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Balanced Electrostatic and Structural Forces Guide the Large
Conformational Change Associated with Maturation of T ¼ 4 Virus
Tsutomu Matsui,† Hiro Tsuruta,‡ and John E. Johnson†*
†Department of Molecular Biology, The Scripps Research Institute, La Jolla, California; and ‡Stanford Synchrotron Radiation Lightsource,
SLAC National Accelerator Laboratory, Menlo Park, California
ABSTRACT Nudaurelia capensis omega virus has a well-characterized T ¼ 4 capsid that undergoes a pH-dependent large
conformational changes (LCC) and associated auto-catalytic cleavage of the subunit. We examined previously the particle
size at different pH values and showed that maturation occurred at pH 5.5. We now characterized the LCC with time-resolved
small-angle x-ray scattering and showed that there were three kinetic stages initiated with an incremental drop in pH: 1), a rapid
(<10 ms) collapse to an incrementally smaller particle; 2), a continuous size reduction over the next 5 s; and 3), a smaller final
transition occurring in 2–3 min. Equilibrium measurements similar to those reported previously, but now more precise, showed
that the particle dimension between pH 5.5 and 5 requires the autocatalytic cleavage to achieve its final compact size. A balance
of electrostatic and structural forces shapes the energy landscape of the LCC with the latter requiring annealing of portions of the
subunit. Equilibrium experiments showed that many intermediate states could be populated with a homogeneous ensemble of
particles by carefully controlling the pH. A titration curve for the LCC was generated that showed that the virtual pKa (i.e., the
composite of all titratable residues that contribute to the LCC) is 5.8.
INTRODUCTION
Maturation is an important event associated with establishing

virus infectivity (1). It occurs in many complex viruses

to accommodate the need for weak interactions between

subunits to achieve proper self-assembly and the requirement

for a robust particle to survive the extra cellular environment.

Maturation results from a program encoded in the initial,

often fragile, immature particle that directs large confor-

mational changes resulting in a robust infectious virion.

Because purified infectious virions have already achieved

the mature state, studies of the maturation process in vitro

require the use of virus-like-particles (VLPs) that can be

purified in the immature state. Maturation is often triggered

by changes in pH or other electrostatic events within the

cell allowing in vitro maturation to be controlled by careful

adjustment of the pH and the associated state of protonation

of critical residues in the capsid. Nudaurelia capensis omega

virus (NuV) is a highly accessible system for the study of

large conformational changes (LCC) leading to particle mat-

uration and associated auto-catalytic subunit cleavage (2).

NuV is a T¼ 4 icosahedral virus (Fig. 1) that infects Lepi-
doptera (3,4). Expression of the NuV capsid protein gene in

a baculovirus system results in the spontaneous formation

of VLPs within the infected SF21 cells. When purified at

pH 7.6 these particles are ~480 Å in diameter and correspond

to the procapsid (5). These particles contain mostly cellular

t-RNA and are not infectious. Lowering the pH to 5

in vitro triggers maturation with the particle size reducing
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to ~400 Å and the initiation of the auto-catalytic cleavage

(6). We have shown previously that the size and extent of

cleavage are highly sensitive to the pH and can be controlled

by carefully adjusting it (2). This sensitivity is due to the

negatively charged surfaces of the juxtaposed subunits.

At pH 7 the negative charge causes repulsion resulting in

the larger size and weak subunit interaction. Indeed, the

particle integrity is maintained mostly by subunit interac-

tions with the RNA. At lower pH values the acidic residues

are protonated and the repulsion is reduced, as is the particle

size. This change is continuous and at a given pH highly

homogeneous populations of intermediate sized particles

can be produced (6).

We use small-angle x-ray scattering (SAXS) to show that

incremental changes in the particle size as a function of pH

can be used to determine the overall pKa of the particle

(i.e., a composite of all titratable groups that contribute to

the LCC) and that the final stages of the LCC are a delicate

balance between electrostatic repulsion and structural resis-

tance imposed before the auto-catalytic cleavage reaction.

These studies extend and improve previous equilibrium

SAXS measurements with this system (6), allowing the

role of subunit cleavage in the LCC to be determined.

We also show with time-resolved (TR) SAXS that an incre-

mental reduction in the electrostatic repulsion leads to

a collapse of the particle to a smaller size within ~10 ms.

This is followed by a continuous change over the next 3–5 s

followed by a much slower (~2–3 min) structural reorganiza-

tion required to achieve the final equilibrium structure at

a given pH. The tuning of the different forces analyzed is

exquisite, providing an exceptional opportunity for detailed

measurements in a nano scale biophysics laboratory.
doi: 10.1016/j.bpj.2009.12.4283
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FIGURE 1 A schematic view of the mature T ¼ 4 NuV

particle. (A) Outside view of the T ¼ 4 subunit arrange-

ment. A particle is composed of 240 coat proteins.

The quasi-equivalent A–D subunits (22) share identical

sequences but are located in different geometric environ-

ments. Based on the dihedral angle between subunits,

two classes of subunit-subunit contact are defined.

The flat contact of 180� dihedral angle (C-D or B-D) is

located along the line between icosahedral twofold axes,

whereas the bent contact of ~138� dihedral angle (A0-B,

A0-A or B0-C) is located along the line between icosahedral

fivefold and twofold axes. (B) A schematic view of the

subunit interfaces and molecular switches (cylinders) that

determine the flat and bent dihedral angles. The view is

from inside the particle looking out. The cleavage sites at

residue 570 (shown as Xs) generate b (residues 1–570)

and g (residues 571–644) and are located on the interior

portion of the shell near the icosahedral fivefold

(A subunit) or twofold (quasi sixfold) (B–D subunits)

axes. The C-terminal g helices (residues 613–640) in the

C and D subunits function as molecular switches and are

observed (i.e., ordered) only at the flat contact where

they prevent the hinge motion between subunits and keep

the interface flat (17,23).
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MATERIALS AND METHODS

Sample preparation

Expression and purification of wt NuV and N570T mutant VLPs have been

described (2,7,8). VLPs in the buffer A (10 mM Tris/HCl, pH ¼ 7.6 and

250 mM NaCl) were concentrated to 1.5 mg/mL (wild-type) or 3 mg/mL

(N570T). One volume of VLPs solution was added into 2� vol of the buffer

B (100 mM NaOAc (for pH¼ 4.5–5.5) or 100 mM MES (for pH¼ 5.6–6.8)

and 250 mM NaCl). The reaction was incubated at room temperature for

designated time. On slow TR experiments, the data collection was exactly

started at indicated time. All pH values indicated in figures were confirmed

by carrying out the dilutions without VLPs in a volume sufficient to directly

measure the pH. VLPs for fast TR SAXS experiment were concentrated to

4 mg/mL in the buffer A. The 1� vol of VLPs solution was mixed with 1 vol

of the buffer B using the fast stopped flow mixing device.
Data collection

X-ray scattering measurements in equilibrium and TR modes were con-

ducted at the Beam Line 4-2 of the Stanford Synchrotron Radiation Light-

source (SLAC National Accelerator Laboratory, Menlo Park, CA) in

February 2009 and August 2009 (9). The earlier run used a 2.5 m sample-

to-detector distance and a MarCCD165 detector (MarUSA, Evanston, IL).

A thin-walled quartz capillary cell, maintained at 20�C, kept a sample

aliquot in the x-ray beam whose wavelength was calibrated to be 1.127 Å.

The ring current ranged from 100 to 78 mA during beam time. The data

were collected using 15-mL sample aliquots, employing the data acquisition
Biophysical Journal 98(7) 1337–1343
program Blu-ICE (10,11). Experiments with the wt capsids were performed

with 16 successive 2-s exposures. Experiments with N570T capsids were

performed with 2 3-s exposures. For each image, an integrated beam inten-

sity value, recorded by a photodiode (International Radiation Detectors,

Torrance, CA) mounted inside the beam stop, was used to normalize scat-

tering intensities for small beam intensity variations and different integration

times in case of TR experiments. Individual two-dimensional images were

scaled, azimuthally integrated, and averaged after inspection for time-depen-

dent variations using the data processing program SASTool (formerly called

MarParse) (9). No appreciable change in scattering pattern was detected that

would otherwise suggest radiation damage or particle precipitation. Match-

ing blank buffer scattering curves, obtained in the identical way, were sub-

tracted from all virus scattering curves. Detector pixel values were converted

to the scattering vector length values Q ¼ 4psin(q)/l, where q is 50% of the

scattering angle and l the x-ray wavelength using the 100 reflection plane

and related reflections of a silver behenate powder sample (12). In the later

run, additional equilibrium measurements were carried out in the identical

way as the earlier run with exception of 1.7-m sample-to-detector distance,

a Rayonix MX225-HE CCD detector (Rayonix, Evanston, IL) and

200–148 mA ring current. TR measurements were conducted using a higher

beam flux provided by the synthetic multilayer monochromator (13), a

stopped-flow rapid mixer, maintained at 20�C, (Unisoku, Hirakata, Japan),

and a silicon pixel array detector Pilatus 300K (Dectris, Baden, Switzerland).

The estimated mixing dead time of the stopped-flow mixer is 5 ms. The

EMBL data acquisition system provided timing pulses required for synchro-

nizing the stopped-flow mixing completion to detector trigger as well as for

recording beam integrated intensities synchronously with the series of x-ray

scattering measurements (14,15). The following image acquisition sequence



FIGURE 2 (A) The progressive

changes in the SAXS pattern as a func-

tion of pH for wt NuV VLPs. The pro-

capsid particles were incubated at the

given pH for 3 days before data collec-

tion. The equilibrium SAXS pattern

undergoes no further change at that

point in time if the pH is carefully main-

tained. The SAXS data between Q ¼
0.009 and 0.035 Å�1, corresponding

to a resolution range of 698–179 Å

were used for further curve fitting.

Note that the change in the SAXS curve

is continuous with no ISO scattering

points (see Materials and Methods).

(B) A comparison of the particle radius

of the wt NuV VLPs with the N570T

noncleaving VLPs after 3days incuba-

tion, determined from the equilibrium

SAXS curve. The particle radius of the wt NuV VLPs decreases in a continuous manner between pH 6.5 and 5.5 with the midpoint at pH 5.8. We interpret

this plot as a titration curve for the overall particle, thus the pKa for the particle corresponds to the midpoint position. The curves superimpose within exper-

imental error between pH 7.0 and 6.0. Between pH 6.0 and 5.0 the differences in the radii are significantly greater than the experimental error. The wild-type

particles initiate auto-catalytic cleavage at pH 5.8 where ~30% of the subunits cleave in 3 days. At pH values of 5.5 and below virtually 100% of the subunits

cleave in 3 days. Between pH 5.75 and 5.25, cleavage is important for the final size of the particle. There is a balance of forces between electrostatic repulsion

and resistance to condensation due to the uncleaved subunit polypeptides. At pH 5 and below the reduction in electrostatic repulsion overcomes any effect of

subunit cleavage. (C) A curve similar to that shown in B, except incubation times before the size measurement were only 1 min. In contrast to B, in this time

regime, the two curves are closely similar at all pH values. Because even at pH 5.0, very little cleavage has occurred in 1 min, this plot supports the role of

cleavage in allowing particle condensation. (D) A comparison of 1 min and 3 day incubations for wt VLPs. The plot emphasizes the role of annealing and

cleavage in achieving the final particle size. Between pH values of 7.0 and 6.0 there is no cleavage at any time point. We interpret the difference in particle

size as the time required for the subunit polypeptide to anneal sufficiently to achieve the minimum radius. Between pH 5.8 and 5.0 subunit cleavage is a domi-

nant factor in the particle condensation. Time resolved studies of the wt VLPs radius after 3 min at pH 5.0 show that in that time frame sufficient cleavage has

occurred to allow particle condensation. (E) A comparison of N570T incubated for 1 min or 3 days at the pH values indicated. Here there is no effect of

cleavage so the differences in radii at the two time points must be due to subunit annealing alone.
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was used for each mixing event: 64 images with 7-ms integration, 64

images with 27-ms, 32 images with 97-ms, and 16 images with 297-ms.

Each image acquisition is followed by 3-ms readout. The first image thus

covered between 5 and 12 ms after the reaction initiation (taking into account

5 ms mixing dead time), the second image 15 and 22 ms, and so on.
Curve fitting

All SAXS patterns were analyzed with the routine MIXTURE within the

software suite PRIMUS (12). A polydisperse solid sphere with a uniform

density was fit for this type of analysis. Interparticle interactions were not

taken into account and the radius and the polydispersity defined by a mono-

modal Gaussian distribution were parameterized. Scattering below the

second maximum (Q < 0.035) was used for curve fitting. The results of

the equilibrium and slow TR experiments were based on the average

(5SD) of three independent experiments.
RESULTS

SAXS data were collected in both equilibrium (static) and

TR modes to study the LCC of the capsid during the matu-

ration of NuV. Equilibrium experiments were carried out

at pH values between 7.0 and 4.5 at different intervals,

depending on the pH range. Data were collected with 3-s

exposure times and analyzed in the range from Q ¼ ~0.01

to 0.035 Å�1. In each case the particles were incubated at

the given pH for 3 days (see Materials and Methods) with

no further change in the SAXS pattern observed during
longer incubations, thus the particles were in a static confor-

mation after this period of incubation. Fig. 2 A shows the

progressive change in the SAXS pattern as the pH was

lowered at the intervals indicated. There were no indications

of ISO scattering points in the pattern indicating that the

particles changed size in a continuous manner and that the

ensemble of particles was nearly homogeneous. We evalu-

ated the particle size by a curve fitting procedure in which

the particle radius and polydispersity were the only two

parameters describing the uniform density sphere model

(16). The procedure allows the particle radius to be estimated

with a precision of ~2 Å (see Fig. S1 A in the Supporting

Material). The polydispersity of all the equilibrium measure-

ments is virtually constant (s ¼ ~0.5%) at all pH values for

experiments carried out under identical conditions (see

Fig. S1 B). The average value of the polydispersity, however,

changes from ~14% for wt measurements to ~23% for the

N570T mutant measurements. As these data were measured

under different experimental conditions (e.g., different detec-

tors were used at different specimen to detector distances),

we believe that the polydispersity accounts for insufficient

resolution of the zero points in the spherical diffraction

pattern and that the actual dispersity in particle size is sig-

nificantly less than the percentage indicated in the curve

fitting. This is supported by the subnanometer cryo-electron

microscopy (cryo-EM) reconstructions of the NuV
Biophysical Journal 98(7) 1337–1343



FIGURE 3 A TR analysis of the wt VLP at pH 5.5. The particle radius

decreases from 236 to 207 Å in 1 min (see Fig. 4 A) and then slowly

decreases in size to ~200 Å as shown. The size change is closely propor-

tional to the fraction of subunits cleaved, emphasizing the role of cleavage

at this pH in the final stages of particle condensation. The kinetics of particle

cleavage at pH 5.5 is shown in the inset graph (2).
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procapsid and capsid recently reported and the close simi-

larity between these extreme SAXS curves and those of

intermediate size (17).

Fig. 2 B shows the estimated particle radius at equilibrium

of the wt NuV and the N570T mutant as a function of pH,

determined with the curve-fitting procedure. Measurements

of the wild-type particle at pH 7.0 and 6.8 displayed virtually

identical patterns (corresponding to a radius ~236 Å) indi-

cating no effect on the particle diameter in this range of

pH. The first detectable change in the particle radius occurred

at pH 6.5 where it decreased by ~2.8 Å. Between pH 6.5 and

5.5 the particle radius changes by 35 Å in a continuous

manner, with a value of 201 Å at pH 5.5. Only a small reduc-

tion in size is observed between pH 5.5 and 4.5 with a final

radius of 197 Å. This curve corresponds to the titration of

acidic residues and shows that the overall experimental

pKa for the particle is ~5.8.

The N570T mutation, that does not undergo the matura-

tion cleavage, shows identical behavior to wt at pH values

between 7 and 6.0. However, they separate at pH values

between 5.8 and 5, with the mutant particle displaying

systematically larger radii above pH 5.0. Below this pH

the two particle dimensions are closely similar, but the

mutant is systematically larger and this may result from the

inability of the threonine to properly pack at the active site

normally occupied by the asparagine.

The difference in particle size between pH 5.8 and 5 is due

likely to the effect of cleavage in the wild-type particle.

To test this hypothesis a second experiment with wild-type

and N570T VLPs was carried out in which they were incu-

bated for exactly 1 min before 3 s data collection. This incu-

bation time was chosen because at pH 5.5, virtually no

cleavage occurs in 1 min (2), thus wt and N570T would be

expected to display very similar curves at this pH if the

differences observed in the long incubation were due to

cleavage. Fig. 2 C shows that the wt and N570T titration

curves recorded after a 1-min incubation have closely similar

shapes over the entire pH range, although the wt particle is

systematically slightly smaller and there is no significant

drop between pH ¼ 6 and 5, confirming the role of cleavage

in the LCC. Fig. 2 D confirms the role of cleavage by

comparing the wt particle radii at 1 min and 3 days showing

the dramatic effect of cleavage between 6.0 and 4.75. At pH

5 data were collected after a 3-min incubation, at which point

~15% of the subunits are cleaved, and the particle size is

already identical to the 3-day incubation indicating that

only a small fraction of the subunits need to cleave to achieve

the final particle conformation.

The experimental results above show clearly that cleavage

is required for the full LCC at pH 5.5. We interpret this as an

adaptation of the subunit interfaces that depends on cleavage.

However, examination of Fig. 2 E suggests that other adjust-

ments dependent on pH, but not cleavage, occur at all pH

values between 6.5 and 4.75 with the most dramatic differ-

ence in the LCC occurring at pH 5.75.
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To directly determine the relationship between cleavage

and particle size, a TR experiment was carried out at pH

5.5 (the maximum pH at which 100% cleavage occurs in

3 days), near where the greatest difference between the 1-min

time point and the 3-day time point occurred. Fig. 3 shows

that the particle size changes with the percent cleavage and

at this pH virtually 100% of the subunits must be cleaved

to reach the size of the mature capsid.

The various changes to the particle described at pH 5.5 all

occurred after the dramatic size reduction from 236 to 207 Å.

The rate at which this large change occurs was studied as

a function of pH with TR SAXS. The maximum time resolu-

tion for the experiment is ~10 ms and these frames were

recorded after the drop in pH using a stop-flow mixing appa-

ratus. Fig. 4 A shows the dependence of particle size on pH

from 12 ms to 3 days. The rate of the LCC is similar in the

first ~20 ms at pH values between 6 and 4.5, however, the

initial particle size after the drop in pH is significantly

smaller at the lower pH values in this time regime (Fig. 4, B
and C). Fig. S2 B shows a detailed description of the changes

in particle size during the first second at the designated

pH value. The data show that the rate at which the initial

smaller size is achieved is very rapid in each case, however,

as in the longer time regime measurements, there is a subse-

quent annealing time required to fully achieve the final size

at a given pH.
DISCUSSION

NuV has evolved a remarkable electrostatic environment

that allows a controlled maturation from procapsid to mature

capsid. Cellular apoptosis has been proposed as the biolog-

ical driving force for this maturation, as cells in their final



FIGURE 4 A summary illustrating the temporal and spatial components

of the NuV particle LCC change. (A) A TR analysis between 12 ms and

3 days of the particle dimension at pH values between 7 and 4.5. At pH 6

there is a size reduction from 236 to 222 Å in 1 min with three interme-

diate-sized particles resolved between 12 ms and 10 s (Fig. S2). Between

pH 5.5 and 4.5 particles condense from 236 to 231–225 Å in 12 ms or

less. Those sizes must be where the first resistance to condensation is met,

initiating the pH-dependent annealing resulting in additional intermediates,

that are progressively smaller at lower pH values and readily detected at time

points between 102 ms and 10 sec. (B) A plot illustrating the time frame for

different events associated with the LCC at different pH values. At all pH

values below 6.0 there is a rapid condensation within ~10 ms (red), the

extent of which depends on pH (see B and Fig. S2). There is minimal resis-

tance to the subunit condensation during this first change. The first resistance

to subunit condensation is overcome by polypeptide and possibly RNA

annealing that occurs between 10 ms and ~5 min leading to the initiation

of auto-proteolysis. Note that at pH 6.0 and above there is annealing in

this time frame, but cleavage is never initiated. The next stage of condensa-

tion resistance (that only occurs between pH 5.0 and 5.8) is overcome by the

subunit cleavage and this occurs between 3 min and 1 day (e.g., see Fig. 3).

(C) A plot that correlates size change with the time regimes shown in B.

In the pH range of 4.5–5.0 the first resistance to condensation occurs at

224–228 Å correlating with a size change of 8–12 Å in 10 ms. Between

pH 5.8 and 6.5 a change of only 2–3 Å occurs in the same time interval.
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stage of existence display a lower pH than healthy cells

(18,19). Thus NuV assembly and RNA packaging occurs

at pH 7 where subunit interactions are tenuous due to electro-

static repulsion and differences between quasi-equivalent

interactions are minimized. The lower pH of apoptotic cells

reduces the repulsion and induces maturation.

We have characterized the details of the size dependence

of NuV on pH as well as the rate of subsequent adaptations

of subunit interfaces required for the full particle maturation.

At pH 5.5 there is sufficient remaining electrostatic repulsion

that full maturation depends on the auto-catalytic cleavage.

Fig. 3 provides a striking relationship between the fraction

of subunits cleaved and the particle size at this pH. In

contrast the particle minimizes its size at pH 5 and below,

even without the cleavage. Thus, there is a delicate balance

between electrostatic repulsion and strain induced by the un-

cleaved tertiary structure. Whereas the wt NuV reduces this

strain with cleavage, the N570T mutant permanently stops at

the premature particle size at pH 5.5. This balance of struc-

tural resistance to particle size reduction is readily overcome

at pH 5 where all particles, regardless of their state of

cleavage, have nearly identical sizes.

The TR SAXS data show that at pH values<6, the particle

size collapses to a reduced dimension within 10 ms and then

the size continues to decrease in a continuous manner for the

next 5 s. A much slower and smaller size reduction occurs in

the next 2–3 min. This, we believe, is dependent on slow

reorganization of portions of the subunit involved in molec-

ular switching and possibly autocatalysis. The time regime

of this latter transition and the homogeneity of the parti-

cles suggest that three-dimensional information could be

obtained for these transitions with TR (3 min to 4 h) cryo-

EM. These experiments are currently underway. Fig. 4, B
and C, summarizes the temporal and spatial behavior of

the particles between pH 6.0 and 4.5.

We reported previously the cryo-EM reconstruction of

a mutant of NuV (E278Q) that could not undergo the full

LCC at pH 5.0 in the normal time frame (the transition

that normally occurs in ~2 min required nearly 8 h) and

this provided some mechanistic insight into one aspect of

the adaptations that must be achieved for the full LCC

change (2). The spherically averaged radius of the E278Q

particle at pH 5.0 was 207 Å, a dimension normally observed

for particles at pH 5.75 at the 2-min incubation time.

No cleavage for the E278Q particles was detected until
At pH values between these two extremes have size changes roughly propor-

tional to the pH. The number of annealing events and the effect of these on

particle size are highly dependent on pH. Between pH 4.5 and 5.0 noncleav-

age-dependent annealing is readily measurable in the 10 ms to 3 min time

frame, but cleavage is not required at all to reach the fully condensed state.

In contrast at pH 5.5 noncleavage-dependent annealing is measured between

10 ms and 5 min and cleavage-dependent annealing occurs between 5 min

and 1 day. At pH 5.8 the fully condensed state is never reached because

the required cleavage stops at ~12 h with only ~30% subunit cleaved.

(See Supporting Material for details of the TR analysis.)

Biophysical Journal 98(7) 1337–1343
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~30 min after pH reduction. The pseudo-atomic model for

this intermediate sized particle showed that side chains of

residue 278, located near the threefold and quasi-threefold

axes, made a lock and key interaction on size reduction

that was inhibited when Q replaced E. We propose that in

the wt NuV this insertion occurs in ~1 min and contributes

to the annealing time observed at pH 5.5.

The effect of cleavage on the particle size can be rational-

ized from recent subnanometer cryo-EM reconstructions of

the wt, fully mature capsid at pH 5.0, and the capsid of

N570T (noncleaving mutant) at pH 5.0. The major difference

in the electron density occurred at residues 613–640 of the C

and D subunits where that polypeptide was well ordered in

the wt particle and disordered in the N570T particle (17).

These residues function as a molecular switch that controls

the angle at the subunit interface between the B-C subunits

and D-D subunits (Fig. 1). Cleavage allows these residues

to fully insert at this interface whereas they remain dynamic

before cleavage. At the pH of the cryo-EM reconstructions

the size of the two particles is closely similar in agreement

with the SAXS measurements of the two particle types at

pH 5 that are also the same within experimental error.

However, at pH 5.5, cleavage is required to complete the

LCC. N570T never completes the LCC at this pH and

Fig. 3 shows that there is a strong correlation between

particle size and the fraction of subunits cleaved. We propose

that the particle size change directly reflects the organization

of residues 613–640 and their ordering into the subunit inter-

face as the cleavage relaxes constraints on the tertiary struc-

tures of these polypeptides.

The mechanism evolved for NuV maturation has pro-

duced a nano physics laboratory in which molecular driving

forces can be controlled and balanced readily. The contin-

uous nature of the particle transition, where numerous inter-

mediate states can be populated in a homogenous manner,

together with the high resolution x-ray model and numerous

subnanometer cryo-EM reconstructions allows the rational

design of mutations that may trap intermediate forms of

the particle for further biophysical analysis. The behavior

of the particles determined in this and previous studies

suggests that a kinetically characterized NuV mutation

(E73Q) will allow such an intermediate structure to be trap-

ped and characterized (2).

The continuous nature of the NuV pH dependent matura-

tion is strikingly different from another well-characterized

maturation observed in the bacteriophage HK97 (20)

HK97 maturation depends on a metastable particle achieved

through scaffold-protein mediated assembly and subunit

proteolysis catalyzed by a virally encoded protease (21).

On DNA packaging this particle proceeds through an

exothermic maturation cascade dramatically increasing its

diameter with no populated intermediate particles. Thus,

although the necessity for maturation seems universal in

complex virus assembly the mechanistic details are markedly

different.
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SUPPORTING MATERIAL

Two figures are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(09)06101-3.
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