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Abstract

Collocation and quadrature methods for singular integro-differential equations of Prandtl’s type are studied in weighted
Sobolev spaces. A fast algorithm basing on the quadrature method is proposed. Convergence results and error estimates
are given.
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1. Introduction

In this paper we consider collocation and discrete collocation (quadrature) methods for solving a
singular integro-differential equation of Prandtl’s type

g(x)u(x)—lf1 de%/l hee, () de = f(x), —1<x<l1, (1.1)
- —1

s 1l —X
where the unknown function v(x) has to fulfil the additional conditions
(—1)=v(1)=0. (1.2)

Several authors have studied this type of integro-differential equations and related numerical methods.
(Among others we refer the reader to [14, Ch. 3, Section I; 13, Section 3; 19, Section 9.53]). Since,
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for a function ve€ L”(—1, 1) possessing a generalized derivative " € L?(—1, 1), we have (see [17,
Ch. 11, Lemma 6.1])

d /‘ o(t) /‘ v'(t) o(—=1)  v(1)
dt = dr — —
- -1

dx [ t—x t—x 1+x 1 —x
for all xe(—1,1), Eq. (1.1) together with (1.2) can be written in the form
1w 1 /!
g(x)v(x)——/ dt—l——/ A(x,Ho(t)dt = f(x), —-1l<x<l, (1.3)
TSy (t—x) TJy
where the hypersingular integral operator has to be understood in the sense of
Vow() d /' owu)
mz—/' dr. 14
/—l(t—‘X)z d.X 1 t—x ( )

Galerkin and collocation methods for Eq. (1.3) in case of g(x) = 0 were considered in weighted
L2-spaces in [10] and in case of A(x,t) = 0 in [15]. Recently, in [9] convergence results in weighted
Sobolev norms were given for the case g(x) = A(x,t) = 0.

The aim of the present paper is to prove optimal convergence rates for collocation and quadrature
methods for Eq. (1.3) in weighted Sobolev norms and to found the idea of a fast algorithm for
the numerical solution of (1.3) based on the quadrature method. Moreover, also the case of weakly
singular perturbation kernels A(x,?) is investigated. For this, following [9, 10, 13, 15, 19, 20], we
recognize that the solution of (1.1) or (1.3) (together with (1.2)) has an endpoint behavior of the
form +/1 — x?. Thus, it is convenient to represent v(x) as the product

v(x) = @(x)u(x) (1.5)
of the weight function @(x)=+/1 —x? and another unknown function u(x).

2. Notations and preliminaries

With this agreement we write Eq. (1.3) in the form
Mr+V+Hu=f, (2.1)
where My denotes the multiplication operator
(Mru)(x) =T xu(x),  I'(x)=g(x)o(x), (22)
H the integral operator

1
() = [ e nuoyot) dr 23)

and ¥V =—DS the finite part integral operator with (comp. (1.4)) the operator D=d/dx of generalized
differentiation and the Cauchy singular integral operator

1 1
mmw=;[¢@i

o(t) dt. (2.4)
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For real numbers @ and b with a —ib = €™, 0 <a <1, define f =1 — o, the Jacobi weight
function

vP(x) = (1 = x)*(1 +x),
and the singular integral operator of Cauchy type
1
(Au)(x) = a v*P(x)u(x) + % / % v F(t)de. (2.5)
—1 -

Fory> —1and 6> — 1, let L2 5 denote the weighted space of square integrable functions on
the interval [—1, 1] endowed with the scalar product and the norm

1 /! —
(o) = - [ w0 dr and full,; = /()

respectively. Moreover, let p!° refer to as the normalized Jacobi polynomials (with positive leading
coefficient) of degree n with respect to the Jacobi weight v”°(x). For real numbers s > 0 define the
weighted Sobolev space ng by (comp. [5])

L2 = {u eLl,: Y (1 +n)”

n=0

. 2
(w20 < oo}

with the norm

00 1/2
. 2
“uH",*,é,s = <Z(1 + n)zs <u’ p;/lga>}’,(s ) .

n=0

In the following we summarize some results concerning the properties of weighted Sobolev spaces,
of interpolation operators with respect to the zeros of the orthogonal polynomials pi°, and the
singular integral operator 4 defined by (2.5). By £(X,Y) we will denote the Banach space of all
bounded linear operators between the Banach spaces X and Y.

Lemma 2.1 (Berthold et al. [5, Conclusion 2.3]). For 0 < s < ¢, the space Li’g is compactly imbed-
ded in Li’f;.

Lemma 2.2 (Berezanski [3, Ch. III, Section 6.9, Theorem 6.10], Junghanns [11, Remark 1.5]).
If the operator B belongs to L(Li’lf'ﬁl,ﬁ’” ) and E(Li;f‘ﬁl,Lz”z ) then BEE(Li’If%’I),LZ”(’)), where

a2, B2 2, B2 2, B2

s(= -5+t and () =(1 - s, +14,0< 1< L

Lemma 2.3 (Berthold et al. [5, pp. 196,197]). Let r = 0 be an integer. Then uELi’g if and only

if u@* belongs to L. ; for all k=0,...,r. Moreover, the norms ||ul|, ,, and

r
||u”y,6,r,q) = ; ”u(k)(pklly,ﬁ

are equivalent.
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Let x° with —1 <x7? < --- <x/ be the zeros of p»® and denote by L’ the Lagrange interpo-
lation operator

n ¥,0

X — X,;
Lof= Zﬂx . o= 11 55—,

J=lj#k Xnk T Xnj

Lemma 2.4. For s > we have
(@) lim,o || f — L“sf|| 5., =0 for alleLM,
() ||f - Lféf”yét const n'=* || fl, 5., 0<t<s

Proof. This lemma was proved in [5, Theorem 3.4] in case of |y| =|d| = 5. For the case s > 1,
y,0 > — 1 arbitrary, the proof is given in [7, Theorem 2.3]. The general case is considered
in [16]. O

Lemma 2.5 (Prossdorf and Silbermann [19, Theorems 9.9 and 9.14, Remark 9.15]). For the singu-
lar integral operator A defined in (2.5) we have the relation

Ap*? =Ap7nP n=0,1,2,...

The following corollary is an immediate consequence of the previous lemma.

Corollary 2.6 (Berthold et al. [S, Lemma 4.1]). For all s = 0, the singular integral operator A be-
longs to E(Li:f,,L“ _p)- Moreover, 4: L“ — L“0 _p is a bijection, where

2,50 2,5 . AN
L0 ={f el (£, pi*)ns =0},
and the inverse operator is given by

o~

N 1
A'=4, At =av P f@) - % /_1 ){—(_x—i v "F(x) dx.

Lemma 2.7. For all s 20 and y,0 > — 1, the operator D of generalized differentiation is a con-
tinuous isomorphism from L2 S0 onto LS 145

Proof. First of all we remark that, in view of Lemma 2.3, the operator D is defined on all functions
of Li’g“ . Further, we use the relation

d
P ) =l +y + 0+ DI [ eRT W] n= 12
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which follows from [22, Egs. (4.10.1) and (4.3.4)]. Now, with the notation (.,.) ={.,.)o0, We have
Dl 110 = 2

Z En(n + 7+ 8+ 1)|(w, pj*v")

8

2
1+, 149, 14, |+o>’

2

>

which is equivalent to [|u|’ ©ssy) TOT UE Li’;j,l . Thus, the lemma is proved. O

As a generalization of the finite part integral operator ¥ = —DS we consider the operator DA,
which can be written in the form

(DAu)(x) =a i[v“’ﬁ(x)u(x)] + b / 1 v F(t)dr.
dx T

1 (t—x)?
The following corollary is a consequence of Lemmas 2.5 and 2.7, Corollary 2.6, and the relation
(see [22, Eq. (4.21.7)])

d
A = \fnn 7+ 3+ D0, n=12

One remember that x + f = 1.

Corollary 2.8. For each s = 0, the finite part integral operator DA is a continuous isomorphism
between the spaces Lij,“ and Lz’x Moreover, for uc L2 Y

DAu =" (n+ 1){u, p}")sppl”. (2.6)

n=0

Remark 2.9 (Ervin and Stephan [9, Theorem 1]). In the special case a=0, b=—1 (ie., a=f=
Corollary 2.8 implies ¥ € L(L%**',L2*) and

l
2)

Vu =-DSu = Z(ﬂ + 1)<u, PL’%PZ’ 5

n=0

where we use the notations L2 Lf/gl s (o Yo ={s 212, and p? = pl212,
For the kernel A(x,¢) of the integral operator (comp. (2.3))
1 {
(Hu)(x) = - / h(x, Ou(t)v*P(t) de 2.7)
-1

we consider three cases:
(@) A(x,t) = hi(x,1),

1
(Hlu)(x)=% /_ lhl(x,t)u(t)v“’ﬁ(t)dt, (2.8)
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(b) h(x,t) = hy(x,t)In |x — 1],
(Hou)(x) = ;lt-/_l1 hy(x, ) In |x — tju()v™P(¢)dt, (2.9)
(¢) h(x,t)=hs(x,t)lx —¢|7", O <y <1,
(Hyu)(x) = %/_ll hy(x,t)|x — ¢| "u(t)v™H(¢) d.

We assume that the functions A; are continuous on [—1,1]?, and in what follows we summarize
some mapping properties of these operators.

Lemma 2.10 (Berthold et al. [5, Lemma 4.2]). If h,(.,t)€L§:§ uniformly w.r.t. t€[—1,1] then
Hy € L(L2 45, LY3).

The following lemma is needed to study the case (b). By C7,, r > 0 an integer, we denote the space
of all r times differentiable functions u : (—1,1) — C satisfying the conditions u©¢* € C[—1,1] for
k=0,1,...,r. Let flullc, =i lu®ot]| .

Lemma 2.11 (Junghanns [11, Lemma 3.5]). Let r > 0 be an integer and I' € C},. Then the multi-
plication operator Mr belongs to E(Lf;g,Li’g) and || My

-z S const |[Fle .

Corollary 2.12. Taking into account Lemma 2 and (under the assumptions of Lemma 2.11)
Myr e L(L2;,12,) the condition T € C,, implies My € L(LZ5,L23) for 0 <s <r.

For a given continuous function 4, : [—1,1]* — C define

(Hou)(x) = a/j1 o (x, ()P (¢) de — %/—11 ho(x, ) In |x — t|u(e)v™P(¢)dt.

By A, we shall denote the partial derivative g—ﬁ of a function A(x,¢).

Lemma 2.13. Let hy, b, : [—1,11* — C possess continuous partial derivatives up to order r. Then

Hye L(LY LA ) for 0<s <.

Proof. The proof goes on the same lines as the proofs of [11, Lemmas 3.6 and 3.7], We have
DH, = H" + T) + AM,, (2.10)

where

~ x b [
H"w)x)=a /_ 1 Wy (x, Ou(tyo™P(¢) dt — p /_ 1 K (x,t) In|x — tu(t)v™P(t)dt,

1 —~
(=" [ ol (o)
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e, 1y = 12 tt)_—;“(”’), o) = hy(,1).

Since hgx,%z :[-1,1* = C and & : [—1,1] — C are continuous functions it follows that

oo

< HDFIzuH < const |[uff, 4,
B —%—f ’

—a,—

taking into account Corollary 2.6. In view of I?IZEE(Liﬁ,U_x_ﬁ) and Lemma 2.3 this implies

H, e L(L; ﬁ,LZ;;,Aﬁ). Thus, having regard to Lemma 2, the lemma is true for » = 0. Assume that
the assertion of the lemma is valid for » < m and that the conditions of the lemma are fulfilled for

r=m+ 1. Then (2.10) holds true with A", T, EE(Li:Z",LZ;;”i‘ﬁ). (For the operator T, we refer

to Lemmas 2.10 and 2.3.) Morecover, in view of Lemma 2.11, My € L(L2}™, L35™"). Applying

Lemma 2.11 together with Corollary 2.6 we obtain, for u € Li:;j”“ ,

)

< const <||u[|wqm + “¢m+1Dnz+](ﬁél) + T, +AM¢)M’

|

4 H (pm+2Dm+2[':12ui

—a, —f,m+2 —ax,—f,m+1

< const (H[Z]Qu‘

—1,4/5>
Az,—[i,m+l>

< const (Hu“aﬁm + H(i.]2<1> + T, +AM¢)u’

< const [ull, g, -

This proves the lemma by induction. O

Since the space LZ_'SJZI,_I ,» is continuously embedded into L3**' (one can see this by using an
equivalent norm in sz) of the form (2.11) below), Lemma 2.13 implies the following corollary.

Corollary 2.14. If the function hy(x,t) satisfies the conditions of Lemma 2.13, then the operator
H, with a=f=1 (ie. a=0, b=—1) belongs to L(L}’, L") for 0 <s <r.

To study the case (¢) we introduce the following weighted spaces of continuous functions. Let p
and 7 be nonnegative real numbers. By C,. we denote the Banach space of all continuous functions
u: (—1,1) — C, for which v*"u is continuous on [—1,1], equipped with the norm |[luf| . =
sup{v”*(x)|u(x)| : x €[—1,1]}. Let P, be the set of algebraic polynomials of degree not greater than
n. For f € C,, we denote by E#*( ') the best weighted uniform approximation of f by polynomials
belonging to P, i.e.,

EP(f)=inf{|lf = pllow,. : PEP}

Let y > 0 and ¢ = 0 be real numbers. The subspace

n Ep+(u)
Cti={ueC,,: sup 22
be {”E prc B0 W(n+ 1) OO}
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equipped with the norm

nERT(u)
”u“p,r,x,q = ||u||oo,p,r + p l ‘]( + 1)

2,...

becomes a Banach space (see [12, Proposition 3.1]). We remark that C%; 9 coincides with the weighted
Besov space By (¢, v”") (see [8, Theorem 3.1]). The following lemma is a generalization of [18,
Theorem 7], (also mentioned in [18, Remark 8]).

Lemma 2.15. For s > 1, the space L2 5 is continuously embedded into the space C;;, where
7=1max{0,y+1} and &=1Lmax{0,6+1}.

Proof. The proof follows the proof of [18, Theorem 7] (case y = —
s >3, and

2, 0=1). Let ueL/o,

H(x) = vh SCou(x),  Pro(x) = v 3(x) pl(x).
Moreover, define

n=y—2y=y—-max {0,y + 1}, 8 =0-25=03—-max{0,6+1}.
Then

(B D)o = (00 D)6 = 0mn  and (@B}, 6 = (4, P} )

Since (see [2, Theorem 1.1])

54172

1 y+1/2 1
pfl’é(x)’ (\/1_——x—|— ;) (V 1+x+ ;) < const

we have p’°(x) < const and, consequently,

i\ u pn Yis 5|pryzo(x)‘ const Z‘ u, pn 715 51‘

n=0
< const ”u”/és Z(n + 1)=% < const Hu||y S5
=0

Thus, the Fourier series of the function % with respect to the orthonormal system {p:° }::0 in
Lﬁl’ 5, converges uniformly on [—1,1], which implies that # : [-1,1] — C is continuous. Moreover,

the last estimate shows that [u|| ~+ < const Null,5,- O
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Lemma 2.16 (Junghanns and Luther [12, Proposition 4.13]). Let h(x,t) = (k(x,t) — k(t,1))/(x — t)
with k : [—1,1]> — C continuous and k(.,t) € C§{ uniformly w.r.t. te[—1, 1] Then the operator

H defined by (2.7) belongs to E(Cw,,ﬁ,C’ *1 ). Here we use the notations o* =max{0, to} and
p* = max{0,+8}.

For a real number y > 0 and an integer » = 0, let C"* denote the space of » times continuously
differentiable functions on [—1, 1], whose rth derivative is Holder continuous with exponent y.

Lemma 2.17. If h3(,t) € C*'=" uniformly w.r.t. t€[—1,1], then the operator Hs is a compact
operator from ng into Lf;?o», fors>3,y=20"—3,0=2p" -1,y >20 —1,8>28" —1,
and 0 <y <1 —p.

Proof. Since h;(x,t)=(k(x,t) — k(,1))/(x — t), where k(x,t)=h;(x,t)(x—t)|x—¢|~" and k(.,¢) belongs
to C%'~" uniformly w.rt. t€[~1,1], we conclude from Lemma 2.16 that H; € £(C,. 4-,C.” "1 2).
From Lemma 2.15 we have the continuous embedding of szs into C,. p-. Let € > 0 such that
#' + e <1 —n. Then the space C 1}1‘ is compactly embedded into the space C!_ + ® ([12, Lemma
3.2]). So it remains to show that the last space is contlnuously embedded into L% 5. But this is a
consequence of the equivalence of the norm in L2 5 and the norm

J llull,, 5 + D n27 = [EZ"‘S'(u)z]z (2.11)
n=1

as well as of

|l 5 < const ||u| E% (u), < const EXF (u),

00X, B

where
E} () = inf{|lu— pll, o : pEP}.

Indeed, for u€ C] +29 we can estimate

2
sup n+<En P (u) Zn—z6 !

2,...

2
”u“y’,é’,n’ < const J Hu”oo,oc‘,ﬁ‘

< const ||u||

n=1
a=, BT ' +e0 "

This proves the lemma. O

Corollary 2.18. Let hs(x,t) satisfy the conditions of Lemma 2.17 and o= =1. Then the operator
Hy: 12 — LY is compact for s> % and 0 <y’ <1—1n.
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3. Collocation and quadrature methods

Instead of Eq. (2.1) we investigate the more general equation
Bu:= My +DA+H +H, +H)u=f, (3.1)
which we consider in the pair of spaces
(L L5, (32)

The collocation method consists in looking for an approximate solution u, € P,_, of Eq. (3.1) by
solving the equation

LP*(My + DA+ H, + H, + Hy)u, = L f.
In view of relation (2.6) this equation is equivalent to
B,u, := [DA + LF*(My + H, + H, + H3)u, = LP* f. (3.3)

Since, again in view of Corollary 2.8, each solution u, € Lij}“ of (3.3) belongs to P, |, we can
also consider Eq. (3.3) in the pair of spaces (3.2).

For all what follows we assume:

(A0) For f =0 Eq. (3.1) has only the trivial solution ¥ =0 in L2 !

With respect to the continuous functions ¥(x) and A;(x,t), j = 1 2 3, we make the following
assumptions:

(A1) ¥ €C, for some integer r = 0.

(A2) hy(.,t)€ Lg% uniformly wrt r€[—1,1].

(A3) h, and K}, possess continuous partial derivatives up to order 7.

(A4) hs(.,1) € C*'=" uniformly w.rt. t€[—1,1]. ~

In all cases, which we will consider, the operators H1 , Hy, and H; as well as My are compact
in the pair of spaces (3.2) as well as in the pair (La P LIZM) This will be a consequence of the
Lemmata 2.10, 2.13, 2.17, and Corollary 2.12 as well as Lemma 2. Then, in view of Corollary 2.8
and Lemma 2, the operator B : L2 v L2' is invertible for 0 < ¢ < s and Eq. (3.1) possesses a

4

unique solution u* € L3} .

Theorem 3.1. Let s> 1, ¥ =0, h; =0, f €L}, Assume (A0), (A2) and (A3) be fulfilled for
§=s and ¥ > max{0,s — 1}. Then, for all suﬁﬁctently large n, Eq. (3.3) is uniquely solvable, and
the solution u converges to the unique solution u* of (3.1) in the norm of L2 st Moreover, for

0<t<s,
llw: — | < const 1 ||u*| 3.4)

o, f,t+1 2, f,5+1°

Proof. Since H, + H, : L2 AR in is compact, it follows that

Jim 1B, = Bllgzy oz =0 (3:3)
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taking into account Lemma 2.4. With the help of Lemmata 2.10, 2.13, and 2.4 (b) as well as the
continuous embedding L* ;’_ s C L,ij;c we obtain

1By = Bllyz) 1, < const nt,

where 7 = min{s, 1}. This, (3.5), and Lemma 2 imply the existence and uniform boundedness of
B e L(Ly, L2y for 0 <t < s and for all sufficiently large n. Consequently, in view of

wy —ut =B [LBef = £+ (1= 1p") (o + ]

we have with the help of Lemma 2.4 (b)

i — "l 5, < comst n'™ <||f||MS + | + oy

[i,x,s) ’

which leads to (3.4). DO

Theorem 3.2. In case ¥ #0 and o= f =1 (ie, a=0, b=—1) Theorem 3.1 remains true if we

additionally assume that (Al) with r = s is fulfilled

Proof. We remark that in this case Li:;:Lf{i:Lff and Corollary 2.12 applies to see the compactness
of My: L' — L' for 0 <t <s. Moreover, since r > 1, ||[(My — LMy )ul|, < const n~'||ul|,,
foruell'. O

Remark 3.3. Incase Y £0, i3 Z0and a=f = % (ie., a=0, b= —1) Theorem 3.1 remains true
for 3 <s < 1—#, if we additionally assume that 0 <5 < 1 and (Al) with > 5 as well as (A4)
are fulfilled.

Proof. For the proof, at first, we refer to Corollary 2.18. Furthermore, if we apply Lemma 2.17
with #' =s and ot = * =1, it follows ||H; — LYH; |22 < constn™. O

With the help of Q) we will denote the application of the Gaussian rule with respect to the
Jacobi weight v»°, which means

1 /! s s s s
— [ w0 = Y auce) (3.6)
- k=1
with
s 1ot s
1= [ mowia
TJ

Now, we can approximate the operator H, by

n

(Hiuu)(x) = > Al e, x50 u(e?y. (3.7)

k=1
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To approximate the operators H, and H; we use product integration rules of the following kind:

X 1 no_
a / u()v*P(e)dr — % / u(t) In|x — tlo™P(e)dt = > 2l ou),
- -! k=1

oy |t —x|n

1 1 t n , "

i / Luw(t)dzzZwi,f(x)u(x;}f),
k=1

where

-~ X b 1
We=a [ roetoa—2 [ o - geod,

s 1R
7,0 _ - nk 7,0
W (x) = - /_] —|t —-x|’70 (t)ds.

Application of these quadrature rules to the operators H, and H; leads to

n

(Hpu)(x) = S A5 o, x50 s

k=1

and

(Hyu)(x) =l ooy (e, x50 (.

k=1

The quadrature or discrete collocation method consists in solving the equation
DA + LF*(My + Hy, + Hoy + Hau, = LE* £

The solution of this equation again belongs to P°,_,. Since, for such u,, we have

(g )x) = 05 (a5, )

=L [ oo 0wt d = En,
TJ-1

the approximate Eq. (3.12) is equivalent to
B, = DA + LF*(My + H,, + Hp + Hap)u, = LA f.

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

The following three lemmata are generalizations of {11, Lemma 3.10], (comp. also [5, Lemma

4.4]).

Lemma 3.4. Assume h|(x,.) € Lijz for some s > % uniformly w.r.t. x€[—1,1]. Then, for 0 <t <s

2
and uel;,,

“L;’,;’S(Iflnn — H, )uH 5, S const m'n™* ||ull, -
no.t '
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Proof. Since, for a polynomial v, of degree less than m, |[vnl|, 5, < m'[lvxll, 5, we are able to
estimate with the help of Schwarz’ inequality

~ 2
HLZ;(S(Hln ~H)u 5t
76,

2
m . 1 1
=m2’;/13,;}) {; /_ 1 w(OLEP RGeS, T) — (), )™ ﬂ(r)dr}

m? nuna,;ZW!

2
<m

y 2
bt U
1) H*,',é

LG,y = b |

< const m*n~% HuHMZ/{ Hh(xm,, )H < const m*'n~% ||”||iﬁ

taking into account Lemma 2.4(b). O

Lemma 3.5. Let, for some integer q = s % ha(x,.) € C4 uniformly w.r.t. x€[—1,1]. Then, for
0<t<sand uELxﬁ,

HL”(Hz,, Hz)u” < const m'n™" |[ull, 4, -

Proof. Using the Gaussian rule and Schwarz’ inequality we obtain

~ 2
— H))u
2) o

2
<m

Lfﬁé(ﬁzn - 1:]2 )MHR2

m
2 7,0
=m g Ao

Jj=1

a / [Zm(xm,, W L) ~ hz<x3;;;ir)u(r)] v*K(1)de

2

/ [th(xmj X ;(ﬁ)u(x:}cﬂ)lf‘,;f(t) - hz(x};;j‘-s,r)u(r)] In |)c,’,u‘5 — t|v*F(1)dr
< 2m* Z e
j=1

1 b2 1
X [azn/l v B(r)dr + ?/1 In’ |x};? — r|v°"ﬁ(r)dr} .

With the help of Lemma 2.4 (b), Corollary 2.12, and the uniform boundedness of

@ = Dl

1
/ In’ |x — tjv*#(r)dr, xe€[-1,1],
-1

the assertion of the lemma follows. O
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Lemma 3.6. Let 0<n<j and, for some integer q=s>3, hs(x,.) € C7, uniformly w.r.t. x €[—1,1].
Then, for 0<t<s and uELxﬁ,

HL’ %(Hs, — H3)uH < const m'n~ ], s -
Proof. Analogous to the proof of Lemma 3.5 we find

2
s
”Lfn (H3, — Hy)u ot

| va,ﬁ T
<m W |z = hscaz S [ 5D
, 1 |x;r;j —1f*
The assumption on # and the fact that « > 0, § > 0, guarantee the uniform boundedness of
1 1 2 f
—/ PO G4 xe[-1L1].
T Joy |x =1

Thus, the assertion follows by Lemma 2.4 (b) and Corollary 2.12. O

Theorem 3.7. Let s > 1, ¥ =0, hy; = 0, f €Ly}, Assume that (A0), (A2) and (A3) are fulfilled
for =5 and ¥ > max{0,s — 1}. Moreover, assume that h(x,.) € Li:z and hy(x,.) € C for some
integer q = s uniformly w.r.t. x €[—1,1]. Then, for all sufficiently large n, Eq. (3.14) is uniquely
solvable, and the solution u} converges in the norm of the space Li:;;“ , 0t <s, to the unique
solution u* of (3.1), where

l|u; — u*||1’ﬂ’t+l < const n'”* ||u*|]a,ﬁ,s+1. (3.15)

Proof. Referring to Lemmata 3.4, 3.5, and 2.4 (b) one can see that, for H =H, +H,, H,=H,, +H>,,
and 7 = min{1,s},

LP*H, — H

beH, —H

< const .
21 2712
L= /24.y L =L,

< |LA*(H, — H) bH —H

2.7 2 2.7
Loy—Li, L /f"’L

< const n~ ",

We remark that the operator H : LZ’ — szx is continuous because of the following sequences

of continuous mappings and embeddmgs (see Lemmata 2.10 and 2.13)
L2 cL2, 25 L2, c Ly Ly,
and

L2l cL? —2>L2_" s CLy, CLy!
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Consequently,

B, — B =0,

2.1 2
Lo =Ly,

lim |
which implies the uniform boundedness of
B 'eL(L} . L}}).

With the help of this result and Lemmata 3.4, 3.5, as well as Lemma 2.4(b) we can estimate

t
<n
o, ft+1

By(uy — Lyu)

* 1L, * * _ gap*
u, —L;"u u, — L, u

a,p,1

< const n'

2B
thef = 1|+ | - b

< const A" ||u*|

< const n’ (’

Lt B — L2Pur)

o g

x, B 5+1 "

a,ﬁ)
2,5+1

Thus, the estimate (3.15) is proved, if we remember * € ;" and Lemma 2.4(b). O

Theorem 3.8. In case ¥ #0 and a=f = % (i.e., a=0, b= —1) Theorem 3.7 remains true if we
additionally assume that (A1) with r = s is fulfilled.

Proof. With 7 defined in the proof of Theorem 3.7 we have
|LEMy — M|z < const n™"

having regard to Lemma 2.4 (b) and Corollary 2.12. The proof of the estimate (3.15) is the same as
in the proof of Theorem 3.7, if we additionally take into account LYMyL?u* = LYMyu* and again
apply Corollary 2.12. O

Remark 3.9. In case ¥ # 0, #; # 0 and azﬁz% (i.e., a=0, b=—1) Theorem 3.7 remains true for
3 <s<1—n, if we additionally assume that A;(x,.) € C}, uniformly wrt. xe[-1,1], 0 <7 <3,
and that (A1) with > s as well as (A4) are fulfilled.
Proof. With the help of Lemma 3.6 we have

L3 (Hyy — Hy )21y < const n™".
Corollary 2.18 together with Lemma 2.4 (b) gives

ILYHs — H3||L3;'—>L5, < const n™°.

The proof of the estimate (3.15) is the same as in the proof of Theorem 3.7. O
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4. A fast algorithm

In this section we consider the original Eq. (1.1) or, which is the same, Eq. (2.1) in the case of
I'(x)=1v¢=const and A(x,t) = h;(x,t) — 7, In|x — ¢| which means an equation of the form

1 1
Yot(x) — ;/_1 (ttfti)zco(t)dt

1 1
= [ o) =i = d]uero)de = 5. @n
We write this equation as
(A+Hu=f, (4.2)
where
1
A=M, +V +nW, (Wu)(x) = -—% / In|x — tu(t)o(t) dt, (4.3)
-1

and
1 1
(Hu)(x)= - /_1 hy(x, Hu()p(t) de.

We investigate Eq. (4.2) in the pair of spaces
2,5 2,8
(L “,L(p ) 4.4)

for some s > % and make the following assumptions:

(a0) For f =0 Eq. (4.2) possesses in Ligl only the trivial solution u# = 0. The same is assumed
for the equation Au = 0.

(al) Ai(.,¢) € L2** uniformly w.rt. t€[—1,1] and

(a2) h(x,.) € L% uniformly w.r.t. x € [—1,1] for some J > 0.

(a3) The right-hand side f of Eq. (4.2) belongs to L*.
To construct a fast algorithm for the numerical solution of Eq. (4.2) (basing on the quadrature
method considered in Section 3) we will follow the idea of [5, Section 6], which is based on the
fundamental approach given in [1].

First of all, let us summarize some results of the previous sections. As a consequence of Lemmata
2.10 and 2 we have

(b1) The operator H belongs to £(L2,L%°*). Especially, H : L3**' — L2* is compact.
Analogously

(b2) The operator M,, : L2**! — L2* is compact.
Corollary 2.14 gives

(b3) The operator W : Li;’ — pr"“ is continuous for all ¢ = 0 and, consequently, compact in the
pair of spaces (4.4).
Taking into account Corollary 2.8 (see also Remark 2.9) from (bl), (b2), and (b3) we have

(b4) A, A+H : Ly — LZ* are continuous isomorphisms.
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The operator A + H is approximated using the quadrature method (compare Section 3). Thus, at
first we consider the approximate equation

(A, +Hu, =LY f, 4.5)
where

‘An:]w}'o_'_ V+VIL;1PVV3

- N 1
7u=wmmwwmn=%/”mummmnwmm.

Let us reformulate Theorem 3.8 for the case under consideration here.

Theorem 4.1. Let s > % Assume that (a0)—~(a3) be fulfilled Then, for all sufficiently large n, Eq.
(4.5) is uniquely solvable, and for the solutions u: we have the error estimate

ey —w*|l,,0y < comst ™ Jlu*]l, s (4.6)

where 0 < t < s and u* € L&t is the unique solution of (4.2).
P q

We again remark that each solution u, of (4.5) belongs to P,_,, such that

(Hnttn )x) = (Hinttn)() = Y e (6 50 Yutn(55)-

k=1
It is well known that

kn o L—(xh) 1 ., kn
- ) _ k+1,...n
Arl T Taxl Al yp ftlhen

¢ _
X, = COS

To find a formula for the product integration weights I:fk(x) (comp. (3.8)) we use the following
lemma.

Lemma 4.2 (Berthold et al. [4, Theorem 3.2]). Ler T, (x)=cos(nt), x=cos &, be the Tschebyscheff
polynomial of degree n and of the first kind. Then, for x € [—1,1],

1 dt {1112, n=0,

1
—— In|x — t|T,(t) — =
71/_1 | I.(8) 1~ lT,,(x), n=12,...
n

Corollary 4.3. For the operator W defined in (4.3) we have the relations

1
ln2——T2, n:0,

T2, n=12,...
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Proof. Since p? = V2U,, where

sin[(n + 1)¢]

Udx) = —e

2

x =cos &, is the nth Tschebyscheff polynomial of the second kind, and
Un(x) (1 =x%) = 3 [T,(x) = Toi2(x)],

the assertion follows immediately from Lemma 4.2. O

As a consequence of

To(x)=Upx)=1, Ti(x)+ 1U(x),

and
T.(x) =3 [U(x) = Upa(x)], n=23,...,

from Corollary 4.3 we have

Wp§=1[(1421n2)pf — pf] =: woop§ + w2 P§ 4.7)
wpl =3 [(1+)p] — 3 05) = onpf + 0¥ (4.8)

1 1 1 1
Wpe=1|_2p¢ — ¢ _ @
pn 4 |: npn—2+ (n +l’l+2> pn n+2pn+2
= CUn,n—2p:f—2 +wnnp,(,p +wn,n+2p:’+2a I’l:2,3,... (49)
Set
wx=0 if |j—k|#0 and |j— k| #2. (4.10)

Now we use the representation

n—1

15,() =20 > pl(xi) py(x) (4.11)

J=0

of the fundamental Lagrange polynomials and obtain from Corollary 4.3

T () = (W) ()
=A% < Up(x%) [ln 2— lT (x)] + i Ui(xh) [lT(x) - LT (x)]
— nk O\ Ak 2 2 = T\ nk J-] j_+_2 Jj+2
as the weights in the product integration rule

1 ! "~
— L u()In |x — t|o(t)dt = ;sz(x)u(x;"k).
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Thus, if we seek the approximate solution of (4.5) in the form

u,,(x) - Z énkl ()C)

k=1
then, using Remark 2.9,

n—1

VIS =253 oG + Dp!

Jj=0

and (4.5) can be written in the form

(ol + Vo Ay + i W + H,A,) & =N, (4.12)
with &, = [fnk]Lp M= [f(xn] )]j 1 and
In = [61'1(]7,](:17 V;t = U:Dn Una ['1 (xn])]j k=12 [h ( nj’ nk)];,k:l’

[p (xnk )];l 01,’1:1=1’ Dn = dlag[l’ . sn]a An = dlag[ CIERERE) nn]
From 3y = (pf, p7)p = 3. A5 pL(e8) pY(x5) it follows that
=1

I, =UA,U . (4.13)

We will see that it is not necessary to generate the Matrix W, in order to solve (4.12) (see Remark
4.4 below).

In what follows we assume that the vector 7, of the values of the function f at the collocation
points x;”j, Jj=1,...,n, as well as the values h(x;;,xy,), j,k=1,...,n, are given. Choose an integer
0 <m<nand wrlte

Uy, = Z O‘kp/(f + Z “kpf = Pmun + Qmuna
k=0 k=m

where
m—1
Pau= Z(u, plYop! and Q,=I1-7P,.
k=0

Set a; = (v, p{)y, k=m,...,n — 1, where v* = >1— B p{ is the solution of
Ay =LY f . (4.14)

In view of Theorem 4.1 (for the case of k) = 0) Eq. (4.14) is uniquely solvable for all sufficiently
large n, if (a0) is satisfied. For B, = [Bu]i=s we have

n—1 n
[( Un )(xnj) {VO Z ﬂnkpk (xnj )] =% U:ﬁn ’
j=1

k=0
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and

(oG], = [Z_j Bl + l)pf(x,‘fj)] = UD,p,.
=1

k=0

To find the Matrix /Wn with

n—1

[( an)(x:)j)];;l = I:Z ﬂnk (WP/?(X:Z))] = U;f/n\/nﬁn
=1

k=0

define W, = [waliel,, where @y is defined in (4.7)+(4.10). Then, for f, = W,,,

n—1

L;IP WU,, = Z Bnkpﬁ + Bn,n—lwn,n+2LZ)p:1p+l
k=0

in view of L? p? = 0. Since
Puar(x) =2x pJ(x) — py_(x)

the relation L? p? = —L¢p? , = —p? | holds true. Thus,

n—2
LZJW Up = Z ﬂnkp]zJ + (ﬂn,n—l - wn,n+2ﬁn,n—l)pr(f—l s

k=0

which shows that W, = [&\)jk];?’;io , where @y =wj with the one exeption @,_1 ,— 1 =Wp—1 ,—1 — Oppi2-
Consequently, Eq. (4.14) is equivalent to

UI(VOIn + Dn + )’1/”2:)[311 = Hn
or, having regard to (4.13),
(ol + Dy + W)y = UnAut. (4.15)

Remark 4.4. Using these observations and (4.13) we see that Eq. (4.12) can be written in the
equivalent form

[UI(yOIn + Dn + yl/Wn)Un + Hn] Anén =M.
Since the transform
fz{. jkn]" . [ kn]”

sin diag |sin
n+1 n+ 1] n+1],

can be applied to a vector with O(n In n) computational complexity (comp., for example, [21, 23]),
we can compute f3, (and SO &,...,%,—;) with O(n In n)-complexity taking into account the simple
structure of the matrix on the left-hand side of (4.15).

Ua,=

Lemma 4.5 (Berthold et al. [5, Lemma 2.2]). For s = 0 and ueLé’s we have

1Qmull,, < (1 +m) ™ [u] m=0,1,2,...

(p’s ’



M.R. Capobianco et al. | Journal of Computational and Applied Mathematics 77 (1997) 103-128 123

Lemma 4.6. Assume (a0), (al), and (a3) to be satisfied. Let u* be the solution of (4.2) and let
Qu,, be defined with the help of the solution v} of (4.14) (i.e., Quu,=Q,U;). Then, for 0 <t <,

| Qutty — Qo[ < comst (== 4 =) ],
Proof. Write
Qmun - QMU* = Qm(l):z< - u*) = Qm [A"—]L;Pf - M*]
= QuA LY — f+ (W = LIW)u™ + Hu'].
It follows that
| Qntty = Qutt™[|, 11
SN LES = Mg HNQuAT W = LYW |,y + (| QAL H |

With the help of Lemma 4.5, Lemma 2.4(b), (bl), (b3), and the uniform boundedness of
A 2z ¢ = 0, we estimate

@, t+1"

1QuA; (L2 f = £,y < const ILES = £,

< const #7* || f1],,., < const a7 [lut{|, s

|QnA; (W = LEW W, < const [[(W — LW '],

<
< const n' 72 |||
<

@,5+2
const 2~ |||, (s
and
||Qm"4n_lHu*||q),t+l < const m ”An_lH”*H(p,us

< const m'™*° | Hu[|,, ;.5 < const m'=s=° eI,

which proves the lemma. [
The second step of our algorithm consists in setting P,u, = w, where w}, is the solution of
(An +Hu) W =L5 (f — A Qnvy) (4.16)
This equation is equivalent to (see Remark 4.4)
(Un ol + Do + 7 W) Up + Hy| Ao = i 417)

where , = [Wa(xp)li, and %, = [f(x5;) — (A, Qum0; ) (%)), . The matrix U, can be gener-
ated with O(m?)-complexity using the three-term recurrence relation of the orthogonal polynomials
p?(x). Thus, for given 7, , Eq. (4.17) can be solved with O(m’)-complexity. The values f(xy;)
are already been given if we choose m in such a way that (n+ 1)/(m + 1) is an integer, which
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implies x,,; € {xy; : k=1,...,n} for j=1,...,m. So, it remains to compute U (yol, + D,)B,, where
B.=10,...,0,Bums- . Bun_1]". This can be done with O(n In n) operations taking into account that

U = V2 diag [sin_1 k. ] [sin Jk ]
n+ 1l n+ 1] =

can again be handled as fast discrete sine transform (comp. [21, 23]). The determination of the
Fourier coefficients o,;, £k = 0,...,m — 1, needs O(m In m) operations, since [oc,,k],'("z_o1 = UuA,0,.
Summarizing these considerations we have

Remark 4.7. The computation of the Fourier coefficients of u, = w;, + Quv; , where v; and wj,
are the solutions of (4.14) and (4.16), respectively, can be done with O(m® + n In n) numerical
complexity.

Lemma 4.8. If the assumptions (a0)—(a3) are fulfilled and if % <t <s, then, for all sufficiently
large m, Eq. (4.16) is uniquely solvable and

135 = Pt g1 < const (=>4

Proof. First of all, since LYL? = L? (because of (n+ 1)/(m + 1) is assumed to be an integer) and
M, + VYP,u* € P,_, we have

(A, + Hu)w,, — Puut™)
=L0f — L (M, + V + 1 LEW) Quuy — (My, + V + 9 LEW) Pott® — Hy Pott®
=LA+ Hw" — LY AQ, v, — L) AP u* — HpuPutt”
=LSA(Qut™ — Quv}) + Lo(H — Hyp)u* + LEH n Q™.
From Lemma 2.4, (b4), and Lemma 4.6 it follows that
Lo AQuu™ — Qi)
< const [|Qu* — Quu;ll, ., < const (m"s“s + n"s> ™| -

With the help of Lemma 3.4 we can estimate

Lo - Hinyu|| < const m== lu],.
.t

Moreover, by the definition of the operator H \m We see that H 1 Qmit™ = 0. Thus, it remains to apply
the uniform boundedness of ||(A, + Hm)_lHL;-f.aL;;'“ for all sufficiently large m. O

Now we can summarize our results.

Theorem 4.9. Let s> 1, (a0)~(a3) be satisfied and m,n,0 <m <n, be integers such that
(n+ 1)/(m+ 1) is an integer and c;n < m* < con with some positive constants ¢, and c,. Then,
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for all sufficiently large m, Eqs. (4.14) and (4.16) are uniquely solvable and u; = w), + Q,v; con-
verges in the norm of L2 1,0 <t <s, to the unique solution uw* € L' of Eq. (4.2), where, for
max {3,s — 30} <t <s,

llay — |, ., < const n'’ "] oyt - (4.18)

Moreover, the solution of (4.14) and (4.16) needs O(n In n) operations.

Proof. Lemmata 4.6 and 4.8 yield

[y — ||, .y < const (m”sf‘s + n’_‘) ||u*[|w+l ,

which implies together with ¢ > s — 16 and m > ¢;n'? the estimate (4.18). Remark 4.7 together with
m® < c;n leads to a complexity of O(n Inn). O

At least we want to discuss, what results are possible if instead of M, and/or y, W operators M
(see (2.2)) or H, (see (2.9)) occur. That means, in place of Eq. (4.1) we will consider an equation.
of the form

rumm——/ “m

=
+—/[m@0+m@gmu—ﬂmﬂmam=ﬂn. (4.19)
TJ

> (1) de

We also write this equation in the form (4.2), but now with
AZV, H:MF+H1+H2

(H, and H, are defined in (2.8) and (2.9) with v*# = ¢). The approximating operators are defined
as

A=A and H,=L°(M;+ H,, + H,).

(see (3.13) and (3.10), H,, = H,, for case of a=0, b= —1). We have to check if the assertions of
Lemmata 4.6 and 4.8 remain true. The crusial point in the proof of Lemma 4.6 is the estimation of
|QnA; " Hu |, ..y - If we suppose that A, and A5, possess continuous partial derivatives up to order
r=zs+1on[—1,1] and that I" belongs to C/,, we can apply Corollary 2.14 and obtain

|QnA™ M|
and
QA Hou*||

The essential steps in the proof of Lemma 4.8 are the estimations of

and

| Hm Q" |,

< const m AT Mput|| < const m' ™ |

@, t+1 @,s+1

st Sconst m 2 AT H | < const m TR (lul,

ﬁlm - HZm )u*

:Wﬂm+m—ﬁm—mmf
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If we assume that h,(x,.) € C/ uniformly w.r.t. ¢ € [—1,1] for some integer ¢ > s+ 1 then, having
regard to Lemma 3.5,

ILG(Hy — Hop)u*||,,,, < const m'™*~" {lu]|, .
Furthermore,
ILoMrQuul,, , < const [|Quu*||, , < const m' ™! [lu||, .\
and
L8 Hyr Qut |, < const (| Qmit™ ||, g0, 1y < cOnSt i 17

The summary of these observations is that it is possible to hold true the assertions of Theorem 4.9
in case of Eq. (4.19) for &' =min{4, 1} instead of J.

5. Numerical Examples

In this section we apply the fast algorithm presented in Section 4 to Eq. (4.1) with yo=1, 3, =0,
and

(1) mCety=|x[ + e, f(x) =2+ |x[/2+2/3n,

(i) h(x,t) =1t (x*|x| +1]¢]),

fx)=x [(1 + 4x/157) x| + 6/7 + ((3x? — 2)/mv/T — ) In[(1 + vT = %2)/(1 — V1 —x2)]].

In case (i) Eq. (4.1) possesses the solution #(x) =1 and in case (ii) the solution u(x) = x|x|.
Moreover, for ¢ > 0, we have

(1) hl('at)s hl(xa')’ fepr,ii/Z—gy

(i) A(s2), M(x,)ELL ., and fEL? 5,
in the respective examples. Hence, in case (i) the assumptions of Theorem 4.9 are satisfied, for
example, for s=0.8 and §=0.6. In case (ii) the same holds true for s=1.5—¢ and 6 =2. Therefore,
in case (i) we can expect theoretically the convergence rate

[ — u*||per1 < const n ¥ ||u*||,18, 0.5 <t <08,

Table 1
Example (i)

n m [y — [ o151

8 2 0.123D-00

27 3 0.801D-01

64 4 0.562D-01

125 5 0.519D-01
216 6 0.386D-01
343 7 0.393D-01
399 15 0.205D-01
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Table 2

Example (ii)

n m w7 — P o151 |z — Pt |1 85
8 2 0.552D-01 0.107D-00
27 3 0.186D-01 0.520D-01
64 4 0.838D-02 0.283D-01
125 5 0.447D-02 0.212D-01
216 6 0.226D-02 0.125D-01
343 7 0.168D-02 0.112D-01
399 15 0.141D-02 0.102D-01
Table 3
Example (i)
n [ty — Pat™||p151
8 0.980D-03
27 0.199D-03
64 0.184D-04
125 0.980D-05
216 0.165D-05
343 0.131D-05
399 0.972D-06
Table 4

Example (ii)

n [|tn — Pute™[|g,151 (|t — Put™ [[ 185
8 0.522D-01 0.103D-00
27 0.178D-01 0.511D-01
64 0.695D-02 0.271D-01
125 0.436D-02 0.211D-01
216 0.211D-02 0.124D-01
343 0.164D-02 0.112D-01
399 0.141D-02 0.102D-01

and in case (ii), for s < 1.5,
|y — u*||p 1 < const n'*||u*||ps1, 0.5 <2<

Tables 1 and 2 show the actual values of the error in the examples considered.
Finally, in Tables 3 and 4 one can see the results obtained by means of the quadrature method.
Of course, Example (ii) is more convenient than Example (i) for applying the fast algorithm, since
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already for small m in comparision with # the errors for the quadrature method and the fast algorithm
are essentially the same. The reason for this is that in Example (ii) the kernel A;(x,¢) is really
smoother than the right-hand side f(x).
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