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1. INTRODUCTION 

We explain the terminology and the problem studied in this paper by 
using an integration example. Suppose one wants to approximate s(f) = 
si f(t)& knowing n values of f at points ti, N(f) = [f(ti), . . . , f(tJ], 
and knowing that f belongs to a given class F. If the number of observa- 
tions, 12, and the points ti are fixed a priori than N = N”“” is called 
nonadaptive (or parallel) information. If n or the points tj vary based on 
previously observed values f(tJ, . . . , f(ti-1) then N = N” is called 
adaptive (sequential) information. 

One might expect that adaptive information would be much more pow- 
erful than nonadaptive information. That is, an approximation to S(f) 
based on adaptive points would be much more accurate than an approxi- 
mation to S(f) based on a comparable number of observations at non- 
adaptive points. But this is not necessarily the case. It was shown in a 
number of papers that for any adaptive information N” one can find non- 
adaptive information N”“” which is as powerful as N”. This result holds 
for the worst case, i.e., when the error of an algorithm is defined by its 
worst performance assuming that F is a balanced and convex set. This 
was established in Bakhvalov (1971) for arbitrary linear functionals S and 
generalized to linear operators S in Gal and Micchelli (1980) and Traub 
and Woiniakowski (1980). In both cases, N may consist of arbitrary linear 
functionals, N(f) = [L,(f), . . . , L,(f)]. 

Adaption also does not help on the aueruge. By “on the average” we 
mean that the error of an algorithm is measured by its average perfor- 
mance according to some probability measure p. Furthermore N”“” is 
constrained to have a number of evaluations, n, roughly the same as the 
expected number of evaluations in N”. The result holds for linear opera- 
tors S, S : F, + Fz, where F, is a separable Banach space and p is a 
Gaussian measure defined on the Bore1 a-field over F1 . This is proven in 
Wasilkowski (1986a), where results for more general probability mea- 
sures, but with restricted notion of adaption, are also cited. 

The results that adaption does not help has important implications con- 
cerning, for instance, parallel or distributed computations and the design 
of optimal information. 

In the papers cited above exact information is assumed. In practice, 
however, one often has only noisy information. For our example, instead 
of f(ti) one has f(ti) + xi, where the noise xi is a random variable. There- 
fore in this paper we study the following question: Does adaption help on 
the average for noisy information? 

The answer to this question depends very much on the noise x, whose 
distribution may (or may not) depend on the observation L and the exact 
value, y = L(f), one tries to observe. The first result of the paper states 
that 
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(i) if x has a normal distribution independent of L and y then adaption 
does not help essentially. (For the precise statement, see Theorem 1, 
Section 4). 

For noise dependent on L and/or y, the situation might be quite different. 
In Examples 1 and 2 of Section 4 we show that adaption can even be much 
more effective than nonadaption. In the first example we construct adap- 
tive information with a varying number of evaluations. This number is 
unbounded, but its expected value is equal to 3. Furthermore, the ex- 
pected error of an algorithm that uses this information is zero, whereas 
any algorithm that uses arbitrary nonadaptive information has positive 
expected error. In the second example we construct information with a 
fixed number of observations, but the number of repetitions of certain 
observations varies adaptively. This information admits an algorithm 
whose expected error is exponentially smaller than the error of any algo- 
rithm that uses nonadaptive information with the same number of obser- 
vations as in the constructed adaptive information. Thus, in both exam- 
ples the number of observations or the number of repetitions vary but the 
observed functionals are fixed. In general, in adaptive information one is 
allowed not only to vary the number of observations or the numbers of 
repetitions, but also to choose adaptively the form of observation in an 
arbitrary way. 

We believe that the power of adaption occurs only through adaptive 
choice of sample size or adaptive selection of the number of repetitions, 
but not through adaptive selection of observations (see Section 5). To 
support this belief we analyze the power of adaption for a restricted class 
of adaptive information. That is, we assume the number of evaluations in 
various orthogonal directions to be fixed, but the directions are adaptively 
determined. We prove that 

(ii) if the distribution of the noise x satisfies the mild assumptions to be 
stated in (3) and (4) then adaption does not help. 

We now comment on relations between the statistical literature and the 
results of this paper. A general discussion comparing and contrasting the 
average case setting and Bayesian statistics may be found in Kadane and 
Wasilkowski (1985). Here, we mention that adaptive information corre- 
sponds to sequential experiments in statistics. 

The first result in the statistical literature on when the privilege of 
sequential experimentation is worthless is in Blackwell and Girschick 
(1954, Thm. 9.3.3, p. 254). They assume that the observations are inde- 
pendent and identically distributed, and that the experiments are charged 
a constant amount for each observation. They prove that if the Bayes risk 
is uniformly bounded and depends only on the sample size, the optimal 
sequential procedure is a fixed-sample-size procedure. The same theorem 
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is presented in easier notation in DeGroot (1970, Thm. 1, p. 285). While 
those results are stated for the class of independent and identically distrib- 
uted observations, it is immediate that they hold as well if the observa- 
tions are not necessarily identically distributed, but rather are indepen- 
dent given certain design variables. 

We stress that in the statistical literature, the observation cost (sample 
size) and the error are additively combined into one risk function, i.e., 
Risk = Error + c x Cost for some constant c. In our approach, we do not 
combine the error and the observation cost into a risk function, but we 
relate N” to Nnon by comparing their expected errors and expected costs 
separately. Formally, this corresponds to the following risk function: 
given an error demand E, Risk = Cost if the expected value of Error 5 E, 
and Risk = +=J otherwise. 

Other papers dealing with conditions under which optimal designs are 
not sequential are Darling (1972) and Whittle and Lane (1967). A more 
technical comparison of our results to this literature is given in Section 6. 

2. NOISY OBSERVATIONS 

Let F, be a real separable Banach space. Let F2 be a real separable 
Hilbert space whose norm and inner product are denoted by /I@[( and (0, 
0). Consider a continuous linear operator S which maps FI into Fz. We 
wish to approximate Sf for all f from F, . We assume that we do not know 
the element f. Instead we can compute (or observe) approximations to 
L(f) for various continuous linear functionals L E FT. More precisely, we 
assume that instead of the exact value y = L(f) we know 

z = y + x = L(f) + x, (1) 

where the noise x is a random variable with a known probability measure 
r)(o; y, L). That is, for any Bore1 set A of %, 

Prob(x E A) = 1, q(dt; y, L). (2) 

Throughout this paper we assume that the probability measure 71 satisfies 
two conditions 

~4% 0, 0) = r)(-A; ., l ), VA E B(S), (3) 

59; Y, 0) = q(*; -y, .I, vy E ill. (4) 
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Assumption (3) implies that the mean value of the noise is zero. Assump- 
tion (4) means that the probability of the noise depends only on the abso- 
lute value of y. 

We illustrate 7 by three examples. In each example 7) is absolutely 
continuous with respect to Lebesgue measure. The density of q(O; y, L) is 
denoted by ~(0; y, L) 

(i) p(r; y, L) = w(t) for some nonnegative $1’. For instance, w(t) = 
(l/s) exp( -t2/(2a)) corresponds to r)(@; y, L) being Gaussian (normal 
sIT(O, o)). Since w is independent of y and L, the noise x has the same 
probability whether y and/or ljLll are large or small. We think that this is a 
realistic assumption for some applications, but is unrealistic for others. 

(ii) p(t; y, L) = (I/m) exp(-P/(2o(y))), where, for instance, 
u(y) = y’. This corresponds to a Gaussian probability whose variance 
depends on the exact value y. 

(iii) 

1 
p(t; y, L) = 24l~lI(lYl + 6)’ ‘f ,,LlI& + 6) E ‘-% a1, 

0, otherwise. 

Here (Y and 6 are positive (small) numbers. This means that the noise x is 
uniformly distributed in the interval [-all~/(lyl + a), crlJ~ll(lyl + S)]. If 
ly[ is large relative to 6 then the relative error )z - ylllyl has, roughly, the 
uniform distribution on [--allLll, ollL[l]. If IyI is small relative to 6 then 
the absolute error Iz - yI has, roughly, the uniform distribution on 
[-aJILll6, CX~IJ~IIS]. Note that the noise x depends on the norm of L. This 
means that computing L,(f) instead of L(f) with L,. = CL for c E 8, 
corresponds to noise xC which behaves as cx. Such noise may be viewed 
as an abstraction of rounding errors in floating point arithmetic. 

3. STOCHASTIC ADPATIVE INFORMATION 

Assume that Fr is equipped with a Gaussian measure p whose mean 
element is zero and whose covariance operator S, is given. Recall that 
S,:F;+ F, 

(see, e.g., Kuo (1975), Skorohod (1979), Vakhania (1981)). Without loss of 
generality we assume that S, is positive definite, i.e., L(S,L) > 0 unless 
L = 0. 
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We define (noisy) adaptive information N as follows. Let L, E FT. We 
compute (or observe) L,(f). Since the computation of L,(f) involves 
noise, we observe 

Zl = Y1 + Xl, where yl = L](f). (5) 

As in Section 2, xl is a random variable with probability measure ~(0; yI , 
Li) dependent on yl and L,. 

Knowing z1 we decide whether another observation is desired. If not, zi 
constitutes the information about the element f. Otherwise, we choose 
another functional L~(o; zi) E Ff, compute (observe) 

12 = Y2 + x2, where YZ = Mf; LA (6) 

and so on. 
More formally, (noisy) adaptive information N is defined by 

W, xl = z = [ZI, zz, . . . , zn(f..)l (7) 

with Z; = z;(f, X) = y; + Xi = Li(f; ~1, . . . , zi-1) + Xi. Here yi = yi(f, X) = 
Li(f; 21 P . . . 3 zip,) is the exact value, and the functional Li(*; ZI, . . . , 
zi-1) is chosen based on the previously obtained values ZI , . . . , Zi-1. For 
brevity, we shall often write Li,z instead of Li(@; ~1, . . . , zi-1). The 
number of observations, n(f, x), called the cardinality of N at f, is defined 
via stopIjing rules, i.e., 

n(f, 4 = min#: [zl(f, xl, . . . , zdf, @I E Tk) 03) 

for given Bore1 sets 7’i C !X’. (By convention, min @ = +m). For simplicity 
we assume that n(f, x) is finite almost surely. 

Note that N defined as above is adaptive (sequential), since the choice 
of the ith observation depends on the previously observed values zI , ~2, 
. . . , z;-1. Furthermore, the total number of observations, n(f. x), is 
determined dynamically based on those values. On the other hand, if n(f, 
x) and the functionals Li are fixed a priori, we shall say that N is non- 
adaptive. 

In this paper we shall relate adaptive to nonadaptive information by 
comparing their average cardinalities and radii. By the average cardinal- 
ity of N we mean 

cardYN) = I,, (lH n(f, xh(dx; y, N)) Adf), = (9) 

where p is the a priori measure on F1 and q(A; y, N) = .fA nF=, s(dxi; yi, 
Li,,) for any A E B(iRk). 
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To define the average radius, we proceed as follows. Knowing N(f, x) 
we approximate Sf by +(N(f, x)). Here 6, called an algorirhm, is any 
mapping 4 : N(Ft X !JP) --f F2. The average error of C$ is defined by 

eavg(+, NJ = I,, (I,- IPf - mKf, xN129(dx; y, N)) /.L(d.f), (10) 

and the average radius of N is defined by 

r”“g(N) = inf eavg(+, N). 
4 

(11) 

We assume that $ and Li as a function of zr , . . . , zi-1 are measurable. 
This guarantees that (9)-( 11) are well defined. 

Ideally, one would like to have information N with both card”“g(N) and 
r”“g(N) as small as possible. This suggests the following way to compare 
information N, with information N2. We shall say that N, is as powerful as 
N2 iff 

cardavg(N1) 5 cardavg(N2) and ravg N,) ( 5 ravg(N2). 

In this paper we study when nonadaptive noisy information is as powerful 
as adaptive noisy information. 

4. ADAPTION VERSUS NONADAPTION 

It is known (see, e.g., Wasilkowski (1986a)) that nonadaption is as 
powerful (or almost as powerful) as adaption for exact information, i.e., 
when xi = 0 with probability one. This is also true for Gaussian noise, as 
stated in 

THEOREM 1. Let xi have A’(O, ai) distribution with mi independent of yi 
and Li. Then for every adaptive N”: 

(i) There exists N* such that 

cardavg(N*) 5 cardavg(Na) and P’g(N*) 5 ravg(Na). 

Furthermore, N* has the following form. There exists a number cx such 
that 

N*(f, x) = 
NIV, 4, ifzl = L,(f) + xl 5 (Y, 

N2(f, xl, otherwise, 
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where NI, NZ are nonadaptive and consist only of certain functionals 
used by N”. 

(ii) There exists nonadaptive N”“” (consisting of linear functionals 
not necessarily used by N”) such that 

cardavg(Nnon) 5 [cardavg(Na)] and ra”g(Nnon) i ravg(Na). 

Sketch of the Proof. Letting F1 = F1 .X W, S(f, x) = Sf and L;((f, x); 
ZI,. * . 7 zi-1) = L;(f; ZI, . . . 1 zi- ,) + xi, we get an equivalent problem 
with exact information. Since the a priori measure p on FI is Gaussian, 
the joint probability on E1 is also Gaussian. Hence the results of 
Wasilkowski (1986a) for exact information imply the existence of N* and 
N”“” with the properties stated in the theorem. n 

Theorem 1 holds for more general problems with an arbitrary linear 
space F2 and with J1S.f - +(N(f, x))(12 replaced by any loss of the form 
P(Sf - +(N(f, x))) with P: FZ --, %+ such that P@(O) - g) is Bore1 
measurable for any fixed g E F2. 

Although N* in Theorem 1 (i) need not be nonadaptive in a strict sense, 
it is only “mildly” adaptive, since it is equal either to Nr or to N2. 
Furthermore, if p is the probability that N* = N,, i.e., /I is the probability 
that Lt(f) + xl 5 LY, then 

card”“g(N,) 5 cardavg(N*) and ravg(Nj) I 2r”“g(N*) ifp 2 4, 

and 

cardavg(N2) 5 2 cardavg(N*) and ravg(N2) 5 ravg(N*) ifp 5 8. 

As stated in Section 2 (i), white noise seems to us too restrictive for 
some applications. Hence one would like to have similar results for more 
general classes of noise distributions. However, in general, adaption can 
be much more powerful than nonadaption as exhibited in the following 
two examples. The distribution of noise in these examples is discrete. We 
chose this for simplicity. The same could be achieved with a continuous 
distribution of noise. 

EXAMPLE 1. LetFI=Fz=%,S=Z,and~=X(O,Z).Letxi=-lor 
xi = + 1, each with probability 4. Consider adaptive Na which consists of 
repetitive observations of L(f) = f, i.e., N(f, x) = [zr , . . . , zn(fJ, Zi = 
f + xi, with the folowing stopping rule: n(f, X) = min{i 2 2 : zi-r f zi}. AS 
always, min fl = +w. Note that for every f, n(f, x) = i with probability 
2-(-r). Then the algorithm 4(N”(f, x)) = (zi-1 + zJ/2 is equal to f, and 
therefore has the average error zero. Hence 

ravg(Na) = 0. 
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The average cardinality of Na is given by 

cardavg(Na) = $* & = 3. 

Consider now nonadaptive NY consisting of k repetitive noisy obser- 
vations of L(f) = f. Then f can be recovered exactly only with probabil- 
ity 1 - 2-ck-‘) (when two observations are different). Hence 

1 p%(Ny) = -$ $f I,, U - 4-G + IN2 + (f - $0 -- 1))2)k4~f) 

1 =- 
I 

inf ((z - 1 - 42e-(Z-lt2/2 
2wG 8 XE% 

+ (z + 1 - x)2e-cz+‘)*n)dz. 

The last infimum is attained for 

x = x(z) = (z - 1)e-(z-1)2n + (z + l)e-(z+*)*‘z 
e-‘Z-l’*12 + e-‘Z+l’v2 3 

i.e., the optimal algorithm +*(z, . . . , z) = X(Z), and 

Hence information NP, of cardinality k has positive average radius, 
whereas information N” solves the problem exactly with average cardi- 
nality equal to 3. 

EXAMPLE 2. Let F, = F2 = S2 be equipped with the I2 norm, i.e., f = 
[fi, f;?l and jlf/12 = .f: + A. Consider Sf = [fi, fz]. Let Z.L = N(0, I) and let 
the noise of observing Gi(f) = fi be SO that Xi = - 1 or Xi = + 1, each with 
probability 4. Consider adaptive Na with fixed cardinality, n(f, x) = n, 
such that Li = L2 = Gi, Li = Gi if zi = . . . = Zi-1 and Li = G2 otherwise. 
In a fashion similar to the method used in Example 1, one can show that 

ya”g(Na) = b (2-W + T + (n - 32-W’) 

= b2-” (2 + ; + 25(n - 2))’ 

where b = (4/l&) j?“m ((e-(z+i)y2)l(1 + em&))&. 
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On the other hand, if N”“” ‘consists of IZ~ noisy observations of Gi and 
(n - ni) noisy observations of GZ with nl fixed, then 

p”g(l\lnon) = b(,pI + 2-(“-“19, 

which is minimized for n:’ = n/2. This means that any nonadaptive infor- 
mation of cardinality n has average radius satisfying 

Hence adaption is exponentially more powerful than nonadaption. 

In the above examples we exhibited adaptive information Na which was 
more powerful than nonadaptive information. In Example 1, we con- 
structed N” by taking advantage of varying cardinality. In Example 2, 
n(f, x) was fixed, but we adaptively changed the number of repetitions of 
the functional Gi. Thus, in both examples adaption was more powerful 
than nonadaption because of using either varying cardinality or varying 
the number of repetitions of certain nonadaptive functionals. In the next 
section we show that, in a sense to be made precise, these are the only 
causes for adaption to be more powerful than nonadaption. 

5. ADAPTIVE CHOICE OF OBSERVATIONS DOES NOT HELP 

In this section we assume that the cardinality and the number of repeti- 
tions are fixed. We permit the observations (or equivalently, the function- 
als) to be chosen adaptively. We shall show that this adaptive choice of 
observations does not help. 

Stated precisely, we assume that for given k, nl, . . . , nk, cf+ ni = n, 

N(f, x> = z = [ZI, . . . , z/J, (12) 

where 

Zi = [Zi,,, I . . 3 Zi,n,], Zi,j = Li(f; Z19 . * . J Zi-1) + Xi,j, 

1 5 i 5 k, 1 5 j I ni, (13) 

and the functionals Ll,z, . . . , Lk,z are w-orthonormal for every fixed z, 

=I F, Li(gi zI, * . . 9 Zi-l)Lj(g; 21, . . . , Zj-l)p(dg) = 6j.j. (14) 
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Remark 1. The notion of fixed repetition numbers ai requires us to 
distinguish between the functionals Li,z, i = 1, . . . , k. One could hope 
that it would be enough to assume that Li,z # Lj,, for i # j. This assump- 
tion is, however, too weak. Indeed, consider once more adaptive informa- 
tion N” from Example 2, with Li replaced by i; = L; + E~-‘Gz for suffi- 
ciently small E. Let Nz consist of single observations of tr, . . . , L,, . For 
small E, NE and Na are practically the same, though the first information 
has fixed repetition numbers (ni = 1) whereas the second one has varying 
repetition numbers. Hence the assumption Li,, # Li,, does not lead to a 
meaningful notion of fixed repetition numbers. 

Our definition (14) of fixed repetition numbers requires p-orthogonality 
Of Li,z. Observe that this holds for Examples 1 and 2. We have chosen this 
definition to simplify the analysis. We stress that this choice is not unique. 
Furthermore, Theorem 2, which we present below, need not be true for 
different notions of fixed repetition numbers. 

Finally, we add that p-orthogonality is not restrictive for exact informa- 
tion Indeed, we can always fulfill (14) by taking a suitable linear combina- 
tion Of Li,z. This can be done, for instance, by applying the Gram-Schmidt 
reorthogonalization process. 

We are ready to state 

THEOREM 2. For any adaptive N” of the above form, there exists a 
vector z* E 3” such that 

Here N$‘” stands for nonadaptive information obtained .from N” by re- 
placing z = z(f, x) by z* in the functionals used by Na. 

We prove Theorem 2 assuming that for every y E 3 and every L E Ff 
the probability of the noise, ~(0; y, L), is absolutely continuous with 
respect to Lebesgue measure, and its density is denoted by ~(0; y, L). 
This assumption is without loss of generality, and is made to simplify the 
notation. In the sequel, Z&k = N(0, I) on Sk, i.e., for any Bore1 set A C ak. 

1 
/-Q(A) = (2#,2 I A e-“y”*‘z d/J. (15) 

Let N be adaptive information of the form (12). We need a few lemmas. 

LEMMA 1. For every algorithm C#I 

eY4, N) = IF, )(Sf(/Mtf) - R(4, NJ (16) 
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with 

R(47 N) = jBn jBk (2 $ Yi(SspLi,z7 d,(z)) - llCCz~I12) 

x dx; y, N) 4x Pk(dYh (17) 

where z = [ZI , . . . , zk] and Zi = [yi + xi,l, . . . 9 yi + Xi,ni]. 

Proof. Observe that 

eavW, W = I,, jBn I(Sf - +(z)(J2p(x; y, N) da p(df) 

= 
II FI $,$# olw2 - Wf, 44zN + l16(z)l12) 

x ,4x; y, N 4,x /.W). 

Since JaS p(x; y, N) d,x = 1, we have 

eavg(4, N) = IF, ~~~fl12cLW~ - W4, N), 

where 

R(+, N = I,, jsk Wf, 4(z)) - ll+(dl12Mx; Y, N) 4x cL(df). 

Thus, it is enough to show that R(+, N) satisfies (17). Changing the order 
of integration we have 

JW, N) = jRk I, (2(Sf, $4~)) - I~~(z)(~~)~(x; y, N) p(df) d,x. 

For fixed x, let N=(f) = [L*+(f), . . . , L,&f)]. Recall that Li,,(f) = Li(@; 
ZIP * * - , Zi-1). Then iV. is exact (noise-free) adaptive information. 

Let p,(A, NJ = p(iV;‘(A)) for all Bore1 sets A of 8“. It is known (see, 
e.g., Lee and Wasilkowski (1986), Wasilkowski (1986b), WasiIkowski and 
Wofniakowski (1984)) that ~,(a, NJ does not depend on N, and is equal 
to the Gaussian measure ,..&k of (15). 

For any Bore1 set B of F1 we have 

1.0) = I wk P.z(~Y, %h‘k(dyh (18) 
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where p2(oIy, IV,) is the probability measure concentrated on N;‘(y) (see 
Parthasarathy (1967, Thm.8.1, p. 147)). From the papers cited above, it 
follows that 

my = 2 YiSp(L,J (19) 

is the mean element of the measure &@Iy, N,). Hence 

From (18) and (19) we have 

wb, N) = I,. lBk I, mu, $44) - llm>l12)P2wly, Nx) 

x ,4x; y, W.4y) dnx 

x Ax; Y, W/.Q(Y) da. 

Hence I?(+, N) satisfies (17) as claimed. n 

We now exhibit an optimal algorithm, i.e., an algorithm C#I* such that 
&‘@($I*, N) = Yg(N). Keeping in mind that p(x; y, IV) is the density of 
7)(x; y, N) and that ,Lk is given by (15), we change variables in (17) by 
setting zi,j = yi + xi,j. Then 

R($7 N) = (27T-” 1%. lRk (2 i Yi@Sph,x, Nz)) - ll~(z~l12) i=l 

X fJ (e-“‘” fi Pki,j - Yi; Yi, &,a)) dky AZ. (20) 
j=l 

Define 

P(Zi,j - Yi; Yi, &(a; ZIP . - . 3 G-1)) dyie (21) 
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Then 

I w”, Vj(ZiJZ*, . . a , Zi-1) d,,Zi = 1. (22) 

This means that vi(Zi(z1, . . . , zi-1) is the density function of a probability 
measure on %“i. Define 

hi(Yijzl, . * . 7 Zi) = 
(274 l/2&2 

vi(Zi(Z*, * * . 7 Zi-1) 

x jG P(Zi,j - Yi; Yi, &Co; ZI, * * . 9 Zi-1)). (2% 

Since Js hi(yiJZi, . . . , Zi-1)&i = 1, Xi(*(Zi, . . . , zi-1) is the density of 
a probability measure. We rewrite (20) using (21) and (23): 

Let 

Hi(Z) = Hi(Z*p e . . , Zi) = 
I I YiXi(YilZ1, . * * 

Define the algorithm 

. * 3 ZJ dyi 

(24) 

zi) hi* (25) 

(26) 

We comment on the implementation of (26). The functionals Li,z are 
given by the noisy adaptive information N. The elements SSpLi,z are 
determined by the problem being solved. Observe that for nonadaptive 
information these elements do not depend on z. In any case, in order to 
compute 4*(z) we have to compute Hi(Z) given by (25). The difficulty of 
computing Hi(z) depends on the density function p of the noise. For some 
p it is relatively easy to compute Hi(z). Then b*(z) can also be relatively 
easy to compute. 

LEMMA 2. The algorithm C#J* defined by (26) is optimal, i.e., 
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where 

W*, N) = 1%. I14*(z)l124z) dnz 

Proof. From (24) to (26) we get 

W4, N) = lRn G%$*(z), 4(z)) - I144z)l12Mz) Jnz 

= I A” (114*(~)11~ - Ild*(z> - W)ll*b4z) dnz 

5 I ~” Il~*(z>tl*~(z) dnz = RN*, N). 

This and (16) yields P’g(4*, N) 5 eavg($*, N) as claimed. n 

We now establish some properties of vi and Hi. 

LEMMAS. Fori= 1,. . . , kandallvectorszl,. . . ,Zi 

vi(ZilZ1, * - . 7 Zi-1) = Vi(-ZilZ1, . . a 7 Zi-1) (28) 

Hi(ZI, * . - 7 Zi-1, Zi) = -Hi(Zlp e e a 9 Zi-1, -Zi)a (29) 

Proof. Changing yi to -yi in (21), we get 

Vi(ZilZ1, . . e 9 Zi-1) = P(Zi,j + Yi ; -yi 7 L,J dyi. 

Due to (3) and (4) we know that 

P(Zi,j + Yi; -Yip &J = PC-Zi,j - Yi; -Yiv h,z), 

which yields (28). In a similar fashion one can prove that 

Ai(Yilz*v . . * 7 Zi) = hi(-yilZ1, . . . , Zi). 

This and (22) yield (29). n 
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Define 

Gi(Z) = Gi(Zl, e * . , Zi-1) 

= 
I A”, Hf(Zi, . . . 7 Zi)Vi(ZilZly * e . 9 Zi-1) dn,Zi. (30) 

LEMMA 4. 

i 
k 

X Q Vi(Zi(Zl, * * * 7 Zi-1) dnz 

= Ii j,. II SSpLi,,J12Gf(Z)V(Z) dn~e 
i=l 

(31) 

Proof. From (26) we have 

l14*(Z))12 = 2 IlSSpL,zI12H?(Z) 

+ 2, (Ss,Li,,,Ss,~j,,)Hi(z)Hj(z). 

Forj > i we have 

A,jc = 1%. (SS,Li,z,SS,Lj,z)Hi(z)Hj(Z)v(z) dnz 

= jBn, . . . jBn,-,(SS+hto, ZI, * * * 3 &I), 

SSpLj(“; ZI, a e . 9 Zj-I))Hi(Zl, . . . 9 Zi) 

Due to Lemma 3, the integral over %q is zero. Thus, Ai,j = 0. This yields 

JW*, N) = 1. I14*(dl12W 4 z = i j Il~~,~i,,ll'~'<z>~<z> dnz j=* 8" 



=i 
i=l 

X 
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I,“, . . - lsni (ISSpLi(ZI, - . - 7 Zi-*)ll*~~(Zl~ . * * 3 Zi) 

fi v,(z,lz,, . . . , q-1) d,,Zl . . . d,,Zi, 

due to (22). Thus, 

x n ~p(ZplZl, * . . 7 Zp-I) dn,Zl . * . dn,-,Zi-I 
p=l 

= 5 J-B. II SSpLi,zII*G?(Zb(Z) AZ, i=l 

due to (22). Hence (31) is proven. n 

We are ready to prove Theorem 2. From Lemma 4 we have 

W*, W = 1%. G(zMz) 0, (32) 

where G(z) = C~=111SS,Li,,l12Gf(z). Observe that there exists z* = 
rd, . - - 9 z?] E 8P such that 

I?(+*, N) 5 G(z*). (33) 

Indeed, if R(~#J*, N) > G(z), Vz E 9P, then 

R($*, N) = J,. G(zMz) dnz = R(+*, A’), 

which is a contradiction. Here we used the fact that s!pv(z)d,,z = 1 and 
that Z?(4*, N) is finite, 

W*, W 5 (,, IlUl12/4df) 5 llSll* I, llfll*i4df) < 03. 

Thus, (33) holds. 
Define Lr = L1, LT = Li(*; ~1, . . . , zi-1). Let 
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N,“P”(f, xl = G(f) + x1,1, . . * ? Gw + Xl.n,, 

. . . ) mf) + -u,l7 . . . 7 Gm + %.nil (34) 

be the nonadaptive noisy information. The x;,j are random variables with 
density function equal to ~(0; y;, L’). We prove that 

ra”qNZ* ““3 = I,, I(~fl12/-4?f> - G(z*). (35) 

Indeed, let ~7, H”, and G” be defined by (21), (29, and (30) for the 
nonadaptive information N,?P”. Then 

Vi*(ZilZ], . . . , Zj-1) = V*(ZiIZfy . . . 3 Zl’--]), 

H,f+(z,, . . . , Zi-1) Zi) = H~(z:, . . . 9 ZT-1, Zi), 

G:(z,, . . . , z;-,) = G,*(z:, . . . , z,?,,. 

From (32) we conclude that for an optimal algorithm +* using N,oP” we 
have R(4*, Ni:“) = G(z*). Then (27) of Lemma 2 yields (35). 

We return to (33). Due to (33) and (35) we have 

2 I F, llsfI12p(df> - G(z*) = r”“WVF”). 

Thus, 

which completes the proof of Theorem 2. n 

6. A STATISTICAL EXAMPLE 

In this section, we give further details on the classical statistical prob- 
lem of optimal sequential design for a class of normal linear models. To do 
so, we switch to statistical language and notation. The sample size 12 is 
fixed in advance, but the placement of the observations is permitted to 
depend on past observations. Nontheless, it is the case that for this exam- 
ple, the optimal sequential design ignores past observations. 



ADAPTION WITH NOISY INFORMATION 275 

Suppose we can observe a vector y = [yl, ~2, . . . , ynlT such that 

y = XT0 + e, 

whereX= (X1,X2,. . . , X,) is the k x 12 design matrix and each Xi is a k- 
dimensional column vector, 13 = [f3,, $2, . . . , &IT is a vector of k un- 
known parameters, and e It - sIT(O, t1) is the n-dimensional random vector 
of observations having a normal distribution with mean vector zero and 
precision matrix tl. Suppose that the prior on 19 and t is such that the 
conditional distribution of 8 given t is normal ,hr(&, fR), where R is a 
specified k x k matrix. The posterior conditional distribtion of 8/y, t is a 
normal with mean & = (R + XXT)-l(Xy + R&J and precision matrix t(R 
+ XXT). If a particular linear combination cTO of 8i’s is of interest and 
squared error loss is appropriate, the optimal estimate is cT6,, and the 
posterior risk is the expected variance of c76,, that is cT(R + XXT)-’ 
cE,~~(t-I), where Z&(t-I) is the posterior mean of t-l. Suppose first that 
the prior on t is such that t is known. Then the sequentially optimal choice 
of X would be a choice that minimizes cT(R + XXT)-lc. Note that such X 
does not depend on y, so a fixed sample-size procedure is optimal in this 
case. This is an application of the (extended) Blackwell-Girshick Theo- 
rem (see Section 1). See Chaloner (1984) for methods of finding such an 
optimal design. Furthermore, since the optimal design does not depend on 
t either, it is sequentially optimal whatever prior is taken on t. 
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