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A b s t r a c t  

Collocation and quadrature methods for singular integro-differential equations of Prandtl's type are studied in weighted 
Sobolev spaces. A fast algorithm basing on the quadrature method is proposed. Convergence results and error estimates 
are given. 
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1. Introduction 

In this paper we consider collocation and discrete collocation (quadrature) methods for solving a 
singular integro-differential equation of  Prandtl's type 

f ill 1 1 v ' ( t )  d t +  h ( x , t ) v ( t ) d t  f ( x ) ,  - 1  < x <  1, - -  - -  7 - - - -  

g ( x ) v ( x ) -  rc l t - x  ~ 
(1.1) 

where the unknown function v(x) has to fulfil the additional conditions 

v(-1)  = v(1) = 0. (1.2) 

Several authors have studied this type o f  integro-differential equations and related numerical  methods.  
(Among  others we refer the reader to [14, Ch. 3, Section I; 13, Section 3; 19, Section 9.53]). Since, 
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for a function v C LP(-1,  1) possessing a generalized derivative v'E LP(-1,  1), we have (see [17, 
Ch. II, Lemma 6.1 ]) 

f _  f_1 v ' ( t )  v ( - 1 )  v(1) d i v ( t )  dt dt 
d x  1 t - x  ~ t - x  1 + x  1 - x  

for all x E ( -  1, 1 ), Eq. (1.1) together with (1.2) can be written in the form 

i f  1 v( t )  i f '  9 ( x ) v ( x ) -  rc _ l ( t - x )  2 d t + T z  l h ( x ' t ) v ( t ) d t : f ( x ) '  - 1  < x < l ,  (1.3) 

where the hypersingular integral operator has to be understood in the sense of 

f_ '  v ( t )  dr_' v( t )  at. (1.4) 
1 ( t - x )  2 dt = ~ x  1 t - x 

Galerkin and collocation methods for Eq. (1.3) in case of 9(x)  --  0 were considered in weighted 
L2-spaces in [10] and in case of h(x, t )  - 0 in [15]. Recently, in [9] convergence results in weighted 
Sobolev norms were given for the case 9(x )  - h(x, t )  - O. 

The aim of the present paper is to prove optimal convergence rates for collocation and quadrature 
methods for Eq. (1.3) in weighted Sobolev norms and to found the idea of a fast algorithm for 
the numerical solution of (1.3) based on the quadrature method. Moreover, also the case of  weakly 
singular perturbation kernels h ( x , t )  is investigated. For this, following [9, 10, 13, 15, 19, 20], we 
recognize that the solution of (1.1) or (1.3) (together with (1.2)) has an endpoint behavior of the 
form v/1 - x  2 . Thus, it is convenient to represent v(x)  as the product 

v(x ) = )u(x ) (1.5) 

of the weight function ~p(x) : v/1 - x 2 and another unknown function u(x) .  

2. Notations and preliminaries 

With this agreement we write Eq. (1.3) in the form 

( M r  + V + H ) u  = f ,  (2.1) 

where M r  denotes the multiplication operator 

( M r u ) ( x )  = F ( x ) u ( x ) ,  F ( x )  = 9(x)~o(x),  (2.2) 

H the integral operator 

if, h(x, t )u( t )~o( t ) dt, (2.3) (mu)(x) = -1 

and V = - D S  the finite part integral operator with (comp. (1.4)) the operator D = d / d x  of generalized 
differentiation and the Cauchy singular integral operator 

1 fl u(t) 
( S u ) ( x )  = zt 1 t - x q~(t) dt. (2.4) 
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For real numbers a and b with a - i b = e i n~, 0 < O~ < 1, define /~ = 1 - ~, the Jacobi weight 
function 

v~'~(x) ---- (1 -- x)~(1 + x f ,  

and the singular integral operator of  Cauchy type 

b f_l u(t) (Au) (x )  = a v~'~(x)u(x) + - t - - x  v~'~(t) d t .  
IZ I 

(2.5) 

For 7 > - 1 and 6 > - 1, let L 2 -  denote the weighted space of square integrable functions on 7, 0 
the interval [ -1 ,  1] endowed with the scalar product and the norm 

l f ' u ( x ) v ~ v ' ~ ' 6 ( x ) d x  and ] ] u n ~ , . ~ = ~ ,  

respectively. Moreover, let p~'~ refer to as the normalized Jacobi polynomials (with positive leading 
coefficient) of degree n with respect to the Jacobi weight v;',6(x). For real numbers s >~ 0 define the 
weighted Sobolev space L:2.1~ by (comp. [5]) 

L~2.:; = u e L~, 6 • ~ ( 1  + n)Zs ;,,~ < cx~ 
n=0 

with the norm 

I[u117,6,~ = (1 + n) 2s 2 . 

In the following we summarize some results concerning the properties of weighted Sobolev spaces, 
of interpolation operators with respect to the zeros of  the orthogonal polynomials p~,~, and the 
singular integral operator A defined by (2.5). By E(X,Y) we will denote the Banach space of all 
bounded linear operators between the Banach spaces X and Y. 

Lemma 2.1 (Berthold et al. [5, Conclusion 2.3]). For 0 <<, s < t ,  the space L~2.(~ is compactly imbed- 

ded in L~2,~. 

Lemma 2.2 (Berezanski [3, Ch. III, Section 6.9, Theorem 6.10], Junghanns [l l, Remark 1.5]). 
t - . t l 2 , s l  2,s2 ( |  .2,tt 2,t2 f / 1 2 , s ( ~ )  | 2 , t ( z )  ~ I f  the operator B belongs to ...~,,~,,L~2.~2) and E~=,,~,,L~2,~) then B E ~ = , . e ,  , ~ . ~  j ,  where 

s(v) = (1 - Z)Sl + * t l  and t ( , )  = (1 - *)s2 + *t2, 0 < • ~< 1. 

Lemma 2.3 (Berthold et al. [5, pp. 196,197]). Let  r >>- 0 be an integer. Then u E L~2.~ /f and only 

i f  u(k)~o k belongs to L27,6 f o r  all k = 0,. . . , r .  Moreover, the norms [Julia,6, r and 

k=0 

are equivalent. 
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7,a with - 1  ~,a ~'a Let x,k < X~n < "" • < X,l be the zeros of  p~'a and denote by  L] '~ the Lagrange interpo- 
lation operator 

n f i  
L~,a f ~7~f(x~? ) ,,a y,a x - x~,f = l~k , Ink (X)  = 7 a  - ~ a " 

k=l j=l , j~k  Xnk --  Xnj 

1 L e m m a  2.4. For s > ~ we have 

(a) l i m , ~  Ilf- L 'afll ,a,  = 0  for  all f E L ~ ,  

(b)  I l f  - -< const n t - s  IlfllT, a ,s ,  / f  0 t ~< s. 

l For the case s >/ 1 Proof .  This lemma was proved in [5, Theorem 3.4] in case of  171 = 161 = ~. 
y, 6 > - 1  arbitrary, the proof  is given in [7, Theorem 2.3]. The general case is considered 
in [ 1 6 ] .  [ ]  

L e m m a  2.5 (Pr6ssdorf  and Silbermann [19, Theorems 9.9 and 9.14, Remark 9.15]). For the singu- 
lar integral operator A defined in (2.5) we have the relation 

A p J  = A p n + i  -/~ n = O, 1 , 2 , .  . .  

The following corollary is an immediate consequence o f  the previous lemma. 

C o r o l l a r y  2.6 (Berthold et al. [5, Lemma 4.1]). For all s >>, 0,  the singular integral operator A be- 
2,s 2,s 2,s ----+ i 2,s,0 longs to L;(L~,~,L_~,_~). Moreover, A • L~,a ~_~_~ is a bijection, where 

12,s,O { L2,S ,,a } 
= " Po )~,~ = 0 , -%a U E  ~,,a ( f ,  

and the inverse operator is given by 

b f l  f ( x )  v_~,_~(x)dx. A -1 = 2 ,  (A f ) ( t )  :=  av-~ ' -~ ( t ) f ( t )  - zc j_ l  x - t 

L e m m a  2.7. For all s >>, 0 and 7, 6 > - 1, the operator D o f  general&ed differentiation is a con- 
tinuous isomorphism f rom ~2,s+l,0 2,s "~7,a o n t o  LI+~;, l+a. 

Proof .  First o f  all we remark that, in view of  Lemma 2.3, the operator D is defined on all functions 
o f  12's+~ Further, we use the relation ~,,6 " 

v~'a(x)p~n'a(x)=-[n(n+ 7 + 6 +  1)] - ' /2~x [ '+v '+a "~ n'+~"+a -~] n =  1,2, v ' . . . . .  
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which follows from [22, Eqs. (4.10.1) and (4.3.4)]. Now, with the notation (., .) = (. ,.)0,0, we have 

O(3 

IIDull,2+~, ,+,~,s = ~2,  n 2~ (Du,  "1+7'1+6V1+7'1+6\ 12 
/-'n-- 1 / ] 

n - - I  

o c  

= Z n2Sn(n -}- ~ q- (~ -Jr- 1) (u, p]'6v~"~) 2 , 
n- -1  

2 I2's+l Thus, the lemma is proved. [] which is equivalent to 11ul]:,6,~+~ for u E ~.,6,0 • 

As a generalization o f  the finite part integral operator V = - D S  we consider the operator DA, 
which can be written in the form 

(DAu)(x)= a d [v~,#(x)u(x)] + _b // __u(t) v~,#(t)dt. 
/'C 1 (t - x)  2 

The following corollary is a consequence of  Lemmas 2.5 and 2.7, Corollary 2.6, and the relation 
(see [22, Eq. (4.21.7)]) 

d ,6 Cn(n + 3 + 1 ) / i n _  1 b x ) ,  n = 1,2 . . . .  ~ x x P  n' (X) = "q- ~ --1+)"1+6I"" 

One remember that ~ + fl = 1. 

Corol lary  2.8. For each s >~ O, the finite par t  integral operator DA is a continuous &omorphism 
between the spaces |2,s+l and 2,s |2,s+1 ~,1~ LA~. Moreover,  f o r  u C ,~,~ , 

o o  

DAu = ~-~(n + 1)(u, 1-'n-~'~\l~,fll-'.-fl'~ • (2.6) 
n~O 

1 Remark  2.9 (Ervin and Stephan [9, Theorem 1]). In the special case a = 0 ,  b - - - - 1  (i.e., c~=f l=  5) ,  
Corollary 2.8 implies V E r(l.2's+l l~2's~ and 

V u = - D S u =  ~ ( n  + l ) ( u , p , ) o p ,  , 
n=0 

2,s i..11,/2,1/2 where we use the notations L•s= L1/z,/2 , (.,.)~ = (.,.)1/2,1/2, and p~ = rn • 

For the kernel h(x , t )  of  the integral operator (comp. (2.3))  

if_, ( g u ) ( x )  = n h(x, t )u( t )v~J( t )  dt (2.7) 
1 

we consider three cases: 
(a) h(x , t )  = hl(X,t) ,  

- -  hi(x, t)u(t)v~'~(t) d t ,  (2.8) ( H l U ) ( X )  = IZ 1 
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(b) h(x, t) = he(x, t) In Ix - tl, 

if_, - h2(x , t ) ln  Ix - t lu(t)v~'~(t)dt ,  (2.9) (g2u)(x)  = 7Z 1 

(C) h ( x , t ) = h 3 ( x , t ) l x - - t l - " ,  0 < q < 1, 

- h3(x, t)lx - t I -~u(t)v~'~(t) dt. (H3u)(x)  = 7~ 1 

We assume that the functions hj are continuous on [ - 1 ,  1]  2 , and in what follows we summarize 
some mapping properties of  these operators. 

Lemma 2.10 (Berthold et al. [5, Lemma 4.2]). I f  hl(.,t)EL~2,;~- uniformly w.r.t, t E [ - 1 , 1 ]  then 
H1 E Z~(L2=/~, 2,s , Lr, a). 

r The following lemma is needed to study the case (b). By C~, r ~> 0 an integer, we denote the space 
o f  all r times differentiable functions u :  ( - 1 ,  1) --+ C satisfying the conditions u{k)(oe E C [ - 1 ,  1] for 
k = 0, 1 . . . .  , r .  Let NU]]c,; = ~ = 0  [[u(k)q~kH~ • 

Lemma 2.11 (Junghanns [11, Lemma 3.5]). Let  r >>. 0 be an integer and F E cry. Then the multi- 

plication operator M r  belongs to £(L~,L~I~)  and ]]Mr[[L~:,;+Q: ~< const ][F][c: ~ . 

Corollary 2.12. Taking into account L e m m a  2 and (under the assumptions o f  L e m m a  2.11) 
M r  2 2 r E £(L~,,a,L~,,a) the condition F ~ C~, implies M r  ~ £(L~,L~;~-) j b r  0 <~ s <<. r. 

For a given continuous function h 2 : [ - 1 ,  1]  2 ---+ C define 

l f (H2u)(x)  a he (x , t )u ( t ) v~" ( t )d t  b l = - -  - -  h2(x, t) In Ix - tlu(t)v~'a(t) dt. 
1 7/7 I 

t Oh By h x we shall denote the partial derivative g o f  a function h(x, t). 

Lemma 2.13. Let  h2,h'2x • [ - 1 ,  1] 2 -+ C possess continuous part ial  derivatives up to order r. Then 
L 2,s+l ) f o r  0 <. s <~ r.  

Proof.  The proof goes on the same lines as the proofs of  [11, Lemmas 3.6 and 3.7], We have 

D / Q 2  : / Q 2 ( I )  + T1 + AM~,  (2.10) 

where 

(ffl~l)u)(x) a h~(x , t )u( t )v~ ,~( t )d  t b 1 , = - - ha(x,  t) In Ix - tlu(t)v='~(t) dt, 
1 ~ 1 

(T lu ) (x )  = b f l  
- -h2(x, t )u ( t )v~"( t )  dt, 
7~ J_ 1 
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h2(x,t) = h2(x , t )  - h2( t , t )  ~ ( t )  = h2( t , t )  
t - x  

/ ~ . ]2 Since h2x, h2 [ -1 ,  1 --+ C and ~b • [ -1 ,  1] + C are continuous functions it follows that 

(pDH2u .... ~ <~ D~I2u ~,-l~ <<" const Ilull , , 

taking into account Corollary 2.6. In view of H2 E£(L2=,/~,L2~_13) and Lemma 2.3 this implies 
£ 1 L 2  L 2,1 A¢2 C ~ ~,/~ . . . .  _/~j. Thus, having regard to Lemma 2, the lemma is true for r = 0. Assume that 

the assertion of the lemma is valid for r ~< m and that the conditions of the lemma are fulfilled for 
. ~ ~-erl2'm 12'm+~ S (For the operator Tl we refer r = m + 1 Then (2.10) holds true with *Q2 u), T1 ,_ ,~v,~,~,~ ~,_~j. 

r /'t'12,m+l I2,m+l to Lemmas 2.10 and 2.3.) Moreover, in view of Lemma 2.11, M,,_~v~,/~ ,~,/~ ). Applying 
|2,m+l Lemma 2.11 together with Corollary 2.6 we obtain, for uE~=,/~ , 

#2U --~,--fl, m+2 ~ const ( # 2  u _~_fl, m+l-}- (~0m+2Dm+2#2U-~, fl) 

~< const ([lu[[~./~,,. + (pm-lDm+l(/ff~') Jr- r l  ~- AMcb)u .... _[~) 

~< const ([[ul]~,/3,m + (~I~ ') + T, + AMco)u -~,-~,m+,) 

const  Ilull=, ,m+, • 

This proves the lemma by induction. [] 

|2,s+l 2,s+l (one can see this by using an Since the space ~--1/2,--1/2 is continuously embedded into L~, 

equivalent norm in L;2.1~ - of  the form (2.11) below), Lemma 2.13 implies the following corollary. 

Corollary 2.14. I f  the function hz(x,t) satisfies the conditions of Lemma 2.13, then the operator 
' (i.e. a = 0 ,  b : - l )  belongs to £(L2'S,L~s+l)jbr 0 <<,s <<, r. H2 with ~ = fi = 

To study the case (c) we introduce the following weighted spaces of continuous functions. Let p 
and "t be nonnegative real numbers. By Cp,~ we denote the Banach space of all continuous functions 
u" ( - 1 , 1 )  ---+ C, for which vP'~u is continuous on [ -1 ,1 ] ,  equipped with the norm Ilu]]~,pa = 
sup{vp'~(x)lu(x)l'x c [ -1 ,1 ]} .  Let Pn be the set of  algebraic polynomials of  degree not greater than 
n. For f E Cp,~ we denote by E~'~(f) the best weighted uniform approximation of f by polynomials 
belonging to Pn, i.e., 

pz 
E,' ( f ) = i n f { l l f - p  oo,p~ P E P s } .  

Let Z > 0 and q/> 0 be real numbers. The subspace 

CZS={uECpa .  sup nzE~'~(u) } 
~=1,2,... lnq(n + 1 ) < cx~ 
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equipped with the norm 

[lUl[p,z, Lq = [[ulloe, p,z -~ sup nZ E~'~(u)  
.=1,2,... lnq(n + 1 ) 

becomes a Banach space (see [12, Proposition 3.1]). We remark that C~; ° coincides with the weighted 
Besov space B~,~(qg, v p'*) (see [8, Theorem 3.1]). The following lemma is a generalization of  [18, 
Theorem 7], (also mentioned in [18, Remark 8]). 

the space 2,s Lemma 2.15. For s > 5, L~,,~ is continuously embedded into the space C~g, where 

' ( 0 . 6 + ~ } .  = ½ m a x { 0 , 7 + ½ }  and 3 = ~ m a x  

1 6 z 1 2,s Proof. The proof follows the proof of  [18, Theorem 7] (case 7 = - 2 ,  5)" Let UELT,6, 
s > ½, and 

"fi(x) = v~, ~(x)u(x),  ~n'~(X) = V~, g(x)p~'~(X). 

Moreover, define 

~1 = 7 -  2 7 = 7 -  max {0, V + ½}, 6, = 6 -  2 6 =  6 -  max {0,6 + ½}. 

Then 

( - - y 6  - - 7 ~  7, 6 ~ - - 7 6  7 6  P,' , P;~ )7,,~, (P~'~, and = Pm )~,~ = 6mn (u. p.' )~..~, = (u. p.' )~,~. 

Since (see [2, Theorem 1.1]) 

. const 

we have ~,0~(x) ~< const and, consequently, 

Pn' )7~,6J const - -~ ~ 
n=0 n=0 

~< const Ilull~,~,s ~ ( n  + 1) -2s ~ const Ilull,,a,,. 
rt=0 

Thus, the Fourier series of the function fi with respect to the orthonormal system l ~  ,a/°~ in t J n = 0  
L z converges uniformly on [ -1 ,  1] which implies that fi" [ -1 ,  1 ] --~ C is continuous. Moreover, ?1,61 
the last estimate shows that Ilull~,?,~ ~< const Ilu[l~,~,~. [] 
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Lemma 2.16 (Junghanns and Luther [ 12, Proposition 4.13]). Le t  h(x, t) = (k(x, t)  - k(t, t ) ) / ( x  - t) 
with k • [ - 1 , 1 ]  2 --~ C continuous and k(., t)EC~',  q uniformly w.r.t, t E [ - 1 , 1 ] .  Then the operator 

H defined by (2.7) belongs to £(C~+ ~+,C z'q+l ~_ ~ ). Here  we use the notations ~ ± =  max{0, ±~}  and 
//± = max{O, ± f l} .  

For a real number Z > 0 and an integer r / >  O, let C r'z denote the space of  r times continuously 
differentiable functions on [ - 1 ,  1], whose rth derivative is H61der continuous with exponent Z. 

Lemma  2.17. I f  h3(.,t)EC O'l-" uniformly w.r.t, t E [ - - 1 , 1 ] ,  then the operator H3 is a compact  

operator f r o m  L;2,~ into 2,,' 1 1 6 = 2//+ 1 7' 6' Lr, a, f o r  s > 5, 7 = 2~+ - 5, - 5, > 2~-  - 1, > 2/ / -  - 1, 
and O <<, tf  < 1 -  ~l. 

Proof .  Since h3(x, t )=(k (x ,  t) - k(t, t ) ) / ( x  - t), where k(x, t)=h3(x, t ) ( x - t ) l x - t  I -" and k(., t) belongs 
to C ° ' l-" uniformly w.r.t, t E [--1, 1], we conclude from Lemma 2.16 that H3 E L(C~+,/>, t<-"'~_,~_). 

From Lemma 2.15 we have the continuous embedding o f  L~I ~- into C~+,/~+. Let e > 0 such that 

F"'+~'° ([12, Lemma r/' + e < 1 - r/. Then the space ~_/~_¢'~-"'1 is compactly embedded into the space ~ _ ~  
12, q' 3.2]). So it remains to show that the last space is continuously embedded into %,,,a,. But this is a 

consequence of  the equivalence o f  the norm in 2,,' L / ,  a, and the norm 

Ilullr. . ± EJ'a '(u)2 
n=l 

(2.11) 

as well as o f  

Ilullr. . < const Ilull . - E 'Y(u)2 < const E~ -'/~ (u), 

where 

E~"a'(u)2 = inf{[[u - p[[~,, a, • p E P,}.  

(-,. '  +c, O Indeed, for u E- -~_~_ ,  we can estimate 

I 2 
]]u[[,,, a,,,, ~< const [[u][~,~_ ~_ + 

<~ const [[ul[~ ,~-,,,+¢,0" 

[ sup n"'+~E~-'~-(u) ~-~ n -2~-1 
L n=l'2,'' n=l 

This proves the lemma. [] 

Then the operator Corol lary 2.18. Le t  h3(x, t) satisfy the conditions o f  L e m m a  2.17 and ~ = / / =  5" 
i and 0 <<, q' /-/3" L~; s ~ _~L 2'"' is compact  fo r  s > ~ < 1 - tl. 
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3. Collocation and quadrature methods 

Instead of  Eq. (2.1) we investigate the more general equation 

Bu := (Me + DA q-Hi q-/~2 q-H3)u = f ,  (3.1) 

which we consider in the pair of  spaces 

1 2 , s + l  1 2 , s  ,~ ~,~ , ~ , ~ j .  (3.2) 

The collocation method consists in looking for an approximate solution u= E P,-1 of Eq. (3.1) by 
solving the equation 

L~'~(Mq, + DA + S 1 -~- ~I 2 "Of- 8 3 )hi n = L.' f 

In view of  relation (2.6) this equation is equivalent to 

Bnun : =  [DA ~'~ ~'~ + L .  (M~ ,+HI+f f l z+H3)]u==L.  f .  (3.3) 

i 2 , s + l  Since, again in view of Corollary 2.8, each solution un E ~ ,~  of (3.3) belongs to Pn- l ,  we can 
also consider Eq. (3.3) in the pair of  spaces (3.2). 

For all what follows we assume: 
2,1 (A0) For f _= 0 Eq. (3.1) has only the trivial solution u - 0 in L~,~. 

With respect to the continuous functions 5U(x) and hi(x, t) ,  j = 1,2,3, we make the following 
assumptions: 

(A1) ~ E C~o for some integer r />  0. 
2,~ (A2) hl( . , t )EL,,= uniformly w.r.t, tE  [ -1 ,  1]. 

(A3) h2 and h~x possess continuous partial derivatives up to order ~. 
(A4) h3(.,t) E C °'l-" uniformly w.r.t, t E [ -1 ,  1]. 
In all cases, which we will consider, the operators HI, FI2, and/ /3  as well as Me are compact 

21 2 in the pair of  spaces (3.2) as well as in the pair (L~)~,L/~,~). This will be a consequence of the 
Lemmata 2.10, 2.13, 2.17, and Corollary 2.12 as well as Lemma 2. Then, in view of Corollary 2.8 

i 2 , t + l  2,t and Lemma 2, the operator B • ~ ,~  ~ L,,~ is invertible for 0 ~< t ~ s and Eq. (3.1) possesses a 
unique solution u * r  12's+l 

2,s Theorem 3.1. Let s > ½, ~u _= 0, h3 ----- 0, f ELI~,~, Assume (A0), (A2) and (A3) be fulfilled for 
~ = s  and "? >>, m a x { 0 , s -  1}. Then, for all sufficiently large n, Eq. (3.3) is uniquely solvable, and 

* I2'S+l Moreover, for the solution u. converges to the unique solution u* of  (3.1) in the norm of  ~ ,~  . 
O<. t< . s ,  

I l u 2  - c o n s t  n t - "  Ilu*ll , ,s+l • (3.4) 

Proof. Since Hi +/q2 " l 2"+1 as ~,/~ ~ L,,~ is compact, it follows that 

lim liB, - B ]L:.,+, ~,.,. = 0 n---+oc ~.! ---~ L/~. ~ 
(3.5) 
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taking into account Lemma 2.4. With the help of  Lemmata 2.10, 2.13, and 2.4 (b)  as well as the 
2,1 2,1 continuous embedding L_~,_/3 c L/~,~ we obtain 

lIB. - BllL~:I~L~, ~< const n -7, 

where t = min{s, 1}. This, (3.5), and Lemma 2 imply the existence and uniform boundedness of  
,-- i , * [ ] [2 , t  | 2 , t + l  B~ -~ ~_ , . ~ , ~ , ~ , ~  j for 0 ~< t ~< s and for all sufficiently large n. Consequently, in view o f  

u: - u.=.:, - + + (i- + 

we have with the help of  Lemma 2.4 (b) 

I l u : -  u*ll~,a,t+ , ~< const n t-s (llfl[/~,~,s + (Hi + / ~ 2 ) u *  ,(/,:t,s) ' 

which leads to (3.4). [] 

1 (i.e., a = O, b = - 1 )  Theorem 3.1 remains true i f  we Theorem 3.2. In case 7 j ~ 0 and  ~ = fl = 
addit ionally assume that (A1) with r >1 s is fulfilled. 

12,~ _12,s  _12,s and Corollary 2.12 applies to see the compactness Proof .  We remark that in this case ~ , a - - . , / ~ ,~ -~ ,  

o f  M~," L~ ''+' ~ L~" for 0 ~< t ~< s. Moreover, since r ~> 1, I[(M~, - L~nM~,)uII~ <<, const n-'llull~,t 
fo ruEL~;~  [] 

R e m a r k  3.3. In case ~u ~ 0, h3 ~ 0 and ct = fl = ½ (i.e., a = 0, b = - 1 ) Theorem 3.1 remains true 
1 1 and (A1) with r i> s as well as (A4) for ~ < s < 1 - ~/, if  we additionally assume that 0 < ~/< 

are fulfilled. 

Proof .  For the proof, at first, we refer to Corollary 2.18. Furthermore, if  we apply Lemma 2.17 
with q' = s  and 7+ = fl+ = ½, it follows HH3 -L~nH3IIL~;~L?o <~ const n-L [] 

With the help of  Q~'~ we will denote the application of  the Gaussian rule with respect to the 
Jacobi weight v z'6, which means 

1 /_1 ~ " ~ 7 , 6  + 7,6~ - u(t)v~"6(t)dt ~ Q~,6(u) :=  2_./Onk UtX,~ ) (3.6) 
7"[ 1 k=l 

with 

fl~,k ~ = 1 f_ '  l] ,~(t)g,~(t)dt .  

Now, we can approximate the operator H1 by 

~./~ ~,/~ ~,/~ 
(HlnU)(X) = ink h (x , x , ,  )u(x , ,  ) .  (3.7) 

k=l 
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To approximate the operators ~r2 and//3 we use product integration rules of the following kind: 

I; I a u(t)v~,~(t)d t b 1 -~,~ ~,ls - - u(t)  In Ix - tlv~'~(t)dt ~ ~-~2.k ( x )u (x . k ) ,  (3.8) 
I 7~ --1 k=l 

1 f~ u(t) v~,~(t ) _ ),,6 7,6 
, it Z x l ,  at ~ Z(,Onk (X)U(Xnk 1, (3.9) 

k=l 

where 

i / 2~}f(x) = a l~,k~(t)v~,~(t)d t b l _ _ t ~ f ( t )  
1 TC 1 

In Ix - tiv~'a(t)dt, 

?,6 
~,~ 1 f i  l.k (t) v~,,a(t ~ ~o.~ ( x )  = -~ , l i - ~ .  ,d t .  

Application of these quadrature rules to the operators ~r2 and H3 leads to 
n 

(~I2.u)(x) -~'~ ~'~ ~'~ ~- Z ~ n k  (x)h2(X, Xnk )U(Xnk ) 

and 

k=l 

(3.10) 

n 

(H3u)(x)  = ~ o ~ . k  (x)h3(x,x.k )u(x.k ).  (3.11) 
k=l 

The quadrature or discrete collocation method consists in solving the equation 
~,~ /~ DA + L .  (Mv, + H i .  +hr2. +H3n)un = L . ' f .  (3.12) 

The solution of this equation again belongs to P . - l .  Since, for such u., we have 

( H , u . ) ( x ) = Q J  (unL:'~[h,(x,.)]) 

if, - - -  u , ( t )LJ[h (x , t ) ] v~ '~ ( t )d t  =: (~Ii ,u,)(x) ,  (3.13) 
- - ~  1 

the approximate Eq. (3.12) is equivalent to 

B.un := DA + L n (M~, + flln + + = L." f . (3.14) 

The following three lemmata are generalizations of [11, Lemma 3.10], (comp. also [5, Lemma 
4.4]). 

2,s i uni formly w.r.t, x E [ - 1 , 1 ] .  Then, f o r  0 <<. t <<. s Lemma 3.4. Assume  hi(x,  .) 6 L~.~ fo r  some s > 7 
and  u c L2~,~, 

L~a(~IIn - Hl )U r,a,t ~ const mtn -s Ilull=,~. 
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Proof. Since, for a polynomial vin of degree less than m, [[VmIIv,6, t ~ m t ]]VmHT,6, we are able to 
estimate with the help of  Schwarz' inequality 

L~6(ffI'n - Hl)U i,6,t ~ m2t L~6(fflln - H ' )u  ;,6 m{/  }2 
jF.( ~,6 1 ' .(O[L;'fh(x~ 9, r) - h(x~,  r)lv~'e(~)dr = m2t /~mj 7~ 1 

in 
2 y,6 L ~ , l J h ( x ~ , . ) _ h ( x ~ , . ) 2 ,  fl ~< m2t Ilull=,a Z ~mj 

j=l  

Z ~< const m2tn -2s [[b/ll2,fl 2 ~  h(xmf,. ) ~< const m2tn -2s Ilull=~ 
j= l  

taking into account Lemma 2.4(b). [] 

Lemma 3.5. Let, for  some integer q >~s > ½, h2 (x , . ) eC  q uniformly w.r.t, x E [ - 1 , 1 ] .  Then, for  
2,s 0 <<, t <<, s and uEL~,~, 

L~a(~I2n - - / ~ 2 ) u  ),,&t ~ const mtn -" IluL,~,,. 

Proof. Using the Gaussian rule and Schwarz' inequality we obtain 

L~6(~¢2, - / 1 2 ) U  )2,,&t 

= m  2t 2:~ a '~' h2(x:~,xZ{)u(xZ{)l~{(r)  - hz(x~,~,'r)u(T ) v~"(r)dz 
j= l  = 

[k~_l r[v~'~(r)dr 2 b .f_l n 7,6 ~,/~ ~,/~ ~,/~ ~',6 
7~ __1 _ h2(xmj'Xnk )U(Xnk )l"k (Z) -- h2(xmj , r)u(r)  In ]x~f - 

m 
<~ 2rn2t ~-'~ 2 ~  (L~, "~ - I)[h2(x~f,.)u] 2,l~ 

j= l  

× a2g v~'B(r) dr + - -  In 2 [x~f - rlv~'/~(r) dr . 
-1 7~ 1 

With the help of Lemma 2.4 (b), Corollary 2.12, and the uniform boundedness of  

_1 In 2 ]x-rlv~' /~(r)dr,  x E [ - 1 , 1 ] ,  
1 

the assertion of  the lemma follows. [] 
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1 and, f o r  some integer q>~s> ½, h3(x,.) E C q , uniformly w.r.t, x E [--1, 1]. Lemma 3.6. Let  0 < r l < 
2,s Then, f o r  O<<,t<<,s and uE L~,/~, 

L~a(H3, - H3)u >a,t <<" const mtn -~ Ilull , ,s. 

Proof. Analogous to the proof of Lemma 3.5 we find 

L  (H3. - H3 )u 

7,6 < m2t ~ ~mj (LJ 
j = l  

- - I ) [h3 (x~ , . ) u ]  2/~ _1 / l  v~,~(z) 

, IXm;- 
dz. 

The assumption on q and the fact that a > 0, fl > 0, guarantee the uniform boundedness of 

1 f l  v~,~(z) 7 -1 [x---7~-~ 2'I dr, x E [ - 1 , 1 ] .  

Thus, the assertion follows by Lemma 2.4(b) and Corollary 2.12. [] 

2,s Theorem 3.7. Le t  s > ½, ~u - 0, h3 ---- 0, f E L/~,~. Assume  that (A0), (A2) and (A3) are fulfil led 
2,s f o r  -d = s and 7 >>, max{0,s - 1}. Moreover, assume that hi (x , . )  E L~,~ and h2(x, .) E C q f o r  some 

integer q >~ s uniformly w.r.t, x E  [--1, 1]. Then, f o r  all sufficiently large n, Eq. (3.14) is uniquely 
, [ 2 , t + l  solvable, and the solution u, converges in the norm o f  the space ~ , ~  , 0 <~ t < s ,  to the unique 

solution u* o f  (3.1), where 

Hu~, - u* ]]~¢,~,t+l ~ const nt-* Ilu* (3.15) 

Proof. Referring to Lemmata 3.4, 3.5, and 2.4(b) one can see that, for H = H ~  +~r2, Hn=~Iln "q-~I2n , 
and t =  min{1,s}, 

L~'~H, - H L2~:J,+L~.~ ~< const L~'=H, - H t2;~+L{. ~ 

<~ L~'~(H, - H )  L~:~--.L~., + L~'~H -- H L2:~+t~,, ~ 

~< const n-/". 

We remark that the operator H • L2=:~ --~ L~;~ is continuous because of the following sequences 
of continuous mappings and embeddings (see Lemmata 2.10 and 2.13) 

2,/. 2 HI 2,s 2,s 2,/" L~,fl c L~,~ > L_~,_~ c L~,~ c L~,~ 

and 

2,/. 2 H2 2,1 2,1 2,/. L:,,/~ C L~,,, 8 ~ L_~,,_~ C L<~, C L/~,:,. 
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Consequently, 

lim B n - B  L 2 = 0 ,  

which implies the uniform boundedness of  

, L~,~) .  

With the help of  this result and Lemmata 3.4, 3.5, as well as Lemma 2.4(b) we can estimate 

* ~ f l  * iv/t * 
u. - L." u ~ [I t+l ~ U n -- L J u *  

, , ~ , f l , l  

~< const n t B~(u.  - L J u * )  ~,~ 

coast nt ( L~ '~ f  - f ~,[1+ ( H -  ~ ~[1 * B(u* L J u * )  L, '  Hn)L  n' u ~,[1 + - -  ~,~] <~ 

~< const 17 t - s  U* II [l=,r3,s+, • 

12's+l and Lemma 2.4(b). [] Thus, the estimate (3.15) is proved, if we remember u*E ,_,~,/~ 

1 (i.e., a - - 0  b = - 1  ) T h e o r e m  3.7 remains  true i f  we  Theorem 3.8. In case ~P ~ 0 a n d  ~ = fl = ~ 
addi t ional ly  a s s u m e  that  (A1) with r >>, s is ful f i l led.  

Proof. With 7 defined in the proof of  Theorem 3.7 we have 

IIL M  - M lli  ,4g const n -? 

having regard to Lemma 2.4(b) and Corollary 2.12. The proof of  the estimate (3.15) is the same as 
~p * in the proof of  Theorem 3.7, if we additionally take into account L~M~,L~u* = L~M~,u and again 

apply Corollary 2.12. [] 

Remark 3.9. In case ¢P ~ 0, h3 ~ 0 and ~¢ = fi = ½ (i.e., a = 0, b = -  1 ) Theorem 3.7 remains true for 
±2 < s < 1 - q ,  if we additionally assume that h3(x,.) E C~ uniformly w.r.t, x E [ -1 ,  1], 0 < q < 2, 
and that (A1) with r ~> s as well as (A4) are fulfilled. 

Proof. With the help of  Lemma 3.6 we have 

IIL (H3. - H3)IILg '--,L!  const n -~. 

Corollary 2.18 together with Lemma 2.4(b) gives 

IIL~H3 - g3llLS'~L~ < const n -s. 

The proof of  the estimate (3.15) is the same as in the proof of  Theorem 3.7. [] 
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4. A fast algorithm 

In this section we consider the original Eq. (1.1) or, which is the same, Eq. (2.1) in the case of  
F(x) = 70 -- const and h(x,t)  =- hl(x, t )  - ?l In Ix - tl which means an equation of  the form 

1/: % 
7oU(X)- n l ( t  iqff t )dt  

1// 
+ -  [ h , ( x , t ) ) -  y, l n l x - t l ]u ( t )~o ( t )d t  

7~ 1 
= f ( x ) .  (4.1) 

We write this equation as 

(~4 + 7-/)u = f ,  

where 

A = M ~ o  + V + 7, W, , f  - -  In Ix - tlu(t)cp(t ) dt, ( W u ) ( x ) =  n 1 

and 

1// 
hi (x, t )u( t )qff t ) dt. ( 7-tu )( x ) = -~ 

We investigate Eq. (4.2) in the pair of  spaces 

L 2 , S + l  1- 2 , s )  
- - rp  , ~ q ~  J 

(4.2) 

(4.3) 

(4.4) 

and make the following assumptions: for some s > 
(a0) For f -- 0 Eq. (4.2) possesses in L~ ,1 only the trivial solution u -- 0. The same is assumed 

for the equation Au = 0. 
(a l )  hl(.,t) ~ 1, 2's+6 _ _ ~  uniformly w.r.t, r E [ - 1 , 1 ]  and 
(a2) hi(x,.) E L  2's+6 uniformly w.r.t, xE  [--1, 1] for some 6 1> 0. - - tp  

(a3) The right-hand side f of  Eq. (4.2) belongs to L~; ~ . 
To construct a fast algorithm for the numerical solution of  Eq. (4.2) (basing on the quadrature 
method considered in Section 3) we will follow the idea of  [5, Section 6], which is based on the 
fundamental approach given in [1]. 

First of  all, let us summarize some results of  the previous sections. As a consequence of  Lemmata 
2.10 and 2 we have 

(b l)  The operator 
Analogously 

(b2) The operator 
Corollary 2.14 gives 

(b3) The operator 
pair of  spaces (4.4). 
Taking into account Corollary 2.8 (see also Remark 2.9) from (bl) ,  (b2), and (b3) we have 

(b4) A , A  + 7-( • L 2's+1 ~ 2,s -~0 L~ are continuous isomorphisms. 

• . L 2 , s + l  2 ,s  is compact. /~(l,2 1.2's+6) Especially, 7-/ -~o belongs to -~-~o,-~o 1 --, L~ 

M~ ° . --~L2'S+l _+ L~ o2,s is compact. 

W • L~'t --+ _~L 2't+~ is continuous for all t >~ 0 and, consequently, compact in the 
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The operator +4 + 7-/ is approximated using the quadrature method (compare Section 3). Thus, at 
first we consider the approximate equation 

( . A  n ÷ ~-{n)bln = L ~ f  , ( 4 . 5 )  

where 

An =M~,o + V+~,L~.W, 

~n -- tO ̂  u(t)L~t[ht(x , t)]~o(t) dt. - LnHIn'(~tlnu)(x) = -~ 1 

Let us reformulate Theorem 3.8 for the case under consideration here. 

1 Assume that (a0)-(a3) be fulfilled. Then, for  all sufficiently large n, Eq. Theorem 4.1. Let  s > ~. 
(4.5) is uniquely solvable, and for  the solutions u~ we have the error estimate 

Ilu~, - u*ll~,t+ , ~< const n '-s Ilu*l[~,s+l, (4.6) 

where 0 <~ t <<, s and u* E L z's+~ is the unique solution o f  (4.2). --to 

We again remark that each solution un of (4.5) belongs to Pn-~, such that 

n 

to (p tO (~Ilnun )(X) = (HlnUn )(x) = ~ 2nkhl(x'Xnk )Un(Xnk)" 
k=l 

It is well known that 

kTz to 1 - (x~k)2 1 k~z 
x , k = c o s  2nk-  - - -  sin 2 -  k + l ,  .,n. 

n + l '  n + l  n ÷ l  n + l '  "" 

To find a formula for the product integration weights 2~(x) (comp. (3.8)) we use the following 
lemma. 

Lemma 4.2 (Berthold et al. [4, Theorem 3.2]). Let  T , (x )=cos (n~) ,  x = c o s  ~, be the Tschebyscheff 
polynomial o f  deoree n and o f  the first kind. Then, for  x E [ -1 ,  1], 

In Ix - t[T,(t) 
1 x/T - t 2 Tn(x), n = 1,2 . . . .  

Corollary 4.3. For the operator W defined in (4.3) we have the relations 

1T 1 l n 2 - ~  ~, n = 0 ,  

Wp.+ = ~ l r o  - -  v.+2, n = 1 , 2 ,  
n n + 2  "" 
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Proof.  Since p~ = v/2U,, where 

sin[(n + 1)~] 
U.(x) = 

sin 

x = cos ~, is the nth Tschebyscheff polynomial of  the second kind, and 

1 gn(x) (1 - x  2 )  = ~ [ r n ( X )  - r n + 2 ( x ) ]  , 

the assertion follows immediately from Lemma 4.2. [] 

As a consequence of  

To(x) = Uo(x) = 1, Tl (x)  + ½g,(x) ,  

and 

1 T,(x)  = ~ [U,(x) - U,_z(X)],  n = 2 , 3  . . . .  , 

from Corollary 4.3 we have 

1 W p ~ =  ~ [(1 + 2 In 2)p~ - p~] =:  co00P~ ° + o902P~ ° 
1 1 1 q~ 

~P3] = :  Wp~ = a [(1 + ~)p,~ - ~o,,p~ + ~o,3p~ 

'E ' )  ' 1 Wp~ = ~ - n p n _  2 ÷ ÷ p~ - n + 2 n + 2 Pn+2 

e COn, p~ = :  (.On, n_ZPn_ 2 ÷ ÷fOn, n+2Pn+2, n = 2 ,3 , . . .  

Set 

co jk=0 if  Ij  - kl # 0  and Ij  - kl :/:2. 

Now we use the representation 

n-- I  

t°~(x)=~.~ z ~ ~ p) (x.D p) (x ) 
j=O 

of  the fundamental Lagrange polynomials and obtain from Corollary 4.3 

"~2k(x ) = (wl~.k)(x) 

r 1 = Uo(x,k ) In 2 - ~T2(x)  + Uj(x,~) T j ( x ) -  - -  
j=l LJ 

as the weights in the product integration rule 

u(t)  In Ix - tlq~(t ) dt ~ ~-~2nk(X)U(X,k ) . 
rc J _  l k=l 

1 
j + 2 Tj+z(X) 

(4.7) 

( 4 . 8 )  

(4.9) 

(4.10) 

(4.11) 
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Thus, if  we seek the approximate solution of  (4.5) in the form 

u.(x) ~ = ~ . k l . A x ) ,  

k = l  

then, using Remark 2.9, 

n- - I  

Vl;k = 2;k ~-~ p](x~k)( j + 1)p ]  
j=O 

and (4.5) can be written in the form 

(7oi, + V~A, + 71Wn -~- H , A , )  ~, = q, 

with ~, = [~,k]~=l, , ,  = [ f (x~)] j~ l ,  and 

6 ~ T = = U ~ D . U . ,  = 

(4.12) 

Un ~o ~o ~-in-- l ,n  = [P) (X,kJJj=0,k=l, D,  = d iag[1 , . . . ,n] ,  A, = diag[2~l,. . . ,2~,].  

From 6;k (p~,p~)~ ~ ~ ~ ~ ~ ~ = = 2,tpk(x,l)P) (%l) it follows that 
l=1 

In = U n A n U  y • ( 4 . 1 3 )  

We will see that it is not necessary to generate the Matrix W~ in order to solve (4.12) (see Remark 
4.4 below).  

In what follows we assume that the vector q, o f  the values of  the function f at the collocation 
points x~., j =  1 , . . . , n ,  as well as the values hl(x~,x~k), j , k =  1 , . . . ,n ,  are given. Choose an integer 
0 < m < n  and write 

m--1 n--1 

u, = ~ ~k P;  + ~ ~k P~ = 7~mUn + Qmu,, 
k--O k--m 

where 

m - - I  

PmU Z<U' = Pk)~oPk and Qm=I--TZ'm- 
k=0  

. ~p n - I  . (p . . . . .  - * = //,kPk is the solution of  Set ~k (v , ,pk)~,  k m, ,n 1, where v, ~k=0 

A,v ,  = L ~ f  . (4.14) 

In view o f  Theorem 4.1 (for the case of  hi - 0) Eq. (4.14) is uniquely solvable for all sufficiently 
large n if  (a0) is satisfied. For ft, ~-l , = [fl, k]k=0 we have 

.-1 1" 
7o 

k=0  3 j = l  
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and 

q9 n q~ ¢p 
[(Vv.)(x.j)] = fl.k(k + 1)pk(x. j j= l  

Lk=0 -J j = l  

A 

To find the Matrix W~ with 

T 
= UnDnfl n . 

define --W. = trOgjkJj, k=0,1n-I where o~jk is defined in (4.7)-(4.10). Then, for ft. = ~ f l .  

n--1 

L~ Wv. ~ ~o 1 (Dn,n+zLn Pn+l 
k=0 

in view of z ~ L n p. = 0. Since 

p L , ( x )  = 2 x  p~(x )  - p L , ( x )  

the relation L.P.+1 = - L .  P.-1 = --Pn-I holds true. Thus, 

n--2 

L~n W v. = ~ fl.kP~ + (ft.,.-1 - ( D n , n + 2 f l n ,  n--1)Pn-I~° , 
k=0 

~ _ r ~  , . - 1  ^ ^ which shows that . - t  jkJj,~=0, where coj~ = ogj~ with the one exeption ~ . -1 , . -~=  ~o._~,._1- ~o.,.+z. 
Consequently, Eq. (4.14) is equivalent to 

or, having regard to (4.13), 

(701n ÷ On ÷ ~1 Wn)~n = UnAntln. ( 4 . 1 5 )  

Remark 4.4. Using these observations and (4.13) we see that Eq. (4.12) can be written in the 
equivalent f o rm  

JuT(y01,, + Dn + ?IW.)U.  + Hn] A.~n = r/.. 

Since the transform 

U.A -- v ~  [sin Jkrc ] ~ diag[sin krc ] ~ 
n + 1 n ÷ lJj, k= 1 n + lJk= l 

can be applied to a vector with O(n In n) computational complexity (comp., for example, [21, 23]), 
we can compute fix (and so ~m,.-. ,7.-1) with O(n In n)-complexity taking into account the simple 
structure of the matrix on the left-hand side of (4.15). 

Lemma 4.5 (Berthold et al. [5, Lemma 2.2]). For s >>- 0 and u E L~ ~s we have 

IIQmulI~,, ~< (1 + m y  -s Ilull~,s, m = 0, 1,2,... 

" - '  ))1 ° 
[(Wv.)(x,,j)] = nk (Wpk(x.j = U; W ~ .  

j = l  
-Ij=l 
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Lemma 4.6. Assume (a0), (al) ,  and (a3) to be satisfied. Let u* be the solution of  (4.2) and let 
QmU,, be defined with the help of  the solution v~ of(4 .14)  (i.e., QmU,=QmV*). Then, for 0 <. t ~ s,  

IIQmU~ - QmU*II~,,+, ~ const (m t-~-6 + n t-s) I l u * l l ~ + l  

Proof. Write 

* * --1 cp QmU,-QmU = Q ~ ( v , - u * ) = Q m [ A ,  L , f - u * ]  

QmA;~' [L~f f + ( W  ~ * = - - L ~ W ) u  + 7-tu*]. 

It follows that 

QmA. ~ u  lie,+, - l  ,p [[Qm.A~-I(W - L.W)u I1~,,+, + II IIQmA,, ( L , , f -  f) l l~,+~ + ~ * - '  * 

With the help of  Lemma 4.5, Lemma 2.4(b), (bl) ,  (b3), and the uniform boundedness of 
[[A~ -1 [[L~;, L~,+,, t >/ 0, we estimate 

I[QmA;, l (L~f  - f)[[~o,t+, ~ const []LV, f - f[[v,t 

const n t-~ [[f[[~,~ ~ const n t-~ [[u*[[~0,~+l, 

and 

I I Q m A ; ' ( W  - L~W)u*ll~,,+, ~ const II(W - L ~ W ) u * l l ~ , ,  

~< const n t - s - 2  II W u *  II~,s+= 

~< const n t - s - 2  U* II II~,s+,, 

IIQmA;'nu*ll~,t+l ~ const m '-~-~ IIA;'~u*ll~,s+,+~ 

~< const rn t-~-e' []Hu*[[~,s+ ~ ~< const rn t-s-e' [[u*[[~, 

which proves the lemma. [] 

The second step of  our algorithm consists in setting "PmU,, ---- W~, where win* is the solution of  

(A,,, + ~m)Wm-- ~o • - Lm ( f  - .A,,QmV,, ) . (4.16) 

This equation is equivalent to (see Remark 4.4) 

[~Tm(70/m +Dm + 7,~Tm)Um + Hm] Am~om:'~m, (4.17) 

where COrn = [Wm(X~k)]"fl= 1 and qm = [f(Xm~j) -- * * m (.AoQmV,)(Xmj)]j=l. The matrix Um can be gener- 
ated with O(mZ)-complexity using the three-term recurrence relation of the orthogonal polynomials 
p~(x). Thus, for given qm, Eq. (4.17) can be solved with O(m3)-complexity. The values f (x~j)  
are already been given if we choose m in such a way that (n + 1 )/(m + 1) is an integer, which 
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implies Xm~j E {x.~" k -- 1 . . . . .  n} for j = 1 , . . . ,m.  So, it remains to compute U.X(701. + D.)f l . ,  where 

~. = [0,. . . ,  0, f l .m,. . . ,  ft.,.-1] T. This can be done with O(n In n) operations taking into account that 

 := diag[sin l Isin 1 
n + l  k=l L n +  lJk, j=l 

can again be handled as fast discrete sine transform (comp. [21, 23]). The determination of  the 
I-0~ ]m--I U m A m o g m .  Fourier coefficients ~,k, k = O , . . . , m -  1, needs O(m In m) operations, since t ,kJk=O = 

Summarizing these considerations we have 

Remark 4.7. The computat ion o f  the Fourier coefficients o f  U n = W m -]- Q m V ~ ,  where v~ and w m 
are the solutions o f  (4.14) and (4.16), respectively, can be done with O ( m  3 + n In n) numerical 
complexity.  

t Lemma 4.8. I f  the assumptions (a0)-(a3) are ful f i l led and i f  ~ < t <<, s ,  then, f o r  all sufficiently 
large m,  Eq. (4.16) is uniquely solvable and 

- u* (mt-S-'~ at-S) u* IIw~ "Pro I1~.,+, ~< coast + II II~,s+~. 

q~ ~p Proof. First of  all, since L m L  n = L~m (because of (n + 1)/(m + 1) is assumed to be an integer) and 
(MTo + V)TPmU * E Pin--1 we have 

(.am + 7-tm)(W~ -- PmU*) 

=L~mf - L~m (MTo + V + 71L~W) QmV~ -- (M~o + V + 7,L~m W) "PmU* - -  7"~m'~rnU* 

¢p * ~p * • 
----Lm~(,A + 7-/)u* - L m A Q m V  n --  LmA~Dm u - -  ~'[m~m u 

(p * ~o A , 
__ * __ H l m )  u + L m H l m Q m U  • = L m J t ( Q m U  QmVn ) + L~m( ~ A . 

From Lemma 2.4, (b4), and Lemma 4.6 it follows that 

]lZ~mA( QmU * - QmV,~)ll~0,, 

v* ( m t - S - 6 n  t-s) . ~< const IIQmu* - Qm nile,,+, ~< coast + [lu*L,~÷, 

With the help of Lemma 3.4 we can estimate 

L~m(7-[ - kllm)U* ~,t ~< coast m t-~-6 [[u* 1[~. 

Moreover, by the definition of the operator ~r~m we see that ffI~m QmU* =-- O. Thus, it remains to apply 
the uniform boundedness of  [[(.Am + 7-/m) -1 []L~:'~L~:'+' for all sufficiently large m. [] 

Now we can summarize our results. 

Theorem 4.9. Le t  s > ½, (a0)-(a3) be satisfied and m, n,0 < m < n, be integers such that 
(n + l) /(m + 1) is an integer and cln <<, m 3 ~ c2n  with some positive constants cl and c2. Then, 
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f o r  all sufficiently larye m, Eqs. (4.14) and (4.16) are uniquely solvable and ~ = w m + QmV~ con- 
veryes in the norm o f L ~  't+l , 0 <~ t < s ,  to the unique solution u* E L  2,s+l_~o o f  Eq. (4.2), where, f o r  

m a x { ½ , s - ½ 6 } < t ~ s ,  

Ilfi~ - u*]]~,t+ 1 ~< const n t-" ]]u*]]e,,+ 1 . (4.18) 

Moreover,  the solution o f  (4.14) and (4.16) needs O(n In n) operations. 

Proof. Lemmata 4.6 and 4.8 yield 

11~: - u'lie, t+ , ~< cons t  (m t-s ~ + n t-s) [[u*llq~,s+l , 

which implies together with t > s - ½6 and m >~ cjn 1/3 the estimate (4.18). Remark 4.7 together with 
m 3 <~ c2n leads to a complexity of O(n In n). [] 

At least we want to discuss, what results are possible if instead of M~0 and/or 71W operators M r  
(see (2.2)) or H2 (see (2.9)) occur. That means, in place of  Eq. (4.1) we will consider an equation. 
of  the form 

r ( x ) u ( x )  - 1 f ~  . u(t_)2 ~0(t) dt 
rr J_l (t - x )  

+ -  h l ( X , t ) + h 2 ( x , t ) l n [ x - t [  u ( t )~o ( t )d t=  f ( x ) .  (4.19) 
TC 1 

We also write this equation in the form (4.2), but now with 

, ,4= V, 7 - { = M r + H I  +1t2 

(H1 and H2 are defined in (2.8) and (2.9) with v ~'~ = qo). The approximating operators are defined 
as 

A , = A  and ~ , = L , ( M r +  +H2, ) .  

(see (3.13) and (3.10), H2, =H2,  for case of a = 0 ,  b = - 1 ) .  We have to check if the assertions of 
Lemmata 4.6 and 4.8 remain true. The crusial point in the proof of  Lemma 4.6 is the estimation of 

- - 1  * l ]]Q,~.A, 7-tu ]]o,t+l • If we suppose that h2 and hzx possess continuous partial derivatives up to order 
r r />  s + 1 on [ -1 ,  1] and that F belongs to C~o, we can apply Corollary 2.14 and obtain 

II~m,,~ IMFu*llqo, t+, ~ const m t-s-1 []A-'Mru*]]o,s+ 2 <. const mr- ' - '  [lu*]]~0,s+l 

and 

IIQA-1H2u*II ,,+, ~ const m t-s-2 II.A-IH u*ll ,s+3 ~ const m t-s-2 ]]u* Ile,~,+l • 

The essential steps in the proof of Lemma 4.8 are the estimations of 

L~m(~ - M r  - ~Ilm - H2m)U * ~, = L~(H, + H2 - kllm - H2m)u* ~o,t 

and 

U* 
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If  we assume that h2(x, .) E C q uniformly w.r.t, t E [--1, 1] for some integer q ~> s +  1 then, having 
regard to Lemma 3.5, 

(p * IILm(H: - H2m)U*ll~o,t <~ const m t-~-' Ilu 

Furthermore, 

q~ * 
[[ZmMrQm u I1 ,, 

and 

U* m t -s -1  ~< const [[Qm [[~0, t ~< const  [[u*ll~,s+ , 

* * ~ m max{O't-l}-s-1 u* IIL~mH2mQm u II ,t const [[QmU II~,max{0,t-1} "~ const II 

The summary of  these observations is that it is possible to hold true the assertions of  Theorem 4.9 
in case of  Eq. (4.19) for 6 ' =  min{6, 1} instead o f  6. 

5. Numer ica l  E x a m p l e s  

In this section we apply the fast algorithm presented in Section 4 to Eq. (4.1) with 7o = 1,71 = 0, 
and 

(i) h~(x, t)= Ix] + [t], f ( x ) =  2 + [x[/2 + 2 /3n ,  
(ii) hl(x,t)  = t (x21xl + t l t l) ,  

= x [(1 + 4x/15n)Ixl + 6/n + ((3x 2 - 2)/roy/1 - x 2) ln[(1 + v/1 - x2)/(1 - ~ ) ] ] .  f ( x )  
In case (i) Eq. (4.1) possesses the solution u ( x ) -  1 and in case (ii) the solution u(x)=x[x[ .  

Moreover, for e > 0, we have 
2 (i) h l ( . , t ) ,  hi(x, .) ,  f EL~o,3/2_ ~, 

(ii) h l ( . , t ) ,  hi(x, 2 2 • ) E L~,7/2_ ~ and f , E L~o,3/2_ ~ 
in the respective examples. Hence, in case (i) the assumptions o f  Theorem 4.9 are satisfied, for 
example, for s = 0 . 8  and 6- -0 .6 .  In case (ii) the same holds true for s =  1 . 5 - e  and 6 = 2 .  Therefore, 
in case (i) we can expect theoretically the convergence rate 

[[u~, - u*ll,p,,+l ~< const n'-°811u*ll ,lS, 0.5 < t 0.8, 

Table 1 

Example (i)  

n m Iiu~* - u*ll~,lSl 

8 2 0.123D-00 
27 3 0.801D-01 
64 4 0.562D-01 

125 5 0.519D-01 
216 6 0.386D-01 
343 7 0.393D-01 
399 15 0.205D-01 



M.R. Capobianco et al./Journal of Computational and Applied Mathematics 77 (1997) 103-128 127 

Table 2 

Example (ii) 

n m II u* -- P,,u*II~.~.5~ Ilu.* -- P.u*[l~,~.85 

8 2 0.552D-01 0.107D-00 
27 3 0.186D-01 0.520D-01 
64 4 0.838D-02 0.283D-01 

125 5 0.447D-02 0.212D-01 
216 6 0.226D-02 0.125D-01 
343 7 0.168D-02 0.112D-01 
399 15 0.141D-02 0.102D-01 

Table 3 

Example (i) 

n I lu ff - P°u*ll~,l.Sl 

8 0.980D-03 
27 0.199D-03 
64 0.184D-04 

125 0.980D-05 
216 0.165D-05 
343 0.131D-05 
399 0.972D-06 

Table 4 

Example (ii) 

8 0.522D-01 0.103D-00 
27 0.178D-01 0.511D-01 
64 0.695D-02 0.271D-01 

125 0.436D-02 0.211D-01 
216 0.211D-02 0.124D-01 
343 0.164D-02 0.112D-01 
399 0.141D-02 0.102D-01 

and in case (ii), for s < 1.5, 

II uZ - c o n s t  nt-Sllu*ll ,,s+,, 0 .5  < t s.  

Tables 1 and 2 show the actual values o f  the error in the examples considered. 
Finally, in Tables 3 and 4 one can see the results obtained by means o f  the quadrature method. 

Of  course, Example (ii) is more convenient than Example (i) for applying the fast algorithm, since 
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already for small m in compar i s ion  with n the errors for  the quadrature me thod  and the fast a lgor i thm 

are essential ly the same. The reason for this is that  in Example  (ii) the kernel  h l ( x , t )  is real ly 

smoother  than the r ight -hand side f ( x ) .  
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