V~b,  v h - - ~ b h / ~ + s V ~ h ) +  ~ b + ~ k d i v u ,  +-~kd ivv  h 

1 = <g Ch + ~k div vh>. 
(2.8) 

We shall assume throughout the standard approximation properties [10] for the finite dimen- 
sional spaces Vh, Sh in terms of the Sobolev norms II-lit on H ' ( n ) .  In particular, we sh~l  n ~ d  
the following assumptions. 

~.1. Approzimation Property 

For any u and ~b in Hr(f~), there exist interpolants fib E Vh and ~h E Sh such that  

I1= - ahlb _ CA h'-~ll=ll,, and limb - ~al], < CA hr-ql~lb (2.9) 

for l = 0 and l = 1 where CA is a constant independent of h, u and ~b. 
Another assumption used in the theory is the Grid Decomposition Property introduced in [10]. 

A precise statement of this property is as follows. 

~.2. Grid Decomposition Property (GDP) 

For each vh E Vh there exists wh and zh in Vh for which 

Vh = Wit + Zh 

with div Zh = 0 and 

(zh, wh) = / zh. wh - 0, ]]wh[[ -- Hwhl]0 < Ca[] div v~]]-i (2.10) 

N 

for some positive constant CG independent of h and v~. Note that if triangular linear elements 
are used, this property will not hold for the directional grids but it is valid for the criss-cross 
grids in Figure 1 [9]. 

// \\ XX 
// \",,, XX 

(a) Directional grid (b) Crisa-croas grid 

Figure 1. 
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3. E R R O R  A N A L Y S I S  F O R  T H E  L E A S T  S Q U A R E S  (LS) M E T H O D  

The  error analysis of least-squares methods  starts from the observation tha t  the solution 
"[~/=,u/=) of the discrete problem is a best approximation to {~ ,u)  in a suitable norm. This  
no rm arises naturally from the bilinear form on $1 x V0 

. ( (~ ,  u), (,~, ,,)) - (u - ~ ~ + e v ~ , , ,  - ,~ ~ + • ~ ¢ )  + ~ + ~ k air ,,, ,~ + ~ k div ,, (3.1) 

and is given by 
II1(~, ~)111 = a((~,  ~), (~, ~))V2. 

Let r / -  ~b - ~h, e = u -- u/=. We have (2.7) and (2.8) tha t  imply the error {r/, e} is orthogonal to 
S/= x V/= in the form a(., .); i.e., 

a((r/, e), (~/=, u/a)) ---- 0 Y (¢h, u/a) E S/= X V/=. (3.2) 

Observe that ,  with [/~[, being an upper bound for the vector fl, 

IIl(~, =)111 _< Ildlo + ~ kll~lll + (1 ÷ I~l)ll~llo ÷ =11¢111 • (3.3) 

This follows immediately from (3.1) and the fact that  a(., .) is a hounded form on HZ(f~) x Hl( f l ) .  
To simplify the notations, we introduce the following. Let 

e/=(u) = inf [ Iv -  vh[[ 
t,~EV~ 

denote the error in the best approximation.  Note tha t  from the approximation property (2.9) 

=/=(,,) <_ CA h'll, , lb. 
In our theory, we have two rather complicated error terms ~r and 7/=: 

~h = s ~ p (  ~1(~).,,~,,2 < 1},  7/== s~p{71(~, ~ /~- -e  V~),,,~,,a < 1}.  

where 

and 

71(~, Y)=  (e,,~,inf)¢ s ,  x vh {]]Y - Yh[]0 + lkHy-Yh]h + ( 1  + ]/~])]]~ - ~h]]0 + e []~ -- ~h]ll } .  

If Sh and Vh consist of piecewise linear elements, then 

~rh <_ Ch, 7h <_ Ch, 
follows directly from approximation property (2.9). 

The  following is an immediate  consequence of the orthogonality (3.2) and implies that  {~h, Uh} 
is a heat approximation to {~b,u} in II1" Ill- 

L~.MMA 3.1. 

Ill(r/, e)]H < II[(~ - ~b/=, u - v/=)[[[ , /'or a/l (~h, V/C) E S/= x V/=. (3.4) 

Lemma 3.1 implies tha t  

{ mkhr-1).,U[,r÷((1-F[fl[)h"-kehr-1)[,qb[,r}, (3.5) lll(r/,e)lll < CA ( h ' + g  

which is O(hr-1). Note tha t  this error est imate is not very useful by itself since the reverse 
of (3.3) is not valid, i.e., II1" III is majorized by the norm [[. [[1 on Hl ( f l )  hut  is not equivalent to 
it. However, we can use it and the solvability of the dual problem of (2.1)-(2.2) to establish the 
opt imal  error est imate for [r/[. 
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THEOREM 3.2. 

T.-F. CH=S 

Thus, 

1,11 < CRohlll(n,e)lll. (3.e) 

PROOF. We solve for ( E $1 satisfying 

1 1 1 
( - ~ k ( ~ - ~ k ~ A ( = ~ k ~  i n ~ ,  ( = 0  o n r .  (3.7) 

Note that from the approximation theory [10], there is a positive constant CR such that 

II(Ib _< CRII'711o. 

We then solve for ~ E $1 such that 

12kdiv(~_cV~)+~=_ hAC+~(inn, ~=0onr. 

Note that 

a((~,e),((+llh,VC+liB--cV())=-~ ~+~kdive,( + ( e - ~ + e V ~ ,  vO. 

Using the Green's identity (Vt}, V() = -(7, V() and (e, V() = -( div e, (), we have 

211 ) (e-tI~+cV., V()=-~ ~+~kdive,(+(~,~). 

a((,7, e), (~ + ~',,, v (  + ~ ~ - ~ v~) )  = 1,71 ~, 

and then 
1'71 = -< IIl('l,e)lll II1(~ ÷~h,  V (  ÷ ~ - c  V~)lll, 

Therefore, we obtain (3.6) since 

To obtain error estimates for lie[I, we shall need to exploit the solvability of the boundary value 
problem (2.1)-(2.2). More precisely, we shall need an a priori inequality of the form 

II 1 II II,/'lb+~ < CE ¢ + ~ ~ , ~  - ~ ~ ~ 4 ¢  , ~ ---- O, 1, (3.8) 

to hold for all ~b E H~+~(f~) satisfying the boundary condition ¢ = 0 on r .  This will be the case 
for a fixed positive number C~ provided f~ and/~ are sufficiently smooth [11]. Note that Cz will 
vary with k. This regularity property will enable us to establish optimal error estimates for 

1 

In addition, it is essential to use the Grid Decomposition Property discussed in Section 2 to 
establish optimal error in Hell. 

LEMMA 3.3. Let C~ = h ~ C~, where C~ is the constants in (3.8), then 

11111 ÷ ~ k dive  < cv v~lll(~, e)lll. (3.9) 
-1 
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PROOF. We recall that  

, I. 
To prove (3.0), let 0 E $1 be given with 110111 _< i and solve for ¢ E S~ satisfying 

1 k 1 (+~ (~-~keA(=keO in~, (=0 onr, 

or what is the same 

Regularity gives 

Note that  

Therefore, 

y - ¢ / ~ + e v ~  = 0, in f l ,  
1 

+ ~ k d i v y = k e O ,  in f , ,  

=0, on r. 

II¢lls < c~kel lOl l l  < Cz, llOlll. 

/ x ) 
a((rl, e),(,f -- , fh,y--yh)) = 71+ ~ k  div e,O , all (~h, ~h) ~ Sh × Vh. 
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(3.10) 

we have 

Note that  from the orthogonality (3.2), we have 

a((~, u - 0h), (~b h, vh)) = a((qbh, Uh -- fib), (¢h, vh)), 

Choosing ~h E Sh such that, 

PROOF. 

II 1 II Huh--Oh]]<2CG ~ k d i v ( u h - - f i h )  +eh(u)+]~] ] r}  I. 
- 1  

We use (GDP) to write 

1 
~k(uh - ah) = wh + Zh 

(Zh,Wh) = / Zh "Wh = O, 

N 

with div Zh = 0 and 

HwhH = HWhHO <_ Ca ll~k div (uhfih)H_l • 

all (~h, vh) ~ Sh X Vh. 

1 ~bh +-~k div (~h/J--ev~bh) = divzh and let vh = zh + ~bh~-rV~b h, 

(~ - ah -- (~ -- Ch)~, zh) = (~h -- ah, Zh). 

Then 

)[ + ~ k div ~, 0 ~ IIl(~, dil l  IIl(~ - ~h, Y -  Yh)lll. 

Taking the infimum over (~h,Yh) E Sh x Vh and then taking the supremum over 0 E $1 with 
I I 0 l l l  < t gives (3.9). 

Finally, we complete the error analysis, making the use of the Grid Decomposition Property. 

LEMMA 3.4. Let the Grid Decomposition Property (GDP) hold and let fih be a best approxima- 
tion in the sense that 

Ilu - ahl] = eh(u). 
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Then 

THEOREM 3.5. 

where 

T.-F. C,z~ 

Ilzhll _< ~(u) + I.al I.I + I1~11. 

Let the (GDP) hold. Then 

II- - u~ll _< (2 + Ca)e~(u) + cUI(., e)Ul, (3.11) 

c = 2cv ca ~h + (2ca + l#l) cR oh. 

PROOF. Note that 

But from the definition of II. II-1, 

k div (u - ~h) < 
-I 

Also, using Lemma 2, we have 

II II' II < r} + ~ k div e + II011-1 < cD ~h II1(~, e)lll + I~1. k div (u- uh) -I - -I - 

Combining these results with Lernma 3.4, we obtain (3.11). 

Note that the estimate in ~HV~b[[ is optimal which follows from the optimal estimate in u and ~b. 
However, this does not reflect the accuracy of the approximation in IIV~bll when ¢ is close to zero. 
Even in the case when e > h, the estimate (3.6) in ~} lies heavily on the solvability of the dual 
problem (3.7). In addition, the nonvanishing term ~V@ plays an essentiM part of the analysis. As 
for the estimate (3.11) in n, it depends on the extra regularity property (3.8) and the validation of 
the Grid Decomposition Property (2.10). Based on these considerations, in the following section 
we introduce a weighted least squares formulation which gives the optimal estimate in ~b without 
using the solvability of the dual problem (3.7). Moreover, a better estimate of I]V~II will be 
obtained with this new formulation when • is close to zero. 

4. ERROR ANALYSIS FOR THE WEIGHTED 
LEAST SQUARE (WDLS) METHOD 

In this section, we consider the following weighted least squares (WDLS) method. Slightly 
different from the (LS) in Section 3, we determine u~ E Vh, ~b~ E Sh by minimizing 

I l v h  - ~h/~ + ~ V ~ l l  2 + ~h + ~ k div V h  - -  g (4.1) 

over Vh in Vh and ~bh in Sh, where 6 is a constant such that 6 < h. The first variation of (4.1) 
gives 

(4.2) 
= o , ~ h + ~ k d i v v  h , 

a relation which holds for all v h E Vh and ~h E Sh. Note that (4.2) remains valid when ~bh is 
replaced by ~b and uh is replaced by u, where {~b, u}, ~ K S~, u ~ V0 is the solution of ( ~ L ~ ) ,  
i.e., 

2e~(u--4'~+eV~,vh--~h#+eV~h)+ ~+g~div., +g~div~ h 

= ~, ~ + ~ k d i v v ~  . 
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For simplicity, we define a bilinear form on SI x 170 

kh I I  I 1 b((~,u),(~,v)) = ~ - ~ ( u - ~ / 3 + e V ~ , v - ~ + ~ V ¢ ) +  ~ +  ~k div u , ¢ + ~ k  div v . 

Further we let 
Ill( ,,/', ,')lllb = b((,/,, ,,), (,/,, ,,))1/2. 

Observe that,  with/3 being an upper bound for the vector/3, 

H[(~, t))Hjb __<= { (2_~)  112 H~,[0.~_ 21 k HVH1 "~" ( I  +[/3[ ( ~ ) 1 1 2 ) H ~ H 0 " ~ - ( ~ ) 1 1 2  [[~H0}. (4.3) 

Let 7 - ~ - ~h, e -- u -- Uh. We then have the "orthogonality" which is similar to (3.2) 

b((7, e), (~b h, vh)) = 0 all (~b h, v h) E Sh x Vh. (4.4) 

We proceed with the error estimates by showing that {~bh, Uh} of the discrete problem is a best 
approximation to {~,u} in [[[(., ")][[b norm. 

LEMMA 4.1. 
1[1(7, e)lllb _< 111(~ -- ~ bh, u -- Vh)lllb for all (~bh,v h) E Sh x Vh. (4.5) 

PROOF. This follows immediately from (4.4). 

Lemma 4.1 implies that  if k = O ( h )  and linear elements are used in both Sh and Vh, 

lll(7,e)lllb < Ch ~. (4.6) 

Note that  (4.6) if of optimal order. Thus, different than the similar orthogonality result in 
Section 2, the estimate (4.5) helps us to establish the following results. We now use (4.5) to 
establish error estimates for [7[, [[[V7[[ and I div el. 

THEOREM 4.2. / f 0  <: C1 < ]~ < C2 h and ~ = C2/C1, then 

171 _< 111(7, e)lllb, (4.7) 

IIVTII _< ~ \~-~-i~e) 111(7, e)lllb, ~ d  (4.S) 

I div el _< ~111(7, e)lllb. (4.9) 

PROOF. For any (~b,v) E $1 x V0, since ~b -- 0 on F, it follows that 

I 1 I' IIl(,~, v)lll~ = b((,~, v),  (,~, v))  ___ ~ IIv - ~ /3  + ~ V,~II~ + ~b+ ~ k  div v (4.10) 

k 1 1 
- yill~ - ~/3112 + ~ kellV~ll 2 + I~12 + ~k~l div ~12. 

Note that  (7, e) E Sl X V0, thus (4.10) is valid for (7, e). Therefore the theorem follows directly 
from (4.10). 

THEOREM 4.3. / f 0  < C~ < k < C~h and ~ = C2/C~, then 

I1~11 _< k - - ~ /  + 1/31 111(7, e)lllb. (4.11) 
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Figure 2. At  t = 1, the  accurate  solut ion (dots) vs. LS  solut ion of h = 1/18, k = 1/18 
(line). 
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Figure 3. At t = I, with h = 1/18, L S  solution of k = 1/18 (dots) vs. k = 0.01 (llne). 

PROOF. Since (4.10) is valid for (T/,e) E $I x P~, it follows that 

I1,~ - ~ 1 1  _< III(,~,e)lll,, _ \ c~ ] 111(~,,9111,,. 

Therefore, using triangle inequality and (4.8), we have 

I le l lSI le-v~l l+ l~l l . l< \ c2 ] +1~1 IIIC.,e)lll6. 
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Figure 5. At  t = 1, wi th  h = 1/18, LS  (5.2) solution o f k  = 1/18 (dots) vs. k = 0.001 
(~e). 

Note that the proofs of (WDLS)  are much simpler than those of (LS). This is because that 
we use the condition k = O(h) in the proofs all the time. This assumption is natural since we are 
approximating the semidiscrete problem (1.4) and the solution of (1.4) is only O(k 2) as indicated 
in (1.5). Note that from the proofs, these analysis can also be carried out for the purely implicit 
problem (1.3). 



40 T.-F. tHEN 
0 , 1 1  I ! " I ! I 

0.7 

0.8 

0. S 

6(=) 0 ,  

0 . 3  

0.1B 

0.! 

o¥," i l I , 

0 O . Z  0 . 4  0 . $  0 . 8  

Figure  6. At  t = 1, w i t h  h = 1 /18 ,  W D L S  (5.3) so lu t ion  of  k = 1 /18  (dots)  vs. 
/c ---- 0.001 (line). 

The least squares (LS) method and weighted least squares (WDLS) method differ in many 
aspects. First, the approximation in H[(~}, e)[[[b is optimal while in Ill(W, e)l[[ is only suboptimal. 
Moreover, when the (WDLS) method is used, using (4.10) and argument similar to that of 
Theorem 4.3, the approximations in 

l* l + Vnll, n+~kdive 

are both optimal. Note that even (4.8) depends on e, it is better than that of the (LS) method. 
One crucial difference is that (4.9) shows that the error in [div e[ is optimal and independent 
of e. In the case that e is close to zero, this estimate is essential since it gives the approximation 
for y}#. From the proofs, these are obtained without using the solvability of the dual problem (3.7), 
the extra regularity (3.8), or the Grid Decomposition Property (2.10). Therefore the (WDLS) 
method is far superior than the (LS) method and should be used in the approximation, especially 
when ~ < h. In fact, in the case of ~ < h, we can choose 6 - ~ and then the estimate (4.9) 
and (4.11) will be independent of ~. 

5. NUMERICAL RESULTS 

In this section we report the results of computations which illustrate the (LS) and (WDLS) 
methods. Although the analysis in Section 3 and 4 deal only with linear equations, the computa- 
tions will be performed on the solution of a nonlinear equation. In the following, the numerical 
experiments deal with the Burgers' equation with e - 0.0001: 

0) = sin(¢x), 

@(0,t) -- ~(1,t) - 0, 

in fl x I = (0, 1) x (0, c0), 

0<x<l, 

tel. 

(5.1) 

Note that there is no analytical solution for this problem. Therefore it is not possible to estimate 
the L2 errors occurred in the approximations. However, we will compare the results with the 
accurate solutions obtained by Christie and Mitchell [I]. 
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In all the computations, linear elements are used for both Sh and Vh and the solution at t = 1 

is calculated. Based on the (LS) and (WDLS) with h = 1/18 and k = 1/18, the numerical 
results obtained at t = 1.0 are shown in Table 1. The quoted accurate solution was computed by 
a Petrov-Galerkin method with fully upwinded cubic functions and a very small value of h [1]. 
Observe that, except the point next to the boundary, there is a great match between the result 
of (LS) and the accurate solution. Indeed, this result can be improved by reducing h and k 
simultaneously. Figure 2 shows the comparison between the accurate solution and the (LS) 
solution for h = 1/36 and k = 1/36. We further investigate the convergence of the (LS) method 
by fixing h = 1/18 and letting k go to zero. Computations were performed for k = 0.01 and 
/: = 0.001. The comparative results of k = 1/18 and/¢ = 0.01 are presented in Figure 3. Observe 
that large oscillation occurs when k = 0.01. In fact, as k continues to decrease with h fixed, the 
oscillation becomes more severe as it is also observed in the case when ]¢ = 0.001. This is similar 
to those obtained from the Galerkin method. As for the (WDLS) formulation, the results in 
Table 1 is inferior to that of the (LS). However, when h is fixed and k decreases, the oscillation 
is only restricted to few points next to the right hand boundary z = 1. This is demonstrated in 
Figure 4 where results of k = 1/18 and ]c = 0.001, with h = 1/18, are compared and the results 
are almost identical. These show that, in the case when z is small, the method (WDLS)  is stable 
while (LS) is not stable. 

Table 1. At t = 1, accurate solution vs. LS and WDLS solutions obtained using 
h = 1/18, and k = 1/18. 

x Accurate solution LS solution W D L S  solution 

.00000E+00 .00000E+00 .00000E+00 .O0000E+00 

.55556E-01 .42200E-01 .42125E-01 .42128E-01 

.11111E-{-00 .84300E-01 .84235E-01 .84241E-01 

.16667E+00 .12630E+00 .12631E-[-00 .12632E+00 

.22222E+00 .16840E- -00 .16835E+00 .16836E+00 

.27778E-I-00 .21030E- -00 .21032E+00 .21033E+00 

.33333E+00 .25220E- -00 .25220E-{-00 .25222E+00 

.38889E+00 .29390E- -00 .29398E+00 .29398E+00 

.44444E+00 .33550E- -00 .33566E+00 .33563E+00 

.50000E+00 .37690E- -00 .37728E+00 .37728E+00 

.55556E+00 .41820E- -00 .41879E+00 .41905E+00 

.61111E+00 .45920E- -00 .45960E+00 .46051E+00 

.66667E+00 .50000E. -00 .49925E+00 .49984E+00 

.72222E+00 .54040E- - 0 0  .54086E+00 .53587E+00 

.77778E+00 " .58060E- 

.83333E+00 .62030E- 

.88889E+00 .65960E- 

.94444E+00 .69830E- 

.IO000E+O1 .00000E- 

-00 .58836E-{-00 .57730E+00 

-00 .62087E+00 .64938E+00 

-00 .63898E+00 .74272E-l-00 

-00 .83053E+00 .edi594E@00 

-00 .00000E+00 .00000E+00 

In the above computations, both (LS) and (WDLS) give bad approximations to the point next 
to z - 1. This is due to the boundary layer effect. In fact, when e is zero, the problem (5.1) is 
reduced to a hyperbolic problem and the right hand boundary (the outflow boundary) condition 
is no longer valid. However, when e is small, the boundary condition at z -- 1 is stin necessary 
to ensure the uniqueness of the solution of (5.1). This leads us to consider the following least 
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Table 2. At t -- 1, with h = 1/18, LS (5.2) solution vs. WDLS (5.3) solutions 
obtained using various k. 

LS(5.2) WDLS(5.3) WDI, S(5.3) WDLS(5.3) 
z k = 1/18 k = 1/18 k = 1/9 k = 1/36 

.00000E+OO .00000E+00 

.55556E-01 .42125E-01 

. l l l l l E + 0 0  .84235E-01 

.16667E+00 .12631E+00 

.22222E+00 .16835E+00 

.27778E+00 .21032E+00 

.33333E+00 .25220E+00 

.38889E+00 .29399E+00 

.44444E+00 .33566E+00 

.50000E+00 .37724E+00 

.55556E+00 .41871E+00 

.61111E+00 .45980E+00 

.66667E+00 .50008E+00 

.72222E+00 .54027E+00 

.77778E+00 .58287E+00 

.83333E+00 .62620E+00 

.88889E+00 .66206E+00 

.94444E+00 .69852E+00 

.10000E+01 .73722E+00 

.00000E+O0 

.42128E-01 

.84241E-01 

.12632E+00 

.16836E+00 

.21033E+00 

.25222E- -00 

,29402E- -00 

.33569E- -00 

.37722E- -00 

.41860E. -00 

.45983E- -00 

• 50090E- -00 

.54175E+00 

.58222E+00 

.6221OE+O0 

.66125E+O0 

.69993E+O0 

.7388OE+O0 

.oo000E+oO .OOOOOE+OO 

.41775E-01 .42212E-01 

.83543E-01 .84406E-01 

.12529E+00 .12657E+00 

.16702E+00 .16868E+00 

.20871E+00 .21072E+00 

.25035E+00 .25267E+00 

.29195E+00 .29451E+00 

.33347E+00 .33622E+00 

.37493E+00 .37776E+00 

.41630E+00 .41909E+00 

.45756E+00 .46024E+00 

.49869E+00 .50125E+00 

.53963E+00 .54214E+00 

.58033E+00 .58280E+00 

.62073E+00 .62285E+00 

.66090E+00 .66189E+00 

.70109E+00 .70002E+00 

.74167E+00 .73819E-}-00 

squares formulations. To be precise, we let the boundary r = r _ u  r+,  where r_ is the inflow 
boundary and r+  is the outflow boundary. Therefore, instead of minimizing (2.6) or (4.1) over 
the spaces S1 and V0, we minimize 

J' 
r+ 

(5.2) 

or 

i 
r +  

over (@, u) E S~" x Vo, where 

(5.3) 

S~" :- {¢ l~b e HI(~), ¢ = O on r_}. 

Note that (5.2) and (5.3) are the (LS) and (WDLS) with weakly imposed boundary condition 
at z = I, respectively. Using (5.2) and (5.3), with h = 1/18 and k = 1/18, the results are 
presented in Table 2. Observe that excellent agreement of the results with that of the accurate 
solution except at z = 1. The inaccuracy at z = 1 is not serious since the boundary condition 
at z - 1 is known. Table 2 also includes the results based on (5.3) with h = 1/18, k = 1/9 sad 
h = 1/18, k = 1/36. These illustrate that the method based on (5.3) is stable independent of 
the ratio between h and k. Even though the result based on (5.2) seems to give great result in 
Table 2, it will again produce oscillatory solutions when h is fixed and k decreases to zero. The 
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Table 3. At t -- 1, WDLS(5 .3)  solutions using h -- k = 1[36 and h -- k -- 1[72. 

43 

WDLS(5.3) WDLS(5.3) 
:r h -- k --. 1/36 h --- k -- 1/72 

.OOOOOE+OO 

.55556E-Ol 

. l l l l l E + O 0  

.16667E+OO 

.22222E+00 

.27778E+00 

.33333E+00 

.38889E+00 

.44444E+00 

.50000E+00 

.55556E+00 

.611lIE+00 

.66667E+00 

.72222E+00 

.77778E+00 

.83333E+00 

.88889E+00 

.94444E+00 

.10000E+01 

.OOOOOE+OO 

.42133E-01 

.84248E+Ol 

.12633E+00 

.16836E+O0 

.21o31E+00 

.25217E+00 

.29393E+o0 

.33554E+00 

.377OOE+O0 

.41828E- .o0 

.45934E- .oo 

.50015E- .0o 

.54o68E- .00 

.58O88E- .0o 

.62071E- -oo 

.6601OE- -o0 

.69894E- -oo 

.73744E- -oo 

.0O000E+0O 

.42135E-Ol 

.84252E-01 

.12633E+00 

.16836E+00 

.21031E+0O 

.25217E+00 

.29391E+00 

.33552E+00 

.37696E+00 

.41821E+00 

.45923E+00 

.50001E+00 

.54049E+00 

.58063E+00 

.62038E+00 

.65968E+00 

.69846E+OO 

.73677E+0O 

results based on (5.2) are reported in Figure 5. Note that the oscillation is not as severe as that 
of Figure 3. In Figure 6, these results are obtained based on (5.3) with h = 1/18, k = 0.01 and 
k = 0.001. No oscillation is observed in this case. We remark here that the formulation (5.3) 
based on the purely implicit scheme (1.3) also gives convergence results. Finally we include 
Table 3 to illustrates the fast convergence of the method based on (5.3). 

Concluding from the above, in the case when ~ is small, the method based on (5.3) is far 
superior than those obtained from the (LS), (WDLS) and (5.2). Moreover, both the meth- 
ods (WDLS) and (5.3) give convergence results independent of the ratio of h and k. Note 
that from the theory, the condition that k = O(h) is necessary to ensure the optimal conver- 
gence. However, the numerical results based on (5.3) and (WDLS) indicate that even in the case 
h = 1/18, k = 0.001, here k is worse than O(h2), we still have convergence as shown in Figure 4 
and 6. Thus, the condition k = O(h) is not a limitation. Moreover, as illustrated in the above, 
the results obtained using these least squares formulations show great efficiency as opposed to 
the Petrov-Galerkin method used in [1]. Above all, the upwinding is build in all these formulations 
in a natural way and requires no "free" parameter as often needed in existing upwinding 
methods [1-5]. 
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