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ABSTRACT Coarse-grained molecular models of the erythrocyte membrane’s spectrin cytoskeleton are presented in Monte
Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more
microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573–1583) are
faithfully represented here by two- and three-body effective potentials. The number of degrees of freedom of the system are
thereby reduced to a range that is computationally tractable. Three effective models for the triangulated cytoskeleton are
developed: two models in which the cytoskeleton is stress-free and does or does not have internal attractive interactions, and
a third model in which the cytoskeleton is prestressed in situ. These are employed in direct, finite-temperature simulations of
erythrocyte deformation in a micropipette. All three models show reasonable agreement with aspiration measurements made
on flaccid human erythrocytes, but the prestressed model alone yields optimal agreement with fluorescence imaging
experiments. Ensemble-averaging of nonaxisymmetrical, deformed structures exhibiting anisotropic strain are thus shown to
provide an answer to the basic question of how a triangulated mesh such as that of the red cell cytoskeleton deforms in
experiment.

INTRODUCTION

Mechanical responses of cells originate in disparate physics
over length scales ranging from intraprotein distances up
through and beyond the characteristic units of organized
assemblies. Cytoskeletal proteins may, for instance, unfold
(Rief et al., 1997) or even dissociate (Evans and Ritchie,
1997) when a cell is extended. Network entanglements
among thermally fluctuating filaments, in certain cases, may
also contribute significantly to the elasticity of complex
cells (MacKintosh et al., 1995). Such phenomena are among
the many that reflect a novel hierarchy of scales in cytoskel-
etal mechanics. An illustration of some of the unique fea-
tures that can arise in cell deformation after smaller scale
details are integrated out is provided in the present paper,
together with a companion work (Boey et al., 1998; referred
to hereafter as paper I). Both papers focus on large defor-
mation elasticity of the red cell membrane cytoskeleton. In
paper I, Monte Carlo simulations have been presented for a
submicron patch of several bead-and-tether idealizations of
cross-linked spectrin chains. The present paper coarse-
grains these quasi-ordered models, allowing a very general
consideration of the submicron to cellular scales. Nonlin-
earities and associated anisotropies in large deformations of
triangulated networks are explicitly revealed in stable non-
homogeneous states. Direct comparisons of ensemble-aver-

aged computer “experiments” are thus made with pub-
lished micromechanical tests on the red cell membrane’s
cytoskeleton.
Micropipette aspiration techniques have been applied to a

range of cells, red cells in particular, for many years (e.g.,
Rand and Burton, 1964; subsequent work reviewed in
Evans and Skalak, 1980). In standard analyses of such
experiments, zero-temperature continuum notions and axi-
symmetry have been invoked to estimate elastic moduli and
other constitutive responses. Such physical quantities no
doubt have a basis in micro- and mesostructure. As a
primary example of early success in identifying a material
basis, the magnitude of resistance to aspiration of a flaccid
red cell initially appeared to correlate moderately well with
what was considered to be a molecularly thin structureless
layer, of polymer-like chains, each with a size approximat-
ing that of spectrin (Evans and Skalak, 1980). In more
recent fluorescence imaging measurements of red cells,
detailed maps of membrane cytoskeleton deformation also
correlated, to a degree, with some of the properties expected
of a spectrin network (Discher et al., 1994; Discher and
Mohandas, 1996). It was specifically shown that micropi-
pette aspiration leads to a nonhomogeneous network defor-
mation with stretching of the network as great as 250% and
as small as 40%; spectrin, based on its contour length, is
certainly expected to be capable of sustaining such a large
range of deformation. Raw measurements such as these on
red cells establish definitive benchmarks for more detailed
models of the cytoskeleton. With the development of such
models as a general aim, both this work and paper I focus on
the erythrocyte’s quasi-ordered triangulated meshwork of
spectrin, a structure suggested by at least some electron
microscopy studies (e.g., Byers and Branton, 1985; Liu et
al., 1987).
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In paper I, three variations of a polymer chain model are
motivated and investigated as candidate descriptions of the
erythrocyte cytoskeleton. In all of these models, tempera-
ture plays a central role, because the elasticity of the net-
work arises from the configurational entropy, i.e., thermal
fluctuations, of multisegmented and interconnected polymer
chains. Furthermore, in all of these models, the chains are
joined together at sixfold coordinated junction vertices, and
the chains are attached by their midpoints to a flat plane
representing the lipid bilayer. Where these microscopic
models differ is in 1) the number of segments nseg of the
chain, 2) whether the cytoskeleton is under stress in its
resting or reference state in situ, and 3) whether there are
attractive interactions between chain elements. The com-
puter simulations of paper I deal explicitly with the various
complex steric interactions in the polymer chain networks
and yield both elastic moduli and geometrical properties
(such as the mean area per junction vertex). With either 12
or 26 segments per chain, the equivalent physical size of the
plasma membrane that is directly simulated with �103
monomers is only several hundred nanometers on a side,
more than an order of magnitude smaller than the human
erythrocyte. In principle, there is nothing to prevent one
from simulating larger systems, except that the number of
segments in a model representation of a red cell would be
�106, which is beyond the reach of most researchers’
computing resources. Two alternative strategies are avail-
able for developing simulations of whole cells based upon
the models of paper I. The dimensionality of the problem
could be reduced from three to two, or even a single
curvilinear coordinate, by assuming that the network defor-
mation has perfectly cylindrical symmetry. Such an as-
sumption limits, by definition, both the symmetry of the

deformation that can be examined, as well as the true nature
of the network’s response. A second approach, and that
taken here, is to coarse-grain away some of the details of the
polymer chain networks so as to decrease significantly the
number of degrees of freedom.
In essence, our approach relies upon the fact that the

motion of the junction vertices is similar to that of the nodes
of a triangulated network at a low but nonzero temperature.
Thus, the 3-D polymer chains can be replaced by two- and
three-body 2-D interactions that effectively represent the
many-segmented chains. This permits us to reduce the num-
ber of degrees of freedom by a factor of 3nseg, a sufficient
reduction that the simulation of whole cells is possible with
modest computing resources. Fig. 1 illustrates an applica-
tion of the effective representation technique: micropipette
aspiration of an erythrocyte. In the figure, each bond seg-
ment represents a convoluted polymer chain which, in paper
I, would have 12 or 26 segments. Such a whole-cell simu-
lation can be used to investigate not only the global re-
sponse of the cytoskeleton to imposed stresses, as exempli-
fied by the length of the aspirated section of network in the
pipette, but also the detailed responses, such as the average
nodal density and fluctuating, anisotropic shapes of the
triangular plaquettes near the entrance to the micropipette.
The full statistical mechanical approach that we take is
motivated by 1) actual experiments which show that mi-
cropipette-imposed network deformations are generally, as
mentioned before, nonhomogeneous with very large strains;
2) theoretical complexity of the large deformation responses
of triangulated structures emulating either polymer chain
networks or, still more complicated, true Hookean spring
networks in which a nonzero, force-free spring length ex-
ists; and 3) the nontrivial entropic contribution of thermal

FIGURE 1 Simulation of a small
erythrocyte under aspiration. The mi-
cropipette, indicated by the solid gray
shading, has an inside diameter of
12sR � 0.9 �m. The surface of the cell
is triangulated with 6110 vertex nodes
that represent the spectrin-actin junc-
tion complexes of the erythrocyte cy-
toskeleton. The volume of the cell is
0.6 times the fully inflated volume,
and the simulation is drawn from the
stress-free model in the free shape en-
semble, as described in the text.
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fluctuations at the biologically relevant temperature of
�300 K. Altogether, the general sort of mechanics problem
that is considered within the present methodology and ex-
emplified by Fig. 1 is rather complex: nonhomogeneous
deformation of a nonlinear, anisotropic, and thermally fluc-
tuating sparse material that may, in places, undergo hyster-
etic and finite-size dependent phase transitions.
The contents of this paper are organized as follows. In the

next section, effective representations are developed for
each of the models in paper I. The representations are used
in two different ensembles, referred to as the free shape and
fixed shape ensembles, and we present computational de-
tails for each. As the principal applications of our approach,
two types of aspiration experiments are simulated. The free
shape ensemble is used to obtain the pressure-dependent
aspiration of flaccid cells, i.e., a process in which the
pressure inside the cell always approximates that outside the
cell. The fixed shape ensemble is then used to map out the
cytoskeleton’s deformation in cells aspirated beyond the
flaccid regime into a regime of whole cell pressurization.
The main results are summarized in a concluding section.

EFFECTIVE NETWORKS

In paper I, we determined the geometrical and elastic prop-
erties of three polymer chain networks—all seemingly rea-
sonable candidate models of the human erythrocyte cy-
toskeleton. Each polymer chain is represented by a series of
hard beads with diameter a, linked together by tethers with
a maximum extension of �1.9a. A total of nseg tethers or
segments make up each chain. This particular choice of
tether length, combined with the hard core repulsion be-
tween all beads, enforces self-avoidance of the chains and
gives rise to an effective bending resistance for each chain,
because a next-nearest neighbor of a given bead in a chain
is forbidden from passing between the given bead and its
immediate neighbor. This bending resistance, at the scale of
roughly two monomers, is employed later in a nonlinear
elastic model for the chains.
In small deformation, although not in large deformation,

the polymer chain models presented in paper I behave like
low-temperature networks of linear Hooke’s law springs.
That is, at small stress only, the ratio of the area compres-
sion modulus to the shear modulus, and the stress depen-
dence of the network area, are roughly those of a triangu-
lated network of Hooke’s law springs in two dimensions. To
be clear, however, the complete properties of the polymer
networks are not those of spring networks: the polymer
networks display neither the collapse transition under com-
pression (Discher et al., 1997) nor the unbounded expansion
under tension (Boal et al., 1993) seen in spring networks.
However, the averages of and the fluctuations in the posi-
tions of the junction vertices of the polymer networks are
close to those of the junction vertices of a spring network
whose spring constant ksp is in the range �kspso2 �20–40,
where � is the inverse temperature, (kBT)�1, and so is the
equilibrium spring length.

Because the fluctuations in the positions of the junctions
correspond to a low-temperature system, it is tempting to
search for an effective energy representation of the models
in which the junctions are the primary degrees of freedom,
and the effects of the chains are subsumed into two- and
three-body interaction potentials between adjacent junc-
tions. Obviously, a network composed solely of Hookean
springs is not an appropriate description of the chain net-
works. A viable effective network must include the effects
of both steric interactions among the chain elements (pre-
venting network collapse) and the maximum chain length
imposed by the tether constraints (preventing unbounded
expansion). As a starting point though, it should certainly be
well appreciated that a polymer chain exhibits elastic be-
havior because of its entropy, and an ideal chain of nseg
segments in three dimensions behaves like a polymer
spring, with zero force-free length and an effective spring
constant of 3/(�nsega2), where a is the segment length.
However, the presence of steric interactions at short dis-
tances and the limitations imposed by the maximum length
of the chain cause the stress versus strain relationship of real
chains to be different from that of ideal chains. Although
many simple but unmotivated functional forms can be con-
structed to represent the polymer chain models, the ap-
proach taken here is to faithfully model the results of paper
I by first extending to networks a description of single chain
elasticity recently proposed by Marko and Siggia (1995)
and then, immediately thereafter, combining this with a
Flory-like, mean field approach to chain elasticity balanced
against sterics.
Marko and Siggia (1995) have proposed a simple inter-

polating model between ideal chain behavior at very small
chain extension and divergent-tension behavior at large
extension, i.e., as the end-to-end length approaches the full
contour length. Their worm-like chain model appears to be
particularly well suited to lambda DNA, which has a con-
tour to persistence length ratio on the order of �16 �m:0.1
�m, as well as the protein titin, which is composed of a
sequence of separately folded immunoglobulin domains
(Rief et al., 1997). Through a simple integration of the
Marko and Siggia force-extension relationship, the end-to-
end distance s of a chain with maximum extension smax can
be described by an effective potential,

�Veff�s� � �smax/4b�x2�3� 2x�/�1� x�, (1)

where b is the persistence length of the chain segments and

x� s/smax . (2)

This attractive potential has a minimum at s � 0, diverges
at s � smax, and has an effective spring constant near the
minimum equal to (3/[2�bsmax]), like that of an ideal spring.
It should be remarked that the potential above truly repre-
sents a free energy, and that an expansion for small x differs
most notably from the more classical, nonlinear freely
jointed chain result (e.g., Discher et al., 1997) through the
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appearance of odd powers in x and a simple factor of 2 in
the microscopic length scale.
The first element of the effective network, then, will be

Eq. 1 as the two-body attractive potential acting along the
triangulating “bonds” of a 2-D network. A minimum in Eq.
1 at s � 0, however, corresponds to a network collapsed to
a point, and such a collapse is certainly not seen in the
networks of paper I. Hence a second term added to the
effective potential reflects those steric interactions between
chain elements that prevent network collapse. For this re-
pulsive energy arising from steric interactions, we choose a
simple functional form, C/A, where A is twice the area of a
single triangular plaquette. Thus the total energy of the
effective network that we use to represent the polymer chain
models of paper I is

Enet � �
triangles

C/A� �
bonds

Veff�s�, (3)

where C � 0 prevents network collapse. The mean-field
balance of sterics against chain elasticity should be recog-
nized as Flory’s classical approach to real chains. It is worth
noting that Eq. 3 can be Taylor expanded for a triangulated
network in the zero temperature limit, and this expansion
yields an expression for Enet (see Eq. 19 of Discher et al.,
1997) that is similar in form, at lowest order, to that em-
ployed in prior continuum analyses of red cell cytoskeleton
deformation (specifically, Discher et al., 1994). It is also
noteworthy that the worm-like chain part of the model
employed here is algebraically simpler than the freely
jointed chain model; in C6-symmetrical networks, however,
the two polymer models have similar linear regimes and can
be shown to be anisotropic at higher order (Discher et al.,
1997).
Equation 3 contains three parameters, C, b, and smax,

which are determined by fitting the predictions of Eq. 3 for
network area as a function of stress against the results found
from the different polymer chain models. To simplify the
fitting procedure, we derive a simple relationship between C
and the bond length s at essentially zero temperature and
stress. This is a state in which all bonds have the same
length so, and the area per vertex is Ao � �3so2/2. The
expression for C is obtained by demanding that Enet be a
minimum at s � so, or

�Enet/�s� 0 at s� so . (4)

Solving Eq. 4 gives C in terms of the other two parameters,
b and smax:

�C� �3�3smax3 /16b�xo4�4xo2 � 9xo � 6�/�1� xo�2, (5)

xo � so/smax . (6)

By expressing the areas from the polymer chain models in
terms of the equilibrium interjunction distance so, the fitting
procedure involves only two parameters, b and smax. In
principle, the fit should reflect the effective temperature of
the network through � appearing in Eq. 5; in practice, only

the combination �C is relevant in the Monte Carlo simula-
tions of the effective networks.
To perform the fit, we construct a mean-field version of

the effective network. The procedure is reasonably accurate,
because we know from previous work (Boal et al., 1993)
that the mean-field approximation provides a good descrip-
tion of triangulated spring networks at low temperature.
Furthermore, because the mean-field approach is analytic,
the fitting procedure is computationally trivial to perform.
Once b and smax have been fitted, the results are double-
checked by performing a full simulation of the effective
network and comparing again with the full polymer chain
networks. The stress dependence of the polymer chain net-
work is obtained from the mean field version of Eq. 3 at
constant pressure, yielding the effective free energy per
junction vertex �j,

�j�	� � 2C/��3s2� � 3Veff�s� � �3s2	/2, (7)

where the in-plane pressure 	 is positive for a network
under compression and s � s(	). That is, for a given 	, a
value of s can be found that minimizes �j for any choice of
b and smax; hence, the area per vertex of the effective
network can be predicted as a function of the applied
pressure 	 for any parameter set. By comparing the pre-
dicted areas from the effective network with those found in
the model cytoskeleton simulations, a 	2 statistic can be
calculated for each b and smax. The fitting procedure
searches for the values of b and smax that minimize 	2.
To review, the three polymer chain models from paper I

are characterized by the quantities nseg, the number of
segments in each polymer chain, and so, the average dis-
tance between junction vertices at zero stress. The average
distance between junction vertices in the red blood cell, sR,
has the physical value of 75 nm, so that if the model
network for the cytoskeleton is not under stress, then so is
equal to sR (see paper I). However, if the model network
represents a cytoskeleton under stress in the erythrocyte,
due, for example, to assembly onto the encapsulating bi-
layer, then so may be different from sR. The area per vertex
of the effective network at zero stress, Ao, is �3so2/2;
however, the reference state value of the area per vertex in
the cytoskeleton is AR � �3sR2 /2. The chains are assumed
to have a nominal contour length lc � 1.2nsega � 200 nm,
with the factor 1.2 arising from the expectation value for
tether length fluctuations between a and �1.9a. Corre-
sponding to the contour length is a nominal contour area, Ac,
of �3lc2/2, and each of the models is constructed such that
Ac/AR 
 7, as estimated experimentally (Byers and Branton,
1985; Liu et al., 1987). The values of nseg and so in each
polymer chain model are as follows.
Stress-free model. This model fixes nseg at 26, and as-

sumes that the equilibrium state of the cytoskeleton in vivo
is at zero stress; hence so � sR.
Condensed model. Here, nseg is fixed at 12, and the

equilibrium state of the cytoskeleton in the cell is at zero
stress (again, so � sR). However, there is an attractive

Discher et al. Micropipette Aspiration of Cytoskeleton Models 1587



interaction between the vertices of the polymer chain that
reduces the value of the interjunction separation below that
for a network without interactions (see paper I for further
details). The strength of the attractive interaction is set so
that Ac/AR 
 7.
Prestress model. The number of segments nseg equals 12

in this model, as in the condensed model, but there are no
attractive interactions between chain vertices. Because a
network with nseg � 12 has Ac/Ao 
 3.78, the network must
be placed under stress to force Ac/AR 
 7 in a simulation of
an erythrocyte. That is, the junctions are forced to be closer
together in the cell (sR) than they would be if the cytoskel-
eton were extracted and viewed flat in isolation at zero
temperature (so) (again, see paper I for further details). This
can be accomplished by setting up the geometry of the cell
such that so � 1.36sR.
Fig. 2 shows a comparison of the polymer chain simula-

tions from paper I with their effective representations in the
mean field limit. Over 12-fold changes in network density
or area, the effective potential tracks the full polymer chain
simulation rather well. Given that the effective potential was
fitted in the mean field limit, each parameter set was
checked by constructing a full two-dimensional network in
the isobaric-isothermal ensemble, using the effective poten-
tial with the appropriate parameters from the mean-field fit.
The ensemble averages for geometrical quantities found in
the full network agreed to within a few percent of their
mean-field values. Specifically, the fits shown in Fig. 2
yield

Stress-free model: b/so � 0.075 and smax/so � 3.17
(8a)

Condensed model: b/so � 0.109 and smax/so � 3.55
(8b)

Prestress model: b/so � 0.109 and smax/so � 2.38.
(8c)

The quantities b and smax have physical meaning for
single chains as the persistence length and maximum exten-
sion of the chain. However, chains in a network have
somewhat different characteristics compared to isolated
chains because of the interchain interactions present in a
network (see Boal, 1994). Thus we must treat b and smax as
quantities that have values specific to each polymer net-
work, although we expect that their magnitudes are not
greatly removed from those of single chains.
Consider b/so. For a single chain, the persistence length b

can be extracted from the mean square end-to-end displace-
ment of the chain �ree2 � via the approximate expression

�ree2 � � 2blc . (9)

Replacing �ree2 � with so2 and substituting the contour length
lc � 1.2nsega, Eq. 9 gives an approximate value for b in the
polymer chain models. As can be seen from Table 1, which
summarizes the results for so found in the polymer chain
models, the estimated values for b/so are in the correct

range, but are about a factor of 2 higher than the values from
the fits displayed in Eq. 8. Note that, owing to their mutual
interaction and interaction with the flat bilayer, chains in a
network have a greater �ree2 � than do chains in isolation.
Significantly improved estimates for b/so are obtained by
noting that worm-like chains are expected to have b � a/2.
Consider smax/so. For the bead and tether chains in the

cytoskeleton models, the nominal contour length lc is less
than the maximum distance to which the chains can be
stretched under infinite tension. Numerically,

smax � �1.9nsega , (10)

whereas lc � 1.20nsega. Because the stress dependence of
the network area was determined for large stresses in paper
I, the effective maximum chain length is closer to smax than
to lc, although the two differ by only 15%. One can see from
Table 1 that the expected values of smax/so are within 20%
of the values quoted in Eq. 8 from fitting the stress depen-
dence of the area.
From the fits to the polymer chain cytoskeleton models,

we draw a number of conclusions:

FIGURE 2 Area per vertex �Aj� as a function of two-dimensional pres-
sure. Both quantities are quoted in the dimensionless combinations �Aj�/Ao
and �	Ao. Comparison is made between the full cytoskeleton simulations
from paper I against their mean field representations in two dimensions.
The data points are taken from paper I. The solid lines indicate the effective
representations with values for the parameters smax/so and b/so as given in
the text. Ao is the average area per vertex at 	 � 0. In both the stress-free
and condensed models, Ao is equal to the in situ area, or reference area AR,
of the cytoskeleton. In the prestress model, Ao is greater than AR.

TABLE 1 Estimation of b/so and smax/so from single polymer
chain ideas

Model nseg smax lc so b/so (est.) smax/so (est.)

Stress-free 26 35.8a 31.2a 11.7a 0.19 3.1
Condensed 12 16.5a 14.4a 5.35a 0.19 3.1
Prestress 12 16.5a 14.4a 7.41a 0.26 2.2

Column 3 shows smax � �1.9nsega, and column 4 is the contour length
lc � 1.2nsega. The polymer chain results from paper I for so are given in
column 5, leading to the predictions for b/so and smax/so in columns 6 (from
Eq. 9) and 7 (from Eq. 10).
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1. The effective potential given by Eqs. 3 and 5, based on
short-range steric repulsion and nonlinear entropic elas-
ticity of polymer chains, provides a very good represen-
tation of the simulation results in paper I.

2. The parameters of the effective potential are in the ap-
proximate range expected from the elementary structure
of single chains.

3. Because the basic network elements or bonds have a
definitive maximum length, triangular networks of these
nonlinear elements will be highly anisotropic in their
stress versus strain relationship, as elaborated elsewhere
(Discher et al., 1997).

ASPIRATION SIMULATIONS

The nonlinearity of the effective models, the network an-
isotropy, the finite temperature nature of the physics, the
possible prestress on the cytoskeleton, and other complicat-
ing aspects of structure all motivate the use of the above
effective potential in direct simulations of whole cell defor-
mation. Micropipette aspiration of red blood cells is the
focus here, but the models can certainly be applied to other
problems, such as the motion of blood cells through capil-
laries. An effective potential reduces the number of degrees
of freedom by replacing multisegmented chains by few-
body interactions, so that the deformation of a single cell
with many thousands of junction vertices can be simulated
using a conventional workstation. Two types of aspiration
experiments are simulated in this paper, and we treat each
type of experiment with a different type of ensemble. In one
set of experiments, a flaccid erythrocyte is aspirated under
moderate pressure and is simulated with a free shape algo-
rithm. In a second set of experiments, a swollen cell is
aspirated under large pressure, and a fixed shape algorithm
is employed. Both codes use the Metropolis Monte Carlo
technique to determine the ensemble-averaged detailed de-
formation of the cell under aspiration. The codes are de-
scribed in some depth in this section before the results from
the simulations are presented.

Free shape

A snapshot from this simulation is shown in Fig. 1. The
system consists of a simple, closed surface decorated with
6110 vertices, all but 12 of which are joined to six neigh-
boring vertices. The initial configuration has the shape of
two parallel sheets in the form of a hexagon, with each
vertex on the perimeter of one sheet connected to two
vertices on the perimeter of the other sheet. Thus, there are
six vertices on each sheet, or 12 in total, that are at the
“corners” of the hexagons and therefore have only fivefold
coordination. Note that the 12 fivefold defects in the model
are the minimum number required by topology for the
triangulation of a spherical surface. The connectivity is
fixed, in that each vertex has a fixed set of neighbors, even
though all vertices may move in space subject to a collec-

tion of energetic restraints. The total energy of the system
has several components:

1. The two- and three-body potential Veff of Eq. 3, which
represents the in-plane properties of the polymer chain
model of the cytoskeleton.

2. A bending energy Ebend, which represents the bending
resistance of the lipid bilayer of the plasma membrane,
and which is constructed from a set of unit vectors n
normal to each triangular element of the cell’s surface.
The bending energy then involves a sum of 3N � 12
terms, each corresponding to one of the 3N � 12 bonds
between the N vertices that define the surface. Explicitly,

Ebend � kbend �
bonds

�1� ni � nj�, (11)

where i and j are labels for neighboring triangular ele-
ments of the surface. Experimentally, the continuum
bending resistance kc for an erythrocyte bilayer (includ-
ing cholesterol) has been measured to be�20kBT, which
corresponds to a value for the descretized bending resis-
tance kbend of 69kBT (because kbend � 2�3kc; see Boal
and Rao, 1992).

3. A term Esurf, which enforces approximate surface area
conservation. Because the lipid bilayer is relatively in-
compressible, we add a term to the energy to suppress
fluctuations in surface area. The reference surface area
Acell is defined to be

Acell � �2N� 4��3sR2 /2, (12)

where sR is the reference bond length whose physical
value is 75 nm. The form of the surface energy term is
chosen to be

Esurf � ksurf�A� Acell�2/2Acell , (13)

where ksurf is a parameter. Choosing the value �ksurfsR2 �
600 constrains the root dispersion of the surface area to
lie within a few percent of Acell for surfaces at zero stress.

4. A term Evol, which enforces approximate volume con-
servation. Because the enclosed volume of a human
erythrocyte does not change appreciably during defor-
mation, either in vivo or in the aspiration experiments, a
term

Evol � kvol�V� Vcell�2/2Vcell (14)

is introduced to constrain the volume, where kvol is a
parameter. Choosing the value �kvolsR3 � 600 limits the
root dispersion of the volume to lie within a few percent
of the desired Vcell.

In the simulation, we found it efficient to attempt to move
four vertices simultaneously, then accept or reject the move
on all four according to the change in summed energy of
Eqs. 3, 11, 13, and 14. The initial pancake-like configura-
tion of the cell is allowed to relax for �106 trial moves per
vertex to generate an equilibrated configuration for the
aspiration simulation. During the relaxation process, the
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volume of the cell is driven toward a predetermined value,
as a consequence of the presence of Eq. 14 in the Boltzmann
weight. A normal human erythrocyte is not spherical, but
has a volume of �60% of the volume of a sphere Vsphere,
which is given by

Vsphere � Acell/3 � �4
�1/2 (15)

for a surface of area A. Because the free shape calculations
are meant to simulate the aspiration of a flaccid cell, we fix
Vcell � 0.6Vsphere.
The shape of the computational micropipette is shown in

cross section by the gray area in Fig. 1. The pipette is a
hollow cylinder of radius RP over most of its length, but its
mouth is a semicircle in cross section with a radius of RP/2.
Because the cell has a discretized surface in the simulations,
a rounded entrance to the simulation pipette is needed to
reduce computational friction as the cell is drawn up the
pipette. Our coordinate convention is that the bottom edge
of the pipette is a ring in the xy plane (with radius 3RP/2),
and the symmetry axis of the pipette is the positive z axis.
We choose RP � 6sR, corresponding to a pipette with an
inside diameter of 0.90 �m. A pressure P is applied to the
cell through the interior of the pipette after equilibration of
the cell configuration is finished. The complete Boltzmann
factor exp(���) for the Monte Carlo moves thus involves

�� � �Enet � �Ebend � �Esurf � �Evol � �PVpip , (16)

where Vpip is the volume of the upper surface of the cell
contained within the pipette region with z � 0. The sign
convention of Eq. 16 is such that P� 0 acts to increase Vpip
and pull the cell into the pipette.
The free shape simulation has been run for all three

effective networks from paper I, at five aspiration pressures
per model. The simulation times required for the cells to
reach their equilibrium configuration under aspiration are
rather long: although the cell boundary is drawn to 90% of
its aspirated length within a moderately short time,
the approach to the final configuration is typically about
(1–2) � 106 Monte Carlo attempts per vertex. Thus we
allow at least this number of moves per vertex for the cell to
reach equilibrium, depending upon the model, then collect
20 samples of the configuration separated by 104 moves per
vertex. For a total of 2 � 106 moves per vertex, the defor-
mation of a 6000-vertex cell obeying Eq. 16 can be simu-
lated in a week’s cpu time on a 200-MHz workstation.

Fixed shape

The fixed shape ensemble, in which a model network is
allowed to relax over a specified shape, is related to previ-
ous continuum mechanics analyses of cell network defor-
mation that assumed axial symmetry (Evans and Mohandas,
1994; Discher et al., 1994). This reduced the three-dimen-
sional cell shape to a specified curve in two dimensions. The
approach is extended here by dropping the assumption of
axisymmetry and performing a full three-dimensional, fi-

nite-temperature simulation on a specified or fixed surface.
The surface over which the network nodes move is broken
down into several simple geometric elements: a spherical
surface (representing the main body of the cell) is joined to
the interior surface of the micropipette, whose geometry is
the same as that employed in the free shape ensemble. The
network follows the cylindrical interior of the pipette, be-
fore ending in a fixed hemispherical cap of radius RP. The
distance along the symmetry axis from the entrance of the
micropipette to the tip of the cap is defined as L. Two
sample configurations are later shown in Fig. 5. Within the
accuracy of double precision, the network nodes are re-
quired to move on the fixed surface. The computational
advantage of this approach is that only the �Enet term in Eq.
16 need be evaluated; the resulting gain in the execution
time of the simulation allows much larger systems to be
investigated compared to the free shape algorithm. Further-
more, the relaxation time of the network is significantly
shorter than the free shape approach. Although the cell
shape itself is an input to the fixed shape ensemble, the free
shape ensemble results will demonstrate the appropriateness
of the assumed geometry.
The discrete network in the fixed shape ensemble consists

of 18,434 nodes, of which 12 are symmetrically distributed
fivefold centers and the remainder are sixfold centers. Be-
cause a human red cell, in comparison, has �30,000 spec-
trin-actin nodes, the model’s sphered diameter is within
22% of the average for sphered human red cells.
For a first ensemble, the nodes are all placed on the

surface of a sphere, and �2 � 106 Monte Carlo sweeps are
taken with all nodal motions attempted only along lines of
principal curvature of the defined surface. Correct Boltz-
mann sampling with curvilinear motions requires a supple-
mental weight factor given by a simple ratio of the node’s
radial distance from the surface generator’s axis, rnew/rold.
In addition, a nodal move is rejected outright if any of the
node’s six (or five) local normals makes an angle greater
than 
/2 with respect to the surface normal at the node. This
constraint takes the place of �Ebend in Eq. 16 by establishing
a signed-area sterics similar in form to that adopted previ-
ously in simulations of strictly planar nets (e.g., Boal et al.,
1993; Discher et al., 1997). In a second ensemble, the
spherical surface is progressively deformed in a simple
sequence of reversible but nonequilibrated mappings from a
sphere to a new equi-area shape having a projection in the
z direction of L � 2RP. The equi-area constraint reflects the
relative incompressibility of the lipid bilayer and necessi-
tates a decrease in the radius of the sphere outside the
micropipette as the projection length is increased. As a
consequence, no constraint is thus placed on the volume
enclosed by the surface. In experiments, such cell volume
adjustment is readily achieved osmotically, with the result
being that the projection length is essentially set by osmotic
rather than aspiration pressure (Discher et al., 1994). Once
L� 2RP is achieved,�2� 106 Monte Carlo steps are taken
to relax the network from the stretched state imposed by the
initializing transformation. Longer projections were incre-
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mentally achieved by subsequent equi-area mappings fol-
lowed by extended relaxation intervals. Each simulation
reported here took �1 week on an R10000 processor of an
SGI-Cray Origin 2000.

SIMULATION RESULTS

As a first step in simulation, we revisit the type of aspiration
experiments represented in Waugh and Evans (1979), in
which flaccid red blood cells were aspirated under modest
pressure. By measuring the length of the aspirated projec-
tion L (in the simulation shown in Fig. 1, L is the distance
from the bottom of the pipette to the top of the network), an
apparent shear modulus of 6–9� 10�6 J/m for erythrocytes
had been extracted. It is shown in paper I that the three
polymer chain models have shear moduli in this range, and
so a simulation of the full cell should approximately repro-
duce such L versus P results. The free shape ensemble is
used to simulate the experiments; the results are shown in
Figs. 3 and 4.
The predictions of the three models for L/RP as a function

of pressure are plotted in Fig. 3. For both the simulation and
experiment, the pressure in the figure is actually the two-
dimensional pressure, 	, at the tip of the aspirated section
as calculated from the law of Laplace, namely,

	 � RPP/2. (17)

The conversion to physical units in Fig. 3 uses sR � 75 nm
and ��1 � 4.0 � 10�21 J. Given the uncertainties in the
experiment and simulation, the agreement is acceptable for
all three models. The stress-free model tends to be stretched
further into the pipette than the other two models for a given
pressure.
Strictly speaking, Eq. 17 applies only if the cap is hemi-

spherical in shape. We therefore use a self-consistency
check to verify its applicability. Fig. 2 illustrates how a
given network model’s area per junction changes as a func-
tion of applied pressure. If the law of Laplace is applicable
to the aspiration simulations, then the area per junction at
the cap of the aspirated segment as a function of	 from Eq.
17 should be the same as in Fig. 3. Suitably reduced units
facilitate the comparison shown for the stress-free and con-
densed models in Fig. 4. The agreement is excellent, con-
firming that the law of Laplace is appropriate to the cap
region. Good agreement is found for the prestress model as
well.
More detailed studies of erythrocyte deformation have

been made possible by advances in imaging techniques. In
recent red cell aspiration experiments (Discher et al., 1994),
the density profile of the cytoskeleton was viewed on mi-
cropipette-pressurized cells containing fluorescently labeled
proteins. Osmotic adjustment of cell volume was used to
control the length of the aspirated projection subject to the
constraint of nearly constant cell area as imposed by the
lipid bilayer. These experiments demonstrated that the sur-
face density of cytoskeleton at the entrance to the micropi-
pette is higher than the mean density of the undeformed cell,
and that the density decreases quasilinearly along the length
of the aspirated projection toward the cap. Our simulation of
these experiments is based upon the fixed shape ensemble,
and Fig. 5 displays two configurations characterized by
projection lengths of L/RP � 2 and 8. The specific model

FIGURE 3 Aspiration length L/RP as a function of in-plane tip tension in
the free shape ensemble. The representative experimental data of Waugh
and Evans (1979) for flaccid human erythrocytes are indicated by the solid
gray triangles. Between different cells, a standard deviation of 10–20% is
typically seen in the slope of the experimental data. In all situations, the
in-plane stress is obtained from 	 � RPP/2, where P � 0 is the aspiration
pressure; the sign convention employed is that 	 � 0 corresponds to
positive tension in the network.

FIGURE 4 Ratio of the cap area per vertex �Acap� to the reference area
per vertex AR � �3sR2 /2 in the free shape aspiration simulations of two
effective models. The in-plane pressure 	 in the aspiration simulations is
found from the law of Laplace: 	 � RPP/2. Shown for comparison by the
solid curves are the area ratios expected for the same networks confined to
two dimensions and subject to an in-plane stress (calculated in the mean
field limit).
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parameters used for the simulations of Fig. 5 are those of the
Prestressed model.
To begin the discussion of the fixed shape results, we

describe several generic features of the aspiration experi-
ments represented in Fig. 5. After the initial establishment
of an aspirated configuration, a steady state is reached in
which nodal fluxes between the four geometric surfaces

composing the aspirated shape, along with other monitored
quantities, appear to fluctuate about stable averages. One
such monitored quantity is the relative density distribution
of nodes. With ���R denoting the mean density of network
nodes over the surface of the undeformed cell, the relative
density, �� � ���/���R, is obtained by averaging and suitably
area-normalizing the number of nodes to obtain the average

FIGURE 5 Simulations of an effective cytoskeletal network in two fixed shape ensembles of different aspiration lengths (A and B); also shown (C) are
the corresponding relative density profiles. The network consists of 18,434 nodes, predominantly sixfold coordinated, and the nodes are confined in their
motions to four smoothly connected and well-defined surfaces: a large spherical body, a right circular cylinder of radius RP, a quarter-sector of a torus
(minor radius 0.6RP) that connects the cylinder and sphere, and a hemispherical cap. The latter three surfaces define the aspirated projection, of length L,
from z � 0. The projection is formed incrementally through a sequence of equi-area transformations from an initial sphere of radius Rs. In physical units,
if sR � 75 nm is assumed, then RP � 668 nm and the initial Rs � 2.67 �m. The density profiles, as projected into bins along the z axis, are normalized
in C by the homogeneous density of a network on a sphere. The particular model shown is the prestress model.
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nodal density in fixed increments of width �z � RP/4 along
z. In physical dimensions this interval closely corresponds
to the maximum resolution of an optical microscope. For the
two projection lengths shown in Fig. 5, A and B, the en-
semble-averaged density profiles along the z direction in
Fig. 5 C indicate that the relative density of nodes over
much of the sphere outside of the micropipette is uniform
(within 5%) and essentially unchanged from the nonaspi-
rated spherical state. Toward the entrance of the micropi-
pette, the relative surface density of nodes generally in-
creases only to decrease, quasilinearly, to a minimum value
near the tip of each projection’s cap, i.e., z/RP � 2 or 8 in
Fig. 5. These features, namely a uniform relative density of
network over much of the sphere outside the micropipette
and a gradient in relative density on the aspirated projection,
are the key signatures of red blood cell cytoskeletal defor-
mation, as revealed in recent micropipette experiments
employing fluorescence imaging (Discher et al., 1994).
Quantitative comparisons of relative density profile charac-
teristics allow a discrimination between network models
that fit experiments and those that do not.
As a consistency check between the fixed shape and free

shape ensembles, the work required to incrementally
lengthen the fixed shape projection is computed. The total
energy of an aspirated configuration is calculated by simply
summing the effective Enet over the entire network and
subtracting the same quantity for the nonaspirated sphere.
The ensemble-average energy of the prestressed worm-like
chain network is shown as an increasing function of pro-
jection length L/RP in Fig. 6 A. As concluded in paper I, the
characteristic energy scales of the various network models
are all consistent with a low-temperature state. Conse-
quently, it is assumed that free energy changes with projec-
tion length are dominated by the sum total of the effective
energy, at least for small projection lengths, so that changes
in the entropy associated with, say, restrictions on nodal
motions contribute negligibly. The work done by the aspi-
ration pressure in displacing the cytoskeletal projection can
then be equated with the additional energy stored in defor-
mation of the cytoskeleton, ignoring for this analysis the
constraints imposed by cell area and volume. Thus, to
extend the cytoskeletal projection from L/RP � 2 to L/RP �
3, corresponding to an incremental length change of RP and
volume change 
RP3, the necessary increase in pressure is
simply given in the energy plot (Fig. 6 A) by the [initial
slope]/(
RP3) � 8100kBT/
(668 nm)3 � 350 dyn/cm2. Pre-
vious discussions in this paper of the aspiration of flaccid
red cells (e.g., Waugh and Evans, 1979) suggest a value
somewhat closer to 300 dyn/cm2, a value not significantly
different, given the uncertainties in experiment. Exact
agreement is not to be expected, in any case, because the
present ensemble is based not on flaccid cells as in the first
part of this paper, but on cells pressurized by a strong
aspiration leading to a distinct overall geometry of defor-
mation. Note in Fig. 6 A that the energy scale is in units of
�104 kBT, which, together with the thousands of molecular
degrees of freedom involved in deformation, indicates a

work per molecule on the order of several kBT. Such an
energy scale is obviously well within the regime where
Boltzmann sampling and thermal fluctuations are both ex-
tremely relevant, as further elucidated below. One last fea-
ture of note in Fig. 6 A is that the strain energy in the
network grows more rapidly than the projection length,
reflecting, in part, the intrinsic nonlinearity of the deformation.
Density profiles of aspirated model networks are ob-

tained, as described above, by z axis projection for direct
comparison to experiment. Fig. 6 B shows very clearly that
simulations of both the stress-free and condensed model
underestimate the relative density at the cap of the projec-
tion, even with the significant uncertainty in experiments.
The prestressed network model, however, provides a better
fit of relative density at both the cap and the entrance. The
close agreement with experiment provided by this latter
model thus suggests that at least one set of the microscopic
simulations reported in paper I correlates well with some of
the available micromechanical measurements. In addition to

FIGURE 6 (A) Cumulated strain energy in the prestress model as an
increasing function of projection length L/RP. (B) Relative density of
aspirated networks at the entrance of the micropipette and at the projec-
tion’s cap: experiments (gray; Discher et al., 1994), simulations of the
prestress model (black), and simulations of the stress-free model (plus
signs). Results for the condensed model are within a few percent of the
stress-free model. Horizontal error bars on the simulation results all have
a length equal to the height of the quarter-sector of the torus at the
micropipette entrance, as motivated by the observation that the comparable
dimension on actual micropipettes used in experiments is vanishingly
small.
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the three network models focused upon here, we simulated
the aspiration of both unappended Hookean spring net-
works, i.e., linear springs having a nonzero force-free length
(e.g., Hansen et al., 1996; note that polymers have a force-
free length of zero), and lipid bilayer models in which
individual plaquettes strongly resist area changes. The latter
model of the bilayer gave, consistent with experiment (Dis-
cher et al., 1994), a homogeneous density distribution over
the aspirated projection as well as the rest of the cell. The
Hookean spring model, in contrast, exhibited cap densities
that were closest to the (poorly fitting) stress-free model,
despite the complicating appearance of predicted broken
symmetry states (Discher et al., 1997) in the compressed
region at the micropipette entrance. Importantly, only by the
sort of finite temperature simulation approach taken here
can one deal rigorously with the nonhomogeneous defor-
mation in micropipette aspiration of networks susceptible to
hysteretic phase transitions and finite size effects—two
demonstrated characteristics of Hookean spring networks.
Reasonable agreement between the one set of simulations

and experiment may possibly be due to the successful
model’s area modulus in the reference state, KARef, being
roughly four- to eightfold greater than the reference state
shear modulus, �Ref. By reference state, we again mean the
state of the cytoskeleton in the undeformed model cell; the
reference state is unstressed in two of the models and
prestressed in the third. This explanation in terms of moduli
was first suggested by previous continuum mechanics anal-
yses (see footnote on p. 809 of Mohandas and Evans, 1994),
with moduli suitably transformed into those lowest order
moduli commonly employed and defined in paper I. Com-
bined with the thorough study of microscopic models in
paper I, it is clear that 1) the zero surface pressure (	 � 0)
value for KA/� of the microscopic bead-and-tether networks
and Hookean spring networks is invariably close to 2, and 2)
only in a reference state that is compressed, i.e., prestressed,
is this characteristic ratio larger. Beyond the reference state
values for moduli, it is important to emphasize that the
present network approach rigorously includes, through the
worm-like chain model, nonlinear chain mechanics that
have heretofore been omitted from all cell deformation
analyses, continuum mechanics or otherwise. Partly because
of such omissions and partly because of an absence in prior
analyses of complicating structure as described below, it is
remarkable that significant guidance in simulation has been
provided by the sort of lowest order moduli identified in
previous analyses.
Beyond comparisons to well-documented experimental

results, additional descriptions of structure are readily gar-
nered from the present discrete simulation approaches.
What follows are results that would be exceedingly difficult
to obtain in detail by most other methods of analysis. The
focus of this final results section is the prestress network in
a moderate length projection of L/RP � 4. First, spectrin
tethers are not stretched the same along the length of the
projection, as is apparent in Fig. 5 B. Toward the micropi-
pette entrance, spectrin is very clearly compressed in the

circumferential direction and extended in the axial direc-
tion; near the projection tip, in contrast, spectrin tethers are
more isotropically stretched in being part of equilateral
triangles. This stretching is quantitatively elaborated in Fig.
7 A, where ensemble-averaged distributions of spectrin
stretch between network nodes are illustrated for three in-
tervals along the projection. Note that the maximum spec-

FIGURE 7 Mesostructure in network deformation for a projection length
L/RP � 4. (A) Average distributions of spectrin stretched between network
nodes, s/sR, at three intervals along the projection. Peaks of the distribu-
tions are approximated by two geometric stretch ratios denoted in the text
and in Fig. 8 by �m and �, and calculated essentially from the relative
density profile alone. (B) Anisotropic thermal motions of two representa-
tive nodes of the network near the entrance of the pipette and near the very
tip of the projection. (C) Projected profiles for spectrin orientation com-
ponents, Nx2, Ny2, Nz2, and the relative density for an entire aspirated cell
network. The orientation components here are simply the squared projec-
tions of spectrin chain unit vectors, e.g., �cos2�x�, ensemble-averaged over
all of the chains in each �z bin. Note that the aspirated projection is to the
right of z � 0.

1594 Biophysical Journal Volume 75 September 1998



trin stretch in this model had been fitted to be smax/sR �
3.12, so that a significant fraction of the chains at the pipette
entrance are strongly stretched to approximately two-thirds
of their maximum. Within the worm-like chain model (Eq.
1), such extensions are associated with forces in excess of
the linear or Gaussian regime forces by at least a factor of
2, i.e., the nonlinearities of the model become increasingly
important. In addition, as noted above, a significant fraction
of chains are also strongly compressed in the vicinity of the
entrance—hence the bimodal distribution for spectrin
stretching. Near the very tip of the same projection, in
contrast, the stretch distribution is single-peaked albeit
broad enough to include a small fraction of compressed
chains.
The peaks of all of the distributions in Fig. 7 A can be

located fairly accurately by two “mean” stretch values, one
parallel and one orthogonal to the surface generator. These
mean stretch ratios, denoted by �m and �, are illustrated in
Fig. 8 in a rectangular distortion of an initially square piece
of elastic surface on a flaccid cell. Estimates of such mean
stretches are obtainable directly from an integral over the
projection’s relative density profile and with respect to z� �
L � z; i.e.,

��z�� � �r�z��RP ���RsRP	
2

� ��RsRP	 � � 1Rs	
pole


z� �� dz��2��1/2

(18a)

�m � 1/����� (18b)

A boundary condition at the very tip or pole of the cap takes
the form �m � � � 1/��� , and the radius of the spherically
swollen, simulated cell before aspiration is Rs. These simple
expressions, with r(z�) being the radial distance from the
surface at z� to the symmetry axis of the projection, have
been derived previously in the context of analyzing exper-
imentally determined density profiles (Discher and Mohan-
das, 1996). In the present theoretical work, we see that these
same quantities, which presuppose axisymmetry, corre-
spond very closely to local means of the roughly bimodal
distributions of chain stretch. The distributions of stretch
reflect an anisotropic structure in a nonaxisymmetrical de-
formation. It is also clear that the maximum forces in chains
of the deformed network are achieved in those chains
counted in the high stretch tails of the distributions. In the
development of field theories of network failure, such con-
siderations may prove crucial, because even a small under-
estimation of stretching of nonlinear polymer chains can
lead to a gross miscalculation of the sustained force. With
the present aspirated projection and nonlinear worm-like
chain model, for example, a chain force of �2 pN is
estimated from the maximum mean field stretch given by
�m � 2, whereas a number of chains in the network actually
sustain much greater relative stretching of 2.5, correspond-
ing to a significantly higher force of �6 pN. Last, these
numerical values for force help support a central, underlying
premise here and in paper I, which is that red cell deforma-
tion, even very large deformation, is generally within the
elastic regime; this is because protein dissociation and un-
folding under force, despite possible loading-rate dependen-
cies (Evans and Ritchie, 1997), is not expected to occur up
to moderate experimental time scales, except at forces that
are perhaps an order of magnitude higher, as found for titin
(Rief et al., 1997). Direct measurements of spectrin disso-
ciation under force are, however, certainly needed.
On top of the strong, nonlinear stretching of chains be-

tween network nodes, significant thermally driven displace-
ments of nodes are observed. Such stochastic motions are
explicitly illustrated in Fig. 7 B for two representative nodes
of the network: one node near the entrance of the pipette,
and one node near the very tip of the projection. At the
pipette entrance, the ensemble of fluctuations about some
stationary average position is seen to be different in mag-
nitude between two orthogonal directions on the surface; the
typical anisotropy ratio is between 1:2 and 1:3. This cer-
tainly reflects anistropy in the deformed local structure and
is undoubtedly associated with the strong circumferential
compression evident in the leftmost distributions of Fig. 7
A. Accordingly, a node at the tip of the projection should
and indeed does exhibit more isotropic fluctuations. More-
over, because of the softness of the network, the amplitude
of the fluctuations is often a very significant fraction of
sR � 75 nm. With modern approaches to nanometer-scale
particle tracking, experiments on such local scales seem
feasible and should provide insights into local structure in
deformed cells. Obviously, the thermal fluctuations of net-
work nodes is a natural and very physical feature of the

FIGURE 8 Mean stretch ratios, �m and �, as surface distortion metrics
in the torsion-free deformation of an initially square surface element.
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system—a distinctive feature excluded from finite-element
and other sorts of continuum mechanics approaches.
Another signature of structural heterogeneity in the de-

formed network is provided by the spectrin orientation
fields, Nx2, Ny2, and Nz2, shown in Fig. 7 C as ensemble-
averaged, �z-binned profiles. The orientation components
here are simply the squared projections, e.g., �cos2�x�, of
unit spectrin chain vectors pointing along the “spectrin”
bonds between nodes. Polarization microscopy experiments
may prove particularly useful in correlations with these
structural simulations. The simulated projections, for exam-
ple, exhibit strong chain alignment in the pipette axis direc-
tion, as indicated by the fact that the largest orientation
component is Nz2. This is a feature of structure related to the
dominating high extension peak in the two leftmost distri-
butions of Fig. 7 A. For reference, the average squared
projection of a unit vector constrained to a surface but
otherwise isotropically oriented is simply 1/2; in contrast,
the squared projection of a unit vector isotropically oriented
in three dimensions is 1/3, as is well known in the field of
liquid crystals. Furthermore, a unit vector that is, respec-
tively, parallel or orthogonal to a fixed coordinate axis has
a squared projection of either 1 or 0. These three simple
physical limits, i.e., parallel: 1; orthogonal: 0; surface iso-
tropic: 1/2, are, respectively, the relevant limits for Nx2, Ny2,
and Nz2. On the pole of the sphere antipodal to the pipette,
for instance, Nx2 and Ny2 � 0.5, and Nz2 � 0. Toward the
center of the sphere, Nz2 increases to near 0.5, consistent
with thermal averaging of the lowest order isotropy of a
sixfold structure. Importantly, over most of the projection,
Nz2 is very nearly 1, whereas Nx2 and Ny2 almost vanish. Such
a set of simulation results unambiguously establishes a
quantitative basis for experimental assessment of chain
alignment induced by deformation.

CONCLUSIONS

In paper I, the geometrical and elastic properties of polymer
chain networks at the intended level of spectrin persistence
length were determined. Although the large number of chain
segments makes such models computationally unwieldy
when considered for the simulation of whole cells, the
present paper shows that the segmented chains can be
faithfully replaced by effective potentials that substantially
reduce the number of degrees of freedom in the models and
permit the simulation of whole cells on conventional work-
stations. The effective potentials include a worm-like chain
two-body term representing the individual spectrin mole-
cules, and a three-body term representing the steric interac-
tion between different chains. These terms provide a better
description of the polymer chain models than does a net-
work of Hooke’s law springs, because the latter spring
networks possess two instabilities (in collapse and expan-
sion) that are absent from the full chain networks of paper I.
The three parameters of the effective potential can be

reduced to two by demanding that the network energy be a

minimum at a particular value of the intervertex separation.
The remaining two parameters—the persistence length and
maximum extension of the chains—are then fit by the
condition that the stress dependence of the area in the
effective network should reproduce that of the polymer
chain network. The fitting procedure uses a mean-field
approach for computational efficiency, although it is sub-
sequently verified that the parameters from the fit are not
sensitive to the mean-field approximation used in their
determination. There is a unique parameter set for each
polymer chain model, and the values of the parameters are
found to be in the range expected, given their interpretation
as persistence lengths and maximum extensions. Thus the
microscopic ingredients of the effective potentials—en-
tropic elasticity and steric repulsion of the chains—are
supported by the rough agreement of the parameters with
expectations.
As a first application, the effective potentials are em-

ployed to simulate the micropipette aspiration of erythro-
cytes. Two separate simulation codes were developed, mir-
roring the two principal aspiration techniques and
necessitated by the different relaxation modes of the com-
putational networks. In the free shape ensemble, networks
based upon effective representations of all three polymer
chain models do a credible job of reproducing the aspiration
of flaccid erythrocytes, as measured by Waugh and Evans
(1979). This result is not surprising, given that the three
polymer chain models have shear moduli in the range esti-
mated from flaccid cell experiments. Furthermore, the shape
of the aspirated section of the cell within the micropipette
was found to be cylindrical and capped with a hemisphere
as confirmed by the success of the law of Laplace in
describing the behavior of the network in the cap region.
Again, this result is anticipated from continuum mechanics
calculations of aspiration based upon axisymmetrical
shapes. However, because whole cell simulations do not
assume any particular symmetry of the deformations, they
permit the examination of complex, anisotropic distortions
of the network that are particularly manifest in the region
where the cell enters the micropipette.
The more stringent test of the polymer chain models

comes from comparison with the distribution of network
nodes found in fluorescence imaging experiments. In the
fixed shape ensemble, each model displays the same generic
features of the cytoskeleton under deformation; namely, the
node density decreases roughly linearly along the aspirated
section, and the cap density decreases with the total aspi-
rated length. However, two of the models—stress-free and
condensed—notably underpredict the cap density for mod-
erate extensions. The area compression modulus KA of both
of these models is too low compared to the shear modulus
�, and the networks dilate too easily under stress. Only the
prestress model exhibits good quantitative agreement with
the density profile of network nodes, because its compres-
sion modulus is more than four times its shear modulus
in the prestressed reference configuration (compared to
KA/� 
 2 for the other models).
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Assuming that the fluorescence imaging experiments are
correctly quantitated and that there is no missing physics in
the simple models here, the implied magnitude of network
prestress, more specifically precompression, that is required
for matching simulations with fluorescence experiments is
remarkable: between a 40% and 50% area reduction from
the stress-free state is necessary. Whereas the network is
proposed to be in such a state of compression, the bilayer
that imposes this stress in the cell-assembled state is, as a
consequence, under an equal and opposite tension. This
bilayer tension is, however, so small (�0.01 mN/m) that
even thermal fluctuations of the bilayer would not be greatly
suppressed. Stripping the bilayer away would allow, one
might suppose, the cytoskeleton to expand outward, leading
to a near-doubling of the cytoskeleton’s area. Such an
expansion, however, is not observed experimentally (Svo-
boda et al., 1992) for the simple reason that thermal fluc-
tuations of the network in a full three-dimensional space—
rather than the quasi-two-dimensional space accessible
under constraining interactions with the relatively unbend-
able bilayer—dramatically reduces the projected area of the
network (Boal, 1994). The prestress on the network as
imposed by the bilayer may arise, we conjecture, as the red
cell membrane loses area in the early stages of cell matu-
ration (Mohandas and Groner, 1989), possibly via the shed-
ding of lipid-rich and cytoskeleton-poor vesicles (Discher
and Mohandas, 1996). The cytoskeleton might then initially
assemble on the bilayer in a stress-free state; it would,
however, become compressed as lipid is preferentially lost.
Indeed, the scatter observed in fluorescence imaging exper-
iments, may in part reflect variation in the age of the cells.
Last, precompression of the network may help explain

recent findings on mutant spheroerythrocytes that lack the
major integral protein Band 3, a protein previously thought
necessary to anchor the network to the bilayer. Band 3 is
simply not required to form the red cell membrane skeleton
(Peters et al., 1996). Applying, in a simple zero-temperature
analysis, the law of Laplace to a spherocyte with a pre-
stressed bilayer, the precompressed network is seen to phys-
ically push itself against the bilayer. This tendency to lo-
calize at the membrane occurs in the absence of any specific
interactions with integral proteins, consistent with the mu-
tant erythrocyte results, and revealing, perhaps, the evolved
importance of precompression. Delaminating instabilities,
i.e., macroseparation of network from bilayer, with non-
spherical cell shapes are also readily argued from the law of
Laplace, and such instabilities could very well lead to the
shedding of lipid vesicles, a phenomenon reported for these
and other spheroerythrocytes.
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