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In this paper many problems left unsolved in my book [6] are now solved 
using subharmonic techniques or the theory of several complex variables. 

In the first section which concerns properties of the spectrum in Banach 
algebras I give some applications of the subharmonicity of k + Log &,(f(n)) 
and A + Log c(f(n)), where 1 -f(n) is an analytic function from C into a 
Banach algebra and a,,, c, are, respectively, the nth diameter and the 
capacity of the spectrum off(n). One important result is the general theorem 
of perturbation by inessential elements, which is a generalization, to any 
Banach algebra, of a result of I. C. Gohberg. It implies in particular the 
general conjecture of Pelczynski for Banach algebras with involutions, which 
has been conjectured for a long time. 

In the second section concerning uniform algebras and problems of 
analytic strucure, I give a simple proof of the subharmonicity of 
I -+ Log 6,(K,(A)) and A -+ Log c(K,(d)), where A+ K,(A) denotes the “fiber 
function.” I conjectured this result several years ago and it was solved 
independently by Stodkowski [41] and Senichkin [39]. From this I can 
simplify and even generalize very strongly results of E. Bishop, R. Basener, 
B. Aupetit and J. Wermer, and N. Sibony, about analytic structure. I also 
give the very important proof by Z. Slodkowski on subharmonicity of 
A + Log p(K,(n)), which avoids Rossi’s local maximum principle. At the end 
of this part I also show that subharmonic methods can be used to prove 
results of Seidel-Frostman and Tsuji which concern cluster sets theory. 

The third section is the most important because it includes and generalizes 
the two previous ones. It introduces a general theory of analytic multivalued 
functions which originates from my conjecture on the scarcity of operators 
with countable spectrum (Conjecture 3) and from some ideas of Z. 
Slodkowski. I give rather easy proofs of the fact that A+ Sp f(n) and 
k -+ K,(A) are analytic multivalued functions. Then using several results of K. 
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Oka, K. Nishino and H. Yamaguchi, and theorems about domains of 
holomorphy, conjecture 3 can be proved. And this last conjecture implies the 
general conjecture of Pekczynski and all the problems of analytic structure in 
the case of finite or countable fibers. 

To conclude I would like to thank John Wermer and Zbigniew Slodkowski 
for the many discussions we had on these problems. Of course many of their 
ideas have been used to improve this work. 

1. SUBHARMONICITY OF THE SPECTRUM IN BANACH ALGEBRAS 

In [46,47], E. Vesentini proved the subharmonicity of ,l+ Log p(f(A)), 
where 1 -f(A) is an analytic function from a domain D of Cc into a Banach 
algebra A and where p(x) denotes the spectral radius of x in A. From this, I 
proved the subharmonicity of I + Log &f(d)), where 6(x) denotes the 
diameter of the spectrum of x, and a lot of results (see Chaps. 1, 2 and 3 of 
[6]), in particular the following important scarcity theorem. 

THEOREM 1.1 [4; 6, p. 661. Let il -f(1) be an analytic function from a 
domain D of C into a complex Banach algebra A then: 

- either the set of 1 for which Sp f (1) is finite is of outer capacity 
zero, 

- or there exists an integer n > 1 such that # Sp f (II) = n, for every 1 
in D, except on a closed discrete countable set E of D. In this case the points 
of the spectrum vary holomorphically if n is outside of E. 

This theorem has numerous applications (see [6]). For K compact in C 
denote by 6,(K) the nth diameter, i.e., Max(n,<j ]lzi -1j,i1)2’(n+‘)n for 

in K. In [6, pp. 15, 681, I conjectured that the functions 
:‘l;‘I$‘d df(lz)) and Iz + Log cdf@)) are subharmonic, where 6,(x) denotes 
S,(Sp x) z&d c(x) denotes the capacity of Sp x or equivalently the transfinite 
diameter lim,,, 6,(x). Clearly it is enough to prove the subharmonicity of 
the first one and this will give via Cartan’s theorem (see the next remark) a 
very simple proof of Theorem 1.1. Z. Slodkowski [41] suggested the use of a 
classical theorem of M. Schechter of which I gave a simplified version in [6, 
p. 1401. 

THEOREM 1.2 (M. Schechter [37]). Let X1,..., X, be complex Banach 
spaces and Y the completion of X, @ . . . @ X,, for some tensor norm and let 
Ai be linear bounded operators on Xi, for i= l,..., n. We define 
T 1 v..., T,, E -Wu) by 

Ti=Z, @ ..a 0 Ii-1 @ Ai 0 Ii+, 0 *** 0 I,, 
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where Ii is the identity operator on Xj. The Ti commute and for every 
polynomial P(z , ,..., z,,) of n complex variables we have 

SQ P(Y) f’(T, ,..-3 TJ = p(sQ,,,,, A I ,...v SQqx,) A,). 

We admit the proof of this theorem which is not too complicated (it uses 
the joint spectrum and elementary complex function theory) to obtain the 
following: 

THEOREM 1.3. Let A -+ f (A) be an analytic function from a domain D of 
C into a complex Banach algebra A and P(zl ,..., z,) a polynomial of n 
complex variables; then A + Log Max ] p(a, ,..., a,)l, for ai E Sp f (A), is 
subharmonic. 

Proof: Considering the right representation x -+ T, from A into Y’(A) 
defined by T,: y-+ xy, it is easy to verify that SQ,~ x = SQ,,(,, T, (see 
[34, Theorem 1.6.9, Q. 321). If A -+ f (A) is an analytic function from D c C 
into A then A + F(A) = T,,,, is an analytic function from D into 9(A). Let Y 
be the projective tensor product of n copies equal to A and consider 

It is easy to verify that A-+ Fi(A) is an analytic function from D into P(Y). 
By Schechter’s theorem, Max ] p(a, ,..., a,J, for ai E Spf(n), i = l,..., n, is 
equal to p(p(F,@),..., F’,(A))), but by Vesentini’s theorem A -+ 

Log P(P(P1(~)Y., P,(J))) is subharmonic because A -+ p(Fl(n),..., F,(A)) is 
analytic from D into P(Y). 1 

COROLLARY 1.4. If A -+ f (A) is an analytic function from a domain D of 
C into a complex Banach algebra A then A -+ Log s,(f(n)) is subharmonic, 
for n > 1. 

Proof It is enough to use the previous theorem with p(z,,..., z,) = 

FIl<i<j<n+l tzivzjk m  

Remark. Theorem 1.1 comes more easily from Corollary 1.4. If the set 
of A, for which SQ f(A) is finite, is of positive outer capacity then, using the 
same argument that I used, at the beginning of the proof given in [6, Q. 661, 
we conclude that there exists an integer n > 1 such that # Spf (1) < n on a 
set E, with c+(E,) > 0. Then Log s,(f(n)) = -co on E, and Cartan’s 
theorem says that Log S,(f (A)) = - 03, i.e., # Sp f (A) < n for every 1 E D. 
The end of proof is done in the same way. The important point is that 
Corollary 1.4 avoids localizing the problem to the case n = 1 and gives 
directly the global result. 
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COROLLARY 1.5. If I +f(,l) is an analytic function from a domain D of 
G into a complex Banach algebra A then A--) Log c(f@)) is subharmonic. 

Proof It is enough to remark that Log c(f(A)) is the decreasing limit of 
the sequence of Log S,df@)), when n + 03, and to use part 3 of Theorem 1, 
Appendix II, in [6]. I 

This result gives a local characterization of algebras which are quasi- 
algebraic in the sense of Halmos ([ 191 or [ 6, p. 19])-an operator x being 
quasi-algebraic iff c(x) = 0 or equivalently if limn+oo InfpeYP, ]] p(x)ll’/” = 0, 
where S, is the set of polynomials of degree n with leading coefficient 1. 

COROLLARY 1.6. Let A be a complex Banach algebra and H a real 
linear subspace, such that A = H + iH, containing an absorbing subset U 
such that each element x of U is quasi-algebraic; then every element of A is 
quasi-algebraic. 

Proof It is similar to the proof of Theorem 2, p. 71 of (61. I 

Obviously this theorem can be applied for a real algebra with its complex- 
ified algebra, also for a complex algebra with an involution x + x* and 
H = {x] x = x* } the set of self-adjoint elements. 

From Corollary 1.6 comes in particular that the spectrum function 
x--t Sp x is continuous on A, by Newburgh’s theorem, if all the elements of U 
are quasi-algebraic. 

Corollary 1.5 also gives the following theorem of pseudo-continuity: 

COROLLARY 1.7. Let 1+ f (A) be an analytic function from a domain D 
of C into a complex Banach algebra A and E be a subset of D, non-thin at 
2, E D. If f(d) is quasi-algebraic for every A in E, then f(A,,) is quasi- 
algebraic. 

This can be applied, in particular, for E being a Jordan arc and 1, one of 
its ends. Corollary 2, p. 34 of [6], derives, from Corollary 1.4, by using the 
same idea. 

For a given Banach algebra A, let Q denote the set of quasi-algebraic 
elements. Using the same ideas as those of pp. 95-96 of [6] it is possible to 
prove the equivalence of the stability of Q by addition with the stability of Q 
by multiplication. And as in Theorem 6 of [6], with one of these conditions, 
we conclude that either Q is in the center of A or Q contains a maximal non- 
zero two-sided ideal contained in Q. 

If kh(soc A) denotes the intersection of all the primitive ideals of A 
containing the socle of A (for definition see, for instance, [6, p. 791) then by 
the following Theorem 1.9, we have c(a + x) = c(x), for every x in A, if a is 
in kh(soc A) + CL Conversely, what can be said about the set 
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E = (a]c(a + x) = c(x) for every x E A } (This problem is settled in [44])? 
By using Corollary 1.5 one can prove that E is a Lie ideal of A. The stability 
of E by addition and scalar multiplication is obvious. Let us now consider 
a E E, x and y in A arbitrary, and ,l E C. We have 

c(eAyue-*y - a + lx) 

= c(a + e -Ay(Ax - a) e*y) = c(e -Ay(Ix - a) eny) 

=c(lx-u)=c@x)=c(qy,u] + (Y/2)[y, [y,u]] + *** +;Ix); 

consequently c(x) = c(f(A) + x), where f(A) = [ y, a] 
if A # 0. But by Corollary 1.5, II + c(f(A) + X) 

cdf(0) + x) = lim,,, c(f(k) + x) = c(x), for every 
dix II, Corollary l]), and this says that [ y, a] E E. 

is subharmonic; hence 
x E A (see [6, Appen- 

The following conjecture about C*-algebras, named the Pelczytiski 
conjecture in Poland (probably because it originate es from the work of A. 
PeIczynski and Z. Semadeni [33]), has been studied for a long time. 

Conjecture 1. Let A be a C*-algebra; suppose that every self-adjoint 
element has a countable spectrum; then every element of A has a countable 
spectrum and A has a particular algebraic structure. 

This conjecture has been given also with equivalent conditions on 
scattered algebras by H. E. Jensen [25], and recently solved by purely C*- 
algebras techniques (which cannot be extended to other situations) by T. 
Huruya (231 in the following form: 

THEOREM (T. Huruya). In a separable C*-algebra A the following 
conditions are equivalent: 

1” Every self-udjoint element has a countable spectrum. 

2O Every element of A has a countable spectrum. 

3” A admits a composition sequence (Icr)OGnGao of two-sided closed 
ideals indexed by first-class and second-class ordinals such that I, + ,/I, is a 
dual C*-algebra. 

4” The enveloping volt Neumann’s algebra of A is a sum of type I 
factors. 

During the Spectral Theory Semester held at the Banach Center of 
Warsaw (from September 1977 to December 1977) I lectured on the use of 
subharmonicity in functional analysis and precisely on this conjecture, 
showing how subharmonic techiques would be a good tool to prove this 
problem and even the more general one which follows: 

Conjecture 2. Let A be a complex Banach algebra with an involution 
x + x* and let H be the set of self-adjoint elements. Suppose that H contains 
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a non-void open subset U such that Sp h is countable for every h in V, then 
Sp x is countable for every x in A. 

I succeeded in proving it partially (see [6, pp. 86-87]), supposing Sp h 
with a finite number of limit points, for every h self-adjoint. 

For the general situation I explained that the proof would probably be 
similar, with an argument of condensation of singularities. Recently E. 
Kirchberg proved Conjecture 2 with U = H, but his proof is lengthy, 
complicated and artificially constructed [ 261. 

I shall now give a proof of this conjecture, obtained simultaneously with 
that of E. Kirchberg, using a nice theorem of perturbation of Gohberg’s type, 
whose proof is purely subharmonic. With this I also give a theorem of 
algebraic structure, completely similar to the result of T. Huruya, in the case 
of separable Banach algebras. 

In fact, as we shall see in Section 3, all these results will be generalized by 
a scarcity theorem of countable type, similar to Theorem 1.1 (conjectured 
also since 1977, see [4] or [6, p. 681). Obviously these new and very elegant 
results will be excessively more complicated to prove. For this we must use 
theorems concerning several complex variables. 

Let A be a complex Banach algebra; we shall say that an element is 
inessential if it is in kh(soc A). For x in A we denote by (Sp x)(~) the a- 
topological derivative of Sp x for every ordinal a. Also we denote by D(x) 
the set of 1 in the spectrum of x which are not isolated spectral values with 
the associated idempotent in the socle of A. It is easy to see that D(x + a) = 
a + D(x), for a E C. 

LEMMA 1.8. If p is an idempotent of kh(soc A) then p is in sot A. 

Proof. If p is in‘kh(soc A) then p’ E Rad (A/sot A), where p’ denotes the 
class ofp in the quotient algebra A/sot A. Then p(p’) = limn.+a, ]I ~‘~1)“” = 0. 
But p ‘n =p’ for every n, so p’ = 0, i.e., p E sot A. It is easy to see that 
p(soc A)p is a closed subalgebra of A; hence a Banach algebra with identity 
p, in which p(soc A)p is a dense two-sided ideal. Consequently we have 
p(soc A)p =p(soc A)p which contains p, so p E p(soc A)p c sot A. I 

THEOREM 1.9 (of perturbation by inessential elements). Let A be a 
complex Banach algebra, then for every x in A and y in kh(soc A) we have: 

1’ D(x) c Sp(x + y). 
2” Sp 2 c D(x) U {O} and D(x) c a(9), where f denotes the class of x 

in A/kh(soc A) and u the full spectrum, i.e., the union of the spectrum with 
its holes. 

3” In particular ~$x)(~) = o(#~) for every ordinal a > 0. 

ProoJ: 1” Suppose that a @ Sp(x + y) with a ~5 Sp x. From the relation 
a-x=(a-(x+y))[l +(a-(x+y))-‘y] (1) 
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we obtain that 1 + (a - (X + y)))‘y is non-invertible. Let us consider 
f(n) = (A- (x + v)) - ‘y for I;1 - a ( < I, with r small enough that 
1 G!J Sp(x + y) in this case. By the Ruston characterization of Riesz operators 
([43, Lemma 5.21 or [6, Theorem 2, p. 831) we know that - 1 is isolated in 
Sp f(n). We choose an open disk D centered at a such that D n Spf(a) = 
(-1 } and Sp(a) n i?D = 0. Because Spy@) has at most 0 as a limit point 
there exists r, < r such that IA - a 1 < ri implies # (Sp f(n) n D) < co. By 
the localized scarcity theorem (Theorems 1 and 2, pp. 66-67 in [6]) or by 
the help of Corollary 1.4 we may affirm that Spy(J) n D = {a,(A),..., a,(A)) 
for ]A - a 1 < rr , outside of a closed discrete set E, for some integer n > 1 
and where the functions a, ,..., a,, are continuous on the disk and 
holomorphic outside of E. Because E is discrete in {A 1 IA - a ( < r, } its limit 
points are on the boundary of this disk, so there exists r2 < rl such that for 
]A - a I < r2 the functions a, ,..., a,, have at most a singularity at a and are 
holomorphic for 0 < ],J - a1 ( rZ. We take ~(13) = (1 + a,(l))... (1 + a,(A)) 
for O<\A--al<r, and w(a) = 0. This function is continuous for 
1 J. - aI < r2 and holomorphic outside of is zeroes so, by Rado’s extension 
theorem (see [SO, Chap. lo] or [6, Appendix II, p. 173]), it is holomorphic 
everywhere. Consequently there exists r3 < rz such that 0 < )1- a) < r, 
implies 1 + (A - (x + y)) - ’ y invertible, so by (l), J. - x is invertible, which 
means that a is an isolated spectra1 value. We now show that the idempotent 
associated to a is in the socle of A. By Lemma 1.8 it is enough to prove that 
it is in kh(soc A). Let us consider a circle r of center a, of radius strictly less 
than r3 and let p on r. Be relation (1) we have 

p= r(X-~)-~Q=~~[l+flU)]-‘01-(Xfy))-’Q. 
I (2) 

If we put [ 1 +f@)] -’ = 1 + g@) then f@> + s@) +f&) go1) = 0 and 
f(u) E kh(soc A), because y is in kh(soc A), which is a closed two-sided idea1 
of A. Then g@) E kh(soc A), but in the relation 

(3) 

the first right term is 0 because A-+ (A - (x + y)))’ is analytic for 
IA - al < r3 and the second right term is in kh(soc A). 

2O Suppose a 6Z D(x) with a f 0 and a E Sp x; then a is an isolated 
spectral value whose idempotent p is in sot A. In the quotient algebra 
A/kh(socA) we have Sp X= Sp x - ap c Sp(x - ap), but by the 
holomorphic functional calculus and the fact that a # 0 we have 
a t$ Sp(x - ap) so a & Sp 2. So the first inclusion is proved. By lo we know 
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that D(x) c Sp(x + y) for every y E kh(soc A), so D(x) c f-l Sp(x + y), for 
y E kh(soc A). By Harte’s theorem ([20] or [6, p. 61) we obtain the second 
inclusion. 

3O If we write Sp x= D(x) UE, UE,, where E, is discrete and 
contained in the polynomially convex hull D(x)- of D(x), and where E, is 
discrete, disjoint form D(x)-, we get easily that b(x) = D(x)- U E,, so 
u(x)’ = (D(x)-)’ c a(Z)‘, by relation 2”. But obviously u(Z) c (I(X) implies 
0(x3’ c a(x)‘, so we have equality. By transfinite induction it is easy to 
conclude that u(x)@) = u@)(~), considering a as a limit ordinal or a non- 
limit ordinal. 1 

Instead of considering all kh(soc A) it is enough to consider a closed two- 
sided ideal I included in kh(soc A) and we obtain the same result with D(x) 
slightly modified (the idempotent associated with an isolated spectral value is 
in I). 

When A = g(H), where H is a Hilbert space, we have 
kh(soc A) = PV(II), and the quotient algebra A/kh(soc A) is then the 
classical Calkin algebra. This is the reason why generally we shall give the 
name of first Calkin algebra associated to A to the algebra A/kh(soc A). 
This perturbation theorem and the ideas contained in the proof obviously 
generalize the results of I. C. Gohberg on the holomorphic variation of 
spectral values of analytic families of compact operators in L@@?(H) and on 
the perturbation by compact operators (see [ 16, pp. 20-241). 

This also gives a new proof of a result of D. S. G. Stirling [44, Theorem 4 
and Corollary 51. 

COROLLARY 1.10. Let A be a complex Banach algebra; then for every x 
in A we have c(x) = c(2), where f is the class of x in the associated Calkin 
algebra. Consequently we have c(x) = c(x + y), for every y in kh(soc A). 

Proof. Because two compacts of same outer boundary have the same 
capacity and using property 2’ in Theorem 1.9, we deduce that 
c@)(x)) = c(Z). But D(x) = Sp x\G, where G is a countable borelian set, so 
by Theorem III.18 p. 63 of [45] we have c@(x)) = c(x). 1 

We may begin now the proof of Conjecture 2. First we need a lemma and 
some terminology. 

LEMMA 1.11. Let A be a complex Banach algebra and (i,), an 
increasing sequence of closed two-sided ideals of A. Taking I = e ,,>, I,, and 



26 BERNARD AUPETIT 

denoting by #n: A -+ A,, = A/I, and 4: A --t A, = A/I the corresponding 
canonical morphisms, we have 

44(x)) = n eL(x)), 
n>1 

where a denotes the full spectrum. 

ProoJ By Harte’s theorem mentioned just before, n,,, Sp(x + y) c 
a(#(~)). Let U be an open set containing this intersection; by a compacity 
argument we conclude that there exists y,,..., y, E I such that 
Sp(x + y,) f-l *** n Sp(x + yk) c CT. Let us show now that there exists open 
sets V, ,..., I’, such that Sp(x + yi) c Vi, for i = l,..., k, and I/, n ... 
n Vk c U. If this is not true, there exists a sequence (z,J such that z, & U 
and dist (znr Sp(x + y,)) < l/n, for i = l,..., k. This sequence is bounded and 
contains a converging subsequence, so we may suppose that z, converges to 
z, when n goes to infinity. We have z & U and dist(z, Sp(x + y,)) < l/n, for 
every i = I,..., k and for every n; then z E OF= I Sp(x + yi) c U, a 
contradiction. By upper semi-continuity of the spectrum there exists 
Ul ,a-*, Uk E u n>, I, such that Sp(x + ui) c Vi, for i = l,..., k; hence 
sp(x + u,) n . . . f7 Sp(x + u,J c U. Let m be the smallest integer for which 
U, ,..., uk E I,,, ; then U, ,..., u,EZ, if n>m, so Sp #,(X)Csp(x+2d,)n... n 
Sp(x + u,J c U. But this is true for every open set U containing 
CT,,, SP(X + Y) so SP Ux) = 0 SP(X + Y) = @4(x)) and I’%,, ,4,(x)) = 
a@(x)). The converse inclusion is easy if we observe that o@(x)) c 5(4,(x)), 

for n > 1, because of the canonical morphism from A, onto A,. 1 

Let A be an arbitrary complex Banach algebra. We take 
A, = A/Rad A, A, = A,/kh(soc A,), the first Calkin algebra, and inductively 
we define A, = A,, _ ,/kh(soc A,, _ I ). The corresponding morphisms of A onto 
A,, Al,...,A.,..., are denoted by &, #i ,..., 4, ,..., and their kernels by 
I, = Rad A, I, = kh(soc A), I, ,..., I, = Ker 4, ,.... Then we can define A, with 

1, = u ,,> i I,, and #, . For every ordinal a of the first class and the second 
class it is then possible by transfinite induction to define A, and $, in the 
following way: 

if a is not a limit ordinal, A, = A,_ ,/kh(soc A,-,) and 
s,=;-pq4 - (I i, where rr,_r is the canonical morphism from A,-, onto 
A a2 

- if a is a limit ordinal we take I, = UDca I,, A, = A/Z, and 4, the 
corresponding canonical morphism. 

By definition we shall say that A, is the a-Calkin algebra associated to A. 
It is easy to verify that it is semi-simple. 

In the following, a EST will mean that a is an ordinal of the first class or 
the second class (see [60, Chap. 151). 
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LEMMA 1.12. Let A be a complex Banach algebra, (Aa)crss and 

(4aL;r the corresponding Calkin algebras and morphisms. For every 
a ES7- and every x in A we have u(x)(=) c a(#,(~)). Consequently tf 
a@,(x)) is finite for some a E jr and some x in A, then Sp x is countable. 

Proof. By Theorem 1.9 we have o(x)’ = o@,(x)) so the inclusion 
u(x)’ c u@,(x)). We prove the result by transfinite induction supposing this 
result true for 13 < a. If a is not a limit ordinal we have 

u(x)(=) = (u(x)‘a - 1))’ c u($, _ ,(x))‘. 

But applying Theorem 1.9 to 71, _ ,: A,- 1 + A, we get u@,-,(x)) = 
u(@,(x))‘; hence U(X)(~) c u@,(x)) c a($,(~)). If a is a limit ordinal 

4x) @) = d? u(x) @) = n 443(x)) = hL(xN (I B<a 
by Lemma 1.11. If now u@,(x)) is finite then U(X)(~) is finite so u(x) is 
countable and Sp x also. I 

In a real vector space H we shall say that a set F is absorbing if for every 
a E F and for every x E H there exists s > 0 such that a + n(x - a) E F for 
-s < 1 <s. For example, an open set of H is absorbing. For x in A and 
r > 0, B(x, r) will denote 1x1 ]]x - a ]] < r} and B(x, r) will denote 
1x1 lb- all Q 4. 

LEMMA 1.13. Let A be a complex semi-simple Banach algebra. Suppose 
that H is a real subspace of A such that A = H + iH and that H contains a 
closed absorbing set F such that Sp x is countable for every x in F. If Sp x is 
not identical to {O} on F, then there exists x in F such that Sp x # Sp q&(x), 
where 4, is the canonical morphism from A onto the first Calkin algebra. 

Proof We suppose on the contrary that Sp x = Sp #i(x) for every x in F. 
If Sp x is finite for every x in F, then by Theorem 1.1 and the argument 
used, for example, in the proofs of Theorems 1 and 2, pp. 70-71, of [6] we 
conclude that A/Rad A is finite dimensional, and so A, = {O); that is to say, 
with the hypothesis given in the beginning, that Sp x = (0) for every x in F, 
which is a contradiction. Let x0 be in F such that Sp xg has at least one limit 
point. Because Sp x = Sp #i(x), by Theorem 1.9 of perturbation, every 
isolated spectral value of Sp xg has its associated idempotent which is not in 
sot A. Let a,,, ai be isolated in Sp x,, and be different. We choose two open 
disjoint disks D,, D, such that 

SP x0 n 4, = {a,}, spx,nD,= {a,}, 

spx,naD,=0, Spx,naD, =0. 
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For ]]x - x0]] < T, with r small enough, Sp xn i3Di = 0, for i = 0, 1 (it is 
upper semi-continuity of the spectrum). 

We now show that there exists x, E F n B(x,,, r/2) such that Sp xr n Di 
be infinite, for i = 0, 1. We suppose the contrary and put E = F n H(x,, r/2). 
We have 

E= c {xEE(#(SpxnD,)<n} 
?l=l 

U fi {xEEI#(SpxnD,)<n}. 
lt=l 

Because the spectrum is countable on E, the spectrum function is continuous 
on E, by Newburgh’s theorem (see [6, p. 8]), so any of the previous sets in 
the two unions is closed. By using Baire’s argument to E, we conclude that 
there exists some integer m such that, for instance, # (Sp x n D,) < m, for 
x E En B, where B is some open ball. But En B is an absorbing subset of 
H (being the non-void intersection of two absorbing sets), then by the 
scarcity theorem (Theorem 1.1) applied to pAp=pHp+ipHp 
[6, Theorem 2, p. 7 11, with p the idempotent associated to x0 and the disk 
D,, we obtain that p A p/Rad(p A p) is finite dimensional. But p A p is semi- 
simple so p A p is finite dimensional which implies that p E sot A [6, 
Lemma 4, p. 8 l] which is a contradiction. Now we know that there exists 
x, E F such that ]]xr -x0]] < r/2 having at least four distinct and isolated 
points a,,, aol, alo, alI in its spectrum such that aoO, aol E Sp x0 n Do and 
alo, aI1 E Sp x0 n D, . To these points we may associate four open and 
disjoint disks Doe, Do,, Dlo, D,, such that aij is the center of D,, Do0 and 
Do, are included in Do and Dro and D,, are included in D, . By induction, 
with a similar argument such as the one used previously, we can construct a 
sequence (x,) such that: 

1” IIXn+l -x,11 <r/2”+‘. 

2” Sp x, contains 2” isolated and distinct points ai,. . . i, where i, takes 
the values 0, 1 and k goes from 1 to n. 

3” each ai,. . .i, is the center of an open disk Di,. . .in, in such a way 
that the D ,,,..., i,, are all disjoint. 

Then (x,) is a Cauchy sequence converging to x E F (because F is closed). 
To obtain a contradiction we shall prove that the spectrum of x is not coun- 
table. 

Let I= (iI, i 2 ,..., i, ,...,) be an arbitrary sequence of O’s and 1’s. A subse- 
quence Of ai,, ai,i2, ai,i2i399 converges to a, which is in Sp x. If I # J then 
for some index k we have i, # j, with i, = j, for 1 < I< k. We have 
aI E Di,i2. . . ic and a, E Dili2.. .ik-,jk’ and these two disks are disjoint, so 
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a, # a,. But the set of sequences I has the cardinality of the set of the reals 
and the application I+ a, is injective, so Sp x is uncountable. 1 

The end of this argument is exactly the same one used by R. Basener in 
[8] to extend the Bishop’s analytic structure theorem in the countable case. 

THEOREM 1.14. Let A be a complex separable Banach algebra. Suppose 
that H is a closed real subspace of A such that A = H + iH and that H 
contains a closed absorbing set F such that Sp x is countable for every x in 
F. Then there exists a,, E F such that A,, = {0} which implies that Sp x is 
countable for every x in A. There also exists an ordinal composition sequence 

VIA <a0 of closed two-sided ideals of A such that I, = Rad A, In, = A and 
In+ ,/I, is modular annihilator for every a < aO. 

ProoJ By Lemma 1.12 it is sufficient to prove that for every x in A there 
exists a E F such that a@,(x)) is finite. We put u,(x) = a(#,(~)), for 
a EST and let F, be the set {x E Flo,(x) = as(x) for every B > a, /3 EY}. 
Because Sp x is countable on F, the a,(x) are countable on F, hence, by 
Newburgh’s theorem, F, is closed in F. For x fixed, (a,(x)),,, is decreasing 
so it must stabilize for some ordinal (see [28, p. 1461) so F = UaEyFo 
where the ordinal family F, is increasing. Using the fact that A is separable, 
F as a topological space has a countable basis, so by Theorem 3, p. 146 of 
[28], the previous union is countable. By Baire’s argument applied to F, 
which is complete because it is closed in A, some of the F, contain a non- 
void open set of F, so a non-void absorbing set in H. Let a, be the smallest 
ordinal in ST such that Fa, contains a non-void absorbing set in H. Taking 
the closure E, relatively to H, of this absorbing set contained in Fn, and 
applying Lemma 1.13 to the algebra AaO, we conclude that Sp o,,(x) = {0) 
for every x in E, and consequently for every x in A; hence Aa0 = (01. By 
Lemma 1.12, Sp x’ is countable for every x in A. Taking the I, as defined 
after Lemma 1.11, it is evident that 1, = Rad A, la, = A. Obviously I,, l/la 
can be identified with kh(soc A,). By Ruston’s theorem [6, p. 831, every 
element of kh(soc A,) has its spectrum with at most 0 as limit point. By 
Barnes characterization of modulator algebras (see [6, p. 821) and the fact 
that Rad hh(soc A,) = kh(soc A,) n Rad A, = (0) (see [ 12, Corollary 20, 
p. 1261) we have that In+ 1/l= is modular annihilator. 1 

If A is a C*-algebra every closed two-sided ideal J is self-adjoint and A/J 
is also a C*-algebra. From Theorem 4.5 of [43] we deduce that 
kh(soc A) = sot A. By Corollary 10, p. 163 of [12], kh(socA) is a semi- 
simple annihilator C*-algebra. But it is well known that for C*-algebras the 
notions of annihilator algebras, dual algebras and compact algebras are 
equivalent (see [3, pp. 16-17; 12, p. 171; 34, Corollary 4.10.26, p. 2721). So 
Theorem 1.14 gives in this situation the theorem of T. Huruya. 
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By using Corollary 3.18 of Section 3, which is a scarcity theorem for 
countable spectrum, it is possible, as we shall see later on, to prove directly 
that Sp x is countable on all A if it is countable on the closed absorbing set 
F (moreover the hypothesis “F closed” is not necessary). But to obtain the 
structure theorem concerning A with the composition sequence (la)aGao, we 
need a proof similar to the one we have just given. 

Let A be a complex Banach algebra; we shall say that the mapping x + x* 
from A onto A is a generalized involution if: 

lo (x+y)*=x* +y*, for every x,y in A. 

2” (x*)* =x, for every x in A. 

3” (Ax)* = Lx* for every x in A and 1 in C. 

4’ (xy)* =y*x* for every x, y in A or (xy)* =x*y* for every x, y 
in A. 

Of course a standard involution is a generalized involution. If A is a real 
algebra, then x + iy -+ x - iy is a generalized continuous involution of the 
complexified algebra A c. 

Now we suppose that the algebras are not separable to obtain Conjec- 
ture 2. 

THEOREM 1.15. Let A be a complex Banach algebra with a generalized 
continuous involution and let H be the set of self-adjoint elements. Suppose 
that H contains a closed and absorbing subset F such that Sp x is countable 
for every x in F; then Sp x is countable for every x in A. 

Proof Because the generalized involution is continuous, H is closed. Let 
x = h + ik E A with h, k E H and h, E F. We consider the closed subalgebra 
B generated by h, k, h,. It is evident that x E B and that y E B imply 
y* E B. We have B = (H n B) + i(H n B) and F n B is absorbing and 
closed in H f7 B. B being separable because it has a finite number of 
generators we conclude from Theorem 1.14 that Sp, x is countable, but 
Sp, x c Sp, x, and it is finished. 1 

COROLLARY 1.16. Let A be a complex Banach algebra with a 
continuous involution. If the spectrum is countable on a closed absorbing 
subset of the set of self-adjoint elements then every element of A has a coun- 
table spectrum. 

If the involution is not continuous, we know by B. Johnson’s theorem (see, 
for example, [6, p. 1111) that in A/Rad A the corresponding involution is 
continuous. The image of F is still absorbing but not closed, so we are 
unable to use Theorem 1.15. By this elementary method we are obliged to 
reinforce the hypothesis in the following way (but the topological conditions, 
closed or open, can be omitted by the help of Section 3). 
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COROLLARY 1.17. Let A be a complex Banach algebra with an 
involution. If the spectrum is countable on an open non-void subset of the set 
of self-adjoint elements then every element of A has a countable spectrum. 

Proof. By the canonical morphism A + A/Rad A, which is open, we can 
suppose that the spectrum of ff (the same as the spectrum of x) is countable 
on U’ = B’ n H’, where B’ is an open ball of A/Rad A and H’ the closed set 
of self-adjoint elements of A/Rad A. Taking the trace on H’ of a closed ball 
included in B’ and using Theorem 1.15 we deduce that Sp ff is countable for 
every x, so is Sp x. I 

COROLLARY 1.18. Let A be a real Banach algebra containing a closed 
absorbing subset on which the spectrum is countable. Then every element of 
the complexjfied algebra AC has a countable spectrum. 

Obviously all these results generalize or give a new proof of several 
theorems settled in pp. 79-87 of [6]. In particular the results I obtained for 
modular annihilator algebras. 

If A satisfies the hypotheses of Theorem 1.14 and has an identity we are 
able to obtain more results: more precisely that there exists a smallest 
ordinal /I E F such that A, is a sum of matrix algebras, i.e., that there exist 
4, n, ,..., nk 2 1 such that A, g M,,(C) @ . . . @ Mmk(C), in which case we 
have As+, = (0). If a, is not a limit ordinal we have A,,,-, = hh(soc AaO-,); 
hence A,,,-, is a modular annihilator algebra with idenity, and then of finite 
dimension (see [6, Theorem 2 and Lemma 5, pp. 83-84]), and Wedder- 
burn-Artin’s theorem gives the desired conclusion. If a,, is a limit ordinal, 
then for /I < a, we have the identity not in ID for the same said reasons, 
because on the contrary A, is of finite dimension and As+, = (0) with 
/3 + 1 < a,,. The open ball centered at the identity of radius 1 is disjoint of 
I,,forp<a,,thenI,,=lJ B.,rrO Ib is also disjoint, which is a contradiction 
because 1 E I=,. 

The previous results can be related to an old problem of Lindenstrauss: for 
a Banach space 1, is it possible for every bounded linear operator on X to 
have a countable spectrum? If X is separable, Theorem 1.14 and the last 
remark say that U(X) contains a primitive ideal I such that 9(X)/Z is 
isomorphic to M,,(C), for some n > 1. But is it even possible that 
Y(X) = P?%(X) + CI’? Probably all these questions will be solved only by 
using geometrical properties of Banach spaces. 

607/44/l-3 
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2. SUBHARMONICITY OF FIBERS FOR COMMUTATIVE 

BANACH ALGEBRAS 

In [49] (see also [SO, pp. 132-140]), J. Wermer has proved the following 
result, which is the analog of E. Vesentini’s theorem, as we shall see in 
Section 3. 

THEOREM 2.1 (J. Wermer). Let A be a commutative Banach algebra. 
Denote by M the set of its characters, X its Shilov boundary, f, g two 
elements of A. Then 1-+ Log MaxxEflcA) 1x( g)[ is subharmonic on 
j\(J)~(X), where y’(k) denotes the set of x E J for which x’f) = 1 andf 
denotes the Gelfands transform. 

f’(n) is named the fiber over A. The proof of the previous theorem comes 
mainly from Rossi’s local principle of maximum which is a difftcult theorem. 
This result seems also to have been obtained by V. N. Senichkin [38,39]. 
We shall see further on an elementary proof due to Z. Slodkowski [41]. 

Let K,(1) denote the set of x(g) for x E?(1). In [7], with J. Wermer, I 
proved that A -+ Log &X,(n)) is subharmonic onf(d)v(X), where 6 is the 
diameter. Hence by using the ideas of [4] we succeeded in getting following 
generalization of Bishop’s analytic structure theorem. 

THEOREM 2.2 (Bishop-Aupetit-Wermer). Let A be a commutative 
Banach algebra. Denote by J the set of its characters, X its Shilov 
boundary, f one element of A. Suppose that &H)v(X) is non-void and let 
W be a component of this set. Suppose now that W contains a set G such 
that: 

1’ the outer capacity of G is positive, 

2’ the fibers f ‘(,I) are finite on G. 

Then there exists an integer n such that #f’(A) < n for every ,I E W and 
f’(W) has the structure of a complex analytic manifold of dimension 1 on 
which the elements of A are analytic. 

The classical theorem of Bishop contains the strongest hypothesis that G 
has a positive planar measure. Its classical proof is arduous (see [ 11 J or (50, 
Chap. 111, where it is already simplified). This result is fundamental in the 
problem of polynomial approximation on C’ or rectifiable arcs in Cc” (see 
[5, 14, 501 for more details, and also [2,24] in the rectifiable case). 

In [4, 71, I conjectured that ,l -+ Log 8,(X,(n)) and A + Log c(K,(A)) are 
subharmonic. D. Kumagai [27] gave a partial answer to this when A 
satisfies the condition 

8(A 6 A) = @‘A x 8A) u @‘A x a”A), 
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where A @A is the projective tensor product, a”A the ordinary Shilov 
boundary and #A the generalized Shiiov boundary of order 1 (see later for 
dell&ion). 

We shall now prove these conjectures using the i&as of Section 1 in 
connection with Schechter’s theorem. V. N. Senichkin [39] and Z. 
Slodkowski [41] obtained similar proofs also, but a little more complicated. 

LEMMA 2.3. Let A be a commutative Banach algebra, J be its set of 
characters, X be its Shilov boundary and f,,...,f,, g be n + 1 elements of A. 
Denote by F= dr;,...,f.) E A” and by F’(J) = (x E-nlxcfi) = 
A,..., x(jJ = A}. Then ,I + Log Ma~r~r,~~) 1x( g)( is subharmonic on 
u ;= 1 ux4A(X)). 

Proof. First we note that F’(d) = (x EJ(xuJ = A, xdr, -f,) = O,..., 
xdr, -fi) = 0). We denote by I the closed ideal of A generated by 
f2 -f,,...,f, -fi. Then {x E-X]xCr, -fJ = ... =xV;, -fi)= 0} can be iden- 
tified with the set of characters of the commutative Banach algebra A/I (see 
[34, Theorem 2.6.6 p. 791). If h is the class of h in A/I, for h E A then 
F-‘(a) =f T’(n) and Log M=~~F~AI IxW = Log M~,~;,~,IxWI and this 

function is subharmonic on~l(x)vl(X) by Theorem 2.1 applied to A/I. But 
we can use the same argument with fi,...,f,, then we get the lemma. I 

THEOREM 2.4. Let A, .M, X be as before and f, g E A. Then for every 
polynomial p(z 1 ,..., z,,) of n complex variables we have 

A+Log Max X1,*..,X”cf,(A) I P(xl(g)Y-V x,(g))1 

subharmonic on j&~v(X). 

ProoJ: We can suppose that A has a unit. Let B denote the projective 
tensorial product of k copies equal to A. It is a commutative Banach algebra 
whose set of characters J(B) can be identified with A x . . . x Yn (k copies) 
and whose Shilov boundary S(B) can be identified by the same 
homeomorphism to X x ... x X (k copies) (see [ 12, Proposition 19, p. 2361). 
OnBletX=(X 1 ,..., x,,) be the character defined by 

Then Xl v.9 Xn ES’(A) is equivalent to saying that xcf,) = . . e = xcf,) = 1, for 
f,=f@l@...@ 1, f2= l@f@...@l,..., f,=l@ 10sa-Of: We even 
have 

P(x,(g)9.-9 x,(g)) = x(P(g,,-.9 g,)), 
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where g, = g @ 1 @ . . . @ 1, g, = 1 @ g @ 1 **a 0 I ,..., g, = I 0 1 0 * * * 0 g, 

then 4(J) = Maxx,,..., Xn~fl~lJPhW~...~ xnWl = MaxxEF(~)lX(P(gl,..., &))I3 
where F = (fi ,..., f,) E B”, p(g, ,..., g,) E B. We apply Lemma 2.3 to 
conclude that I -+ Log $(A) is subharmonic OII Uy= i (&(J(B))vt(S(B))) but 

&H(B)) =&Q and A(S(B)) =f(X), and this proves the theorem. 1 

COROLLARY 2.5. With the same hypotheses as in Theorem 2.4, we 
conciude that I+ Log 6,(K,(1)) is subharmonic on f(~)\,r(X>. 

Proof. We apply the previous theorem to P(Z , ,**., ZJ = 
Ill<i<j<n+l (zi-zj)* u 

Remark. Using this theorem and Cartan’s theorem on polar sets we 
obtain a much simpler proof of Theorem 2.2. It is enough to remark that 
there exists an integer n and E c W such that c+(E) > 0 and #f’(A) < n on 
E, and then Log J,(K,@)) = - co on E, so Log s,@,(n)) = - co on W and 
consequently #f’(A) < n on W. The proof finishes as in [7]. To show that 
the elements of A are analytic on f’( IV) we can proceed more simply by 
using a nice characterization of holomorphic functions, with the help of 
subharmonic functions, which generalizes a result of Hartogs (see [29, 
Lemma 3, pp. 59 - 601). 

Lemma 2.6. Let 4 be a boundedfunction on a domain D of C. Then 0 or 
6 is holomorphic on D if and only if n + Log I@) - a ( is subharmonic on D, 
for every a rather great in C. Particularly $ is holomorphic on D if and only 
ifd+Log]d(A)--1-P] is subharmonic on D, for every a, /3 rather great 
in G. 

For the proof see [6, pp. 174-1751 or [52, Lemma 21. 

COROLLARY 2.7. With the same hypotheses as in Theorem 2.4 we 
conclude that ;1+ Log c(K,(A)) is subharmonic on f(J)v(X). 

ProoJ As in Section 1, we remark that Log c(K#)) is the decreasing 
limit of Log 6,@,(A)), when n + co, and we use 3” of Theorem 1 of 
[6, Appendix II]. fl 

In particular this implies that A -f’(A) is continuous on W if K,(A) is of 
capacity zero on a subset with positive outer capacity. 

As in [7] we can obtain the following generalization of a result of Basener 

181: 

THEOREM 2.8. Let A,M, XS, g, W be as in Theorem 2.4. Suppose that 
W contains a set G such that: 
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lo G has positive outer capaci@, 

2’ the fibers fl(lz) are countable on G. 

Then .M contains a non-void open set with the analytic structure of a 
complex anblytic manfold of dimension 1 (it is even a polydisk) on which all 
the elements of A are analytic. 

In 181, R. Basener supposes that G = W and he concludes that f’(W) 
contains a dense ppen set with an analytic structure. If we suppose only that 
G has a positive planar measure the same proof, as remarked by B. Cole, 
shows the existence of an analytic polydisk in T’( IV), but to obtain 
Theorem 2.8 it is necessary to use a subharmonic argument. 

For G = Wit is also possible to give a purely topological proof (see [lo]). 
In Section 3 we shall show that it is even possible to globalize 

Theorem 2.8, when A is separable, in the following form: 

THEOREM 2.9. Let A, Yn, X, f, g, W, G be as in the previous theorem, 
with A separable. Then ?I( W) contains a dense open set with the analytic 
structure of a complex analytic manifold of dimension 1 on which the 
elements of A are analytic. 

Theorem 2.4 and Corollaries 2.5 and 2.7 have also been obtained by Z. 
Siodkowski [41], in a different and a little more complicated way. His article 
contains an interesting and elementary proof of Theorem 2.1 which uses the 
following folkloric lemma. 

LEMMA 2.10. Let A, .M, X be as in Theorem 2.1. Suppose that f E A and 
&, &f(X). There exists E > 0 such that for every bounded linear form lo E A * 
satisfying lJ(f- &,) A) = 0 there exists en analytic function A--) 1, from 
B@,, , E) into A * having the two following properties: 

lo l,(df--n)A)=O, 

2” IllAll Q 2llMl,f~~ IL -&I < i. 

Proof: Representing A by Gelfand transform in g’(A) it is enough to 
suppose that A is a function algebra with unit and that 1, = 0. By 
Corollary 3.3.7, p. 137 of [34], because 0 &3(X), there exists r > 0 such that 

llfgll > Wll gll, for every g E A. (1) 

In particular fA is closed. Consider now the application from A X A* to A* 
defined by 

(f * l)(g) = Km. 
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Let us show now that for every 1 E A* there exists 1’ E A* such that 

l=f.l’ and ll~‘l1 <rlllll. (2) 

We consider the linear form A from fA onto @ defined by Adfg) = l(g). By 
(1) it is precisely defined and its norm is bounded by r 11111. By the 
Hahn-Banach theorem there exists 1’ E A* which extends A with the same 
norm and (2) is proved. 

First we begin with 1, and we apply (2). There exists 1, satisfying 1, =f e l1 
and II 1, II < r Ill,, II. Inductively we construct a sequence (1,) of elements of A * 
such that 

1 n-l =f - 4, and IIM < ~nll~Oll~ for n> 1. (3) 

Taking E = fr, in B(0, E) the series IA = CTz0 J”l, is absolutely convergent to 
IA E A* and k + 1, is analytic in this disk, because ~~1”1,,~~ < II1,11/2” we have 
IllA < 2 ~~2,~~. As 1,dfg) = 0, for every g E A, f + 1, = 0. Let us show now that 
df- A) . 1, = 0, i.e., l,((f- 1) A) = 0. This comes immediately from the fact 
that 

Proof of Theorem 2.1 by 2. Slodkowski’s Method. Let W be a 
component of p(M)v(X). A s in the proof of J. Wermer it is easy to show 
that II --t K,(A) is U.S.C. on W, so we have only to prove that 
$(A) = Logp(K#)) satisfies the mean inequality, i.e., for every A,, E W there 
exists r, > 0 such that for 0 < r < rr we have 

$(A,) < $- 12= #(A0 + reie) de. 
0 

We fix Lo; by a compacity argument there exists x0 Ej’(,l,) such that 
#(A,) = Log Ixo(g)l. This character x0 is a bounded linear functional of norm 
1; we put lA, = e’“x, E A *, with 8 such that l,,(g) = )(A,). The condition 
x0 Ed’ implies lA,((f- A,) A) = 0, then by Lemma 2.10 there exists an 
analytic function A + 1, from B@,, E), for some E > 0, into A *, such that 
l,((f-I.)A)=O. For every n> 1, L + Z,(g”) is holomorphic on B(&,, E), 
then A -+ (l/n) Log I l,( g”)l is subharmonic. Then I&) = hm,,, (l/n) Log 
Il,(g”)l is perhaps not subharmonic but satisfies the mean inequality on 
IA- 1, I < E. Because ln, = e’“x, and xo(g”) =x0(g)” it is obvious that 
#(A,) = I@~). We have only to show that w(d) < #(A) for )I - 1,l < E 
because in this case we shall have 

I&, + re’e) d6’ < &Ii” #(A, + rete) de, 

and so (4) will be satisfied. 
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Let IA be the closed ideal generated by f- 1,1, is null on I* and ]]lA]] Q 2; 
then LWI G 2 111 r1tt*, where # is the class of g in A/I, and ]I] ]I]* the norm 
in this quotient algebra. Applying the spectral value formula we have 

But the set of characters of A/I, can be identified with the set of characters 
of A which annihilates I,, so there exists x a character of A such that 
pA(g) = ]x( g)] and x(cf- A) A) = 0. Consequently x ES’(A) and 

w(J) Q Log Ix(g)l < fw). I 

Jakobczak [24] obtained extensions of Bishop’s and Basener’s analytic 
structure theorems but they are even weaker than the results of [7]. His 
paper is interesting because it clarifies Alexander’s result concerning 
polynomial approximation on rectifiable curves, More important is the recent 
paper of V. N. Senichkin [39] in which he proves Corollaries 2.5 and 2.7 by 
a different method. He gives also interesting applications to uniform 
algebras. 

Now we give generalizations of n-dimensional analytic structure theorems 
obtained by R. Basener [9] and used by N. Sibony [40] to get several 
applications. 

First let us give some notations. Let A be a uniform algebra, X be its set 
of characters and we denote now by a”A its classical Shilov boundary. Let 
F = df, ,..J,,) E A” and V(F) = {x E M]xdf,) = .-. = xdf,) = O}. It is well 
known that V(F) is A-convex or equivalently that 

A(W)) = 1: g E ‘WV’))1 3fE A such thatxCf) =x(g), Vx E W)l 

satisfies M(A( V(F))) = V(F). 
By definition the n-generalized Shilov boundary is 

PA = u a”(A( V(F))), forall FEA”. 
F 

It can be characterized by some principle of maximum (see [40, 
pp. 143-1441). As in the case n = 1 it can be proved (see [9, Lemma 21) 
that: 

LEMMA 2.11. Suppose we have n >/ I, XZ a”-‘a”-‘A and FE A”. Let 
us &note by W a component of C”\F(X). Then we have eitfier 
F(C-X)n W=0 or F(J)2 W. 

We need also the following: 
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LEMMA 2.12. Suppose we have gEA,F= dfi,,..,f,) EA”, Xxa’-‘A 
and p a polynomial of m complex variables. Then 

where F’(n) = {xlx(fJ = i, ,..., xdf,) = A,,}, is pluri-subharmonic on 

FW)\W). 

Proof. We must show that A-+ d(A) is subharmonic on each complex line 
D restricted to F(J)\&‘(X). By a linear transformation of variables, which 
changes F, we may suppose that D = {(z, 0 ,..., O)[z E C }. 

V=F-l(D)= {XIX(&)=..* =xdf,)=O}= V(fi,...,f,) 

is an A-convex subvariety of -4, of dimension n - 1, so A@(v)) = V. Let 
f’ be the restriction off, on I’, i.e., x(f’) = x(f,) for every x in V. It is clear 
that x Ef’-‘(z) and x E A@( I’)) is equivalent to x(f’) = z and x E V, 
which is equivalent to x(fi) = z and x E V, so to x E F’(z, O,..., 0). If we 
apply Theorem 2.4 to the algebra A(V), with f ‘, we conclude that the 
restriction of A + #(A) is subharmonic on $I( V)\j\‘(a” (A ( v))) but 
a”A( V) c P-i(A) c X, by definition of (n - 1)generalized Shilov boundary 
and hypothesis, so the restriction of A-+ $(A) is subharmonic on D\F(X). 1 

THEOREM 2.13 (Generalization of several dimension analytic structure 
theorem of Basener). Suppose FE A” and let W be a component of 
F(.@)\F(8-‘A). Suppose that W contains a subset G such that: 

1’ G is not pluri-polar, i.e., there is no pluri-subharmonic function o on 
C” such that G c {A E C”l$(n) = - cr,}, 

2’ the fibers F’(L) are finite on G. 

Then there exists an integer n such that 

(a> W= U&, W,, 
(b) U;:: W, is a proper analytic subvariety of W, 
(c) 9 = (F’(W), F, W) is an analytic cover, then F’(W) has the 

structure of an analytic complex manifold of dimension n on which all the 
elements of A are analytic. 

Proof. It is enough to use Cartan’s theorem, Lemma 2.12 and 
Corollary 2.5 to conclude that #F’(A) ,< n for every A E W. The rest of the 
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proof-which is the easiest part-is done as in Basener’s proof, To prove the 
analyticity one can also use Lemma 2.6. m 

For the definition of an analytic couet see [ 17, p. 1011. Originally R. 
Basener made the strongest hypothesis that m,,(G) > 0, where m,, is 
Lebesgue measure in (R*“, and this condition implies that G is not pluri- 
polar, as we explain now. 

For x = (xl ,..., xk) E lRk, ]I x I] = (c:= I ] x1 ] ‘) *‘* denotes the Euclidean norm 
and we put 

K(x) = - llxll --a 

&l(x) = m IIXII. 

for a > 0, 

Let E be a compact of IRk; we define the a-potential carried by E as the 
maximum of JJ K,(x -u) d,(x) C+(Y) for every probability measure p 
concentrated on E and the a-capacity of E, denoted by cm(E), by (-VJ-“” 
if a > 0 and e-“0 otherwise. Now we can extend this notion of a-capacity by 
defining a-outer capacity and a-inner capacity of an arbitrary set. For G 
arbitrary in IRk we have 

c;(G) = Sup c,(E) for E compact, E c G and c:(G) = Inf c;(v) for U 
open, G c U. 

These capacities are positive and invariant by isometries. For the case 
a = k - 2, the bounded analytic sets G, consequently all bounded borelian 
sets, are capacitable, so c*(G) = c-(G) (see [21, p. 2731). As in the case 
n = 2 it is possible to prove an analog of Cartan’s theorem, mainly that 
c~+-~(G) = 0 if and only if there exists $ subharmonic on IRk, Q sk -co, such 
that G c {x E IRk, d(x) = - co }. If G is also a G&-set then, by a result of 
J. Deny, there exists 4 subharmonic on [Rk such that 
G= {X’S IRkI((a}. 

C” can be identified with IRzn, then we can define polar sets in C” as sets 
of 2n - 2 outer capacity zero or equivalently as sets included in 
(XE lFPl~(n)=- co) f or some subharmonic function # on IF?*“. 

Particularly polar sets have 2n-Lebesgue measure zero. So m,,,(G) > 0 
implies G non-polar and G non-pluri-polar, because a function pluri- 
subharmonic on C” is subharmonic on [R*“. 

For E c IRk we denote by 6(E) the diameter of E, which can be infinite, 
and for a > 0 we define 

6”(E) = S(E)* for a > 0, 

6’(E) = 1 if E is non-void 

=o if E is void. 



40 BERNARD AUPETIT 

Taking H;(E) = Inf 2 6”(E,) for all the coverings E c lJr= i E,, with 
6(E,) < E and H”(E) = limElo H:(E), H”(E) is called the a-Hausdorff 
measure of E. By Theorem 5.13, pp. 225-226 of [2 1 ] we have c,(E) > 0 if 
H”(E) > 0 for some /3 > a. Consequently in Theorem 2.13 we can replace 
condition lo by the strongest condition HD(G) > 0 for some p > 2n - 2. But 
the condition H2”-‘(G) > 0 is not sufficient. 

Let us now show how some subharmonic methods can be used to get 
theorems about cluster sets. Probably by such methods it is possible to get 
more, for example, results concerning the Iversen-Gross theorem, the Weiss 
theorem, etc. (See [ 151). 

Let d be the unit disk. By “inner function z -f(z) on d” we mean a 
bounded analytic function on d such that lim,,, ]f(reie)] = 1 a.e. Seidel and 
Frostman have proved the following result. (See [31, Chap. 3, p. 371). 

THEOREM 2.14. If f is inner, then either f is a finite Blaschke product or 
every value in A-except perhaps for a closed set of capacity zero-is taken 
by f infinitely often in A. 

In the case of Ha(A), A can be identified topologically to an open subset 
of the set M of characters of Ha(A). Then the previous theorem is strangely 
similar to Theorem 2.2, with f’(n) replaced by j’(1) n A. After several 
discussions with J. Wermer I tried to get a general theorem englobing these 
two results. The main difficulty comes from the fact that 
{~~~‘@)nA==QI} is of capacity 0. This suggested to me the following 
subharmonic proof of the Seidel-Frostman theorem: 

Proof. For f inner and a E A take g,(z) = (f(z) - a)/( 1 - c?f (z)). This 
function is also inner. For ]z ] < 1 fixed, the function a + Log ( g,(z)] = 
Log I(f (4 - a)/(1 - af @))I is subharmonic on A, because it is the difference 
of a subharmonic and a harmonic function. Let us state J(r, a) = (1/27r) 
(?, Log ] g,(reie)\ dB Q 0, for r < 1. Because a + Log 1 g,(z)] is subhar- 
monic, a -+ J(r, a) satisfies the mean inequality for every r < 1. Then also 
J(a) = lim, I J(r, a) satisfies also the mean inequality. This implies that 
there exists a subharmonic function 4 on A such that J(a) = )(a), for a E A 
except perhaps on a set of outer capacity zero. If we succeed in proving that 
J(a) = 0 a.e. it will be finished because #(a) = 0 a.e. implies 4 = 0 on A (see 
[48, p. 641) and this gives J(a) = 0, except on a set of capacity zero. But 
J(a) = 0 means lim,,, J(r, a) = 0, that is to say, g,(z) is a Blaschke product 
[ 22, p. 1761, and then a is taken by f: The proof of J(a) = 0 a.e. is similar to 
the proof given in [22, p. 1761. For ] aI # 1 f (0)l we have J(r, a) > 
Log ] g,(O)/ > - co by Jensen’s inequality. Take p # (f(O)1 then we have 
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Elim 
r-1 +rr.ti,,,=, 

x Log f(z) -pe’B 
1 - pe-@f (z) 

c1im-L 
t-1 2m I,z,=,lJz)ldz~, 

where 

I,o=& 1 j I Ia3 f(z) -pe’* 
n 1 -pe-‘@f(z) df3* 

But 

I 
Log~f(z)-pe”ld0-&~~ Log/e”-pf(z)Jde 

I 

and the last integral is 0 by Jensen’s inequality. Then we get 

Z,(z) = M=Wg P, Log If (z)l). 

But because f is inner, lim,,, Log If (re”)l= 0 a.e. in t. Consequently Z,(re”) 
goes to 0, when r goes to 1, a.e. in t. But Z,(re”) is bounded, then Lebesgue’s 
theorem says that (1/2x) II, J@e”) de = 0, and J(a) < 0 gives J(a) = 0 
a.e. I 

In the case of H”(P), with n > 1, this method shows that we have almost 
the same result mainly: if f is inner on A” then there exists E of capacity 0 in 
A such that every a not in E is taken by $ If f is a good inner function it 
comes from Theorem 5.3.2 of [36, p. 1151, if f is only inner there exists 
a E A such that (g - a)/(1 - c7g) is good and then we consider the 
conformal mapping z + (z + a)/( 1 + dz) of A onto A, which transforms a set 
of capacity 0 in a set of capacity 0. 

A similar subharmonic proof can be used to obtain the following Tsuji’s 
theorem [45, pp. 329-33 11. 

THEOREM 2.15. Let G(& p) be an integral function of the variables 1, p 
and y(A) the analytic function defned by G(& y(2)) = 0. Suppose that y(d) is 
not algebroid, i.e., we do not have a,@) + al(d) y(l) + .. s + a&) y(d)” = 0 
for some integral functions a&) ..a a,(l); then for every 1 E C the set 
Z(n) = (~1 G(& p) = 0) is i@nite, except on a set of capacity zero. 
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It is interesting to note that it is also possible to give a purely spectral 
proof of this result in the following ways. 

Proof. Take E = {A) G(A, 0) = 0) which is closed and discrete and 
U = G\E. For A E U we have Z(A) not containing 0. This means that 
a,(A) # 0 on U if we have G@,,u) = CFZO a,,(A)@‘. Dividing by a,(A), we 
can suppose a,(A) = 1 on U. Suppose that K(A) = {(l/p))p E Z(A)) and for 
E # 0 consider a,(A) the bounded operator defined on I* by the matrix 

r -a,@) 0 0 ...’ 

a> 0 o -___ . . . 
E 

4) = 
a,(4 o o ’ 

-7 . . . 
& 

L I 

u the shift operator and m,(A) = a,(A) + EU which has the matrix 

m,(A) = 

We have m,(A) E Y(Z2) and a,(A) E Yv(l’) by using Gutzmer’s formula 
(see [35, p. 2281): 

Because Sp EU = ~2 and m,(l) - EU is compact we have 

Sp m,(A) = Ed U {proper values of m,(A)} 

(for this, see [ 18, Problem 143, p. 921). 
Now it is easy to see that K(A) is the set of non-zero proper values of 

m,(A). Then Sp m,(A) = K(A) U&d, so K(R) LJ (0) = flzf L Sp m,,,(A). By 
using Vesentini’s theorem we obtain immediately that A 4 Log Max,..,,, l,uuJ 
is subharmonic and we can now make a proof similar to that of the finite 
spectrum scarcity theorem. 1 
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3. A GENERAL THEORY OF ANALYTIC MULTIVALUED FUNCTIONS 

The strange similarity of the results obtained in [4,7] and in Sections 1 
and 2 of this paper, concerning the spectrum, the fibers and some theorems 
of Tsuji about cluster sets, suggests that there exists a general theory 
englobing all this results. The first step in this direction has been obtained in 
[511* 

But the real progress originates from studies on the general conjecture of 
Pelczytiski. In my lectures of 1977 in the Banach Center of Warsaw I saw 
that this conjecture could be proved very easily if we could prove the 
following scatcity theorem for countable spectrum, which is an adequate 
analog of the scarcity theorem for finite spectrum (Theorem 1.1). 

Conjecture 3. Let 1 +f(A) be an analytic function from a domain D of C 
into a complex Banach algebra A then: 

-either the set of 1 for which Spf(1) is countable is of outer capacity 
zero, 

-or Spf@) is countable for every 1 in D. 

At that time I was unable to prove this conjecture, but the proof of 
Conjecture 2 mentioned in Section 2, that I obtained, from Conjecture 3, was 
the following: let x = h + ik be in A with h, k in H, we take h, in U and we 
consider the analytic function II +f(J) = h, + L(h - h,); for -r < 2 Q r, with 
r small enough, we have Sp f(J) countable, and [-r, r] is not of capacity 
zero, then Sp f(A) is countable for every il in C, taking 1= 1 we conclude 
that Sp h is countable for every h in H, taking now J -+ g(1) = h + Ik, we 
know that Sp g(A) is countable for every L real, so Sp g(A) is countable for 
every 1 in C on in, particular for A = i. 

In fact I obtained partial answers to Conjecture 3, in particular if Spf(ll) 
has a finite number of limit points on a set of positive capacity (see [6, 
pp. 86-871). To prove th& I introduced the following method. If (x,, is 
isolated in Sp f(L) we say that a0 is of “first kind” if for s > 0 given, such 
that Sp f(&) n B(&, s) = {ar,), there exists r > 0 such that IL - il, 1 < r 
implies # (Spf@) A&&, s)) < co. By Theorem 2, p. 67, in [6], it says that 
Spf(A) n B(&, s) has at most n points which vary holomorphically outside 
of a closed discrete set. Then I define D Spy(L) by Spy(L) minus the set of 
first kind isolated points of Spf(il). And then the problem is to prove that 
L + D Spf(L) is “spectral” in some sense (in fact D Spf(l) is “near” the 
spectrum of the class off(J) in A/kh(soc A), by Theorem 1.9). At this point 
it is necessary to introduce a good definition of “spectral” or “analytic 
multivalued functions” in such a ways that L -+ Spy(n) is of type and such 
that if II + K(d) is analytic multivalued then L -+ DK(J) (where DK(L) is 
defined in-a similar way) is also analytic multivalued. 
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Suppose that A -+ K(A) associates to A a compact subset K(A) of C in such 
a way that this multivalued function is upper semi-continuous. The graph of 
1--t DK(A) is then obtained from the graph of L + K(J) by removing analytic 
varieties of complex dimension 1. After several discussions with me, 
Z. Slodkowski [42] had the idea to introduce the following definition: 

DEFINITION. A function i --, K@) from a domain D of G into the set of 
non-void compact subsets of @ is said to be analytic multivalued if it is 
upper semi-continuous and if ~2 = ((A, z)l A E D, z & K(I)} c C2 is a domain 
of holomorphy (or equivalently pseudoconvex). 

Upper semi-continuity implies that R is open. This definition does not 
seem very easy and not very tractable. It is more natural for persons working 
in the field of several complex variables and, in fact, it had been introduced 
by K. Oka (321 in 1934, obviously without connection to spectral theory, to 
prove an extension of a result of F. Hartogs we mention now. If h is 
holomorphic on D it is easy to see that 1+ (h(k)} is analytic multivalued; 
conversely F. Hartogs proved the following: if ]/z(n)] < R, for A E D and if 
there exists f holomorphic on v\r which is singular at every point of r, 
where U=Dx {zllzl <R} and r={(&z)E U]h(~)=z}, then h is 
holomorphic on D. In other words it says that an analytic multivalued 
function for which K(A) has always one point is in fact a holomorphic 
function, so it justifies the definition. For a classical proof of the theorem of 
F. Hartogs see [29, pp. 56-611; for a more abstract proof using Rudin’s 
theorem on maximum modulus algebras see [52]. See also the remark 
following Theorem 3.6. 

When K. Oka [32], and later T. Nishino [30] and H. Yamaguchi [54], 
studied analytic multivalued functions (they were using the name “ensemble 
pseudoconcave” which means that the graph is the complement of a pseudo- 
convex set or equivalently a domain of holomorphy) they practically only 
used analytic multivalued functions of algebroid type, i.e., 

K(A) = {rla&> +w,@) + -9. +p”a,(A) = O}, 

where the a, are entire functions. In fact, Z. Stodkowski [42] obtained very 
good characterizations of analytic multivalued functions, the best one being 
the following: 1 -K(J) is analytic multivalued if and only if (A, z)+ 
-Log dist(z, K(A)) is pluri-subharmonic on B = {(A, z)]n E D, z 65 K(A)}. 
From this it is possible to prove that L --f Sp f(l) is analytic multivalued if f 
is an analytic function from a domain D of C into a complex Banach algebra 
A. In this case -Log dist(z,K(A)) = Logp((z -f(A))-‘) and we apply 
functional calculus to obtain that ,l+ (an + p -f(A))-’ is analytic on the 
complex line A--) al + /3 restricted to 0, and Vesentini’s theorem to obtain 
subharmonicity of 1 -P - Log dist(aA + p, K(d)). In the case of commutative 
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Banach algebras, with the notations of Section 2, it is also possible to prove 
that L + K,(n) is analytic multivalued on&#)lf(X), but the proof is much 
more complicated. In fact the difftculty is to prove that 

is pluri-subharmonic. If K,(n) does not separate the plane it can be proved 
easily, using Runge’s approximation theorem (see the proof of Lemma 7 in 
[7]). In the general situation the proof obtained by Z. Slodkowski is much 
more complicated, because it uses Rossi’s local maximum modulus principle. 

Later on we shall give more elementary proofs of the fact that rl + Spf(J) 
and 1+ K,(n) are analytic multivalued. The lirst proof avoids Skxlkowski’s 
characterization and, in the case of fibers, the proof avoids Rossi’s local 
maximum modulus principle. 

Let a be a domain in C2. A real valued function # defined on s) is called 
a vertical function for 5) if for each a such that the complex line 
{(a, z]z E C} meets 0 we have 

lim #(a, zJ = + a~, IdIO 

whenever (a, zO) is in the boundary of a. It is now possible to give the 
following characterization of domains of holomorphy, which implies the 
interesting part of Slodkowski’s theorem, namely, (13, I) + - Log dist(z, K(J)) 
pluri-subharmonic implies i + K(1) analytic multivalued. 

THEOREM 3.1. Let 0 be a domain in C*. We assume there exists a 
vertical function # for 0 which is pluri-subharmonic on 0. Then 0 is a 
domain of holonwrphy. 

Proof. The argument begins as the proof of Theorem 2.6.7, p, 46, in the 
book of L. Hormander [55]. Suppose a is not a &main of holomorphy. 
Denoting by d(u) the distance from u in 0 to 80, then, by Oka-Norguet- 
Bremermann’s theorem, we obtain that -Log d is not pluri-subharmonic on 
a. Hence there exists a complex line L such that -Log d is not subharmonic 
on L n a. Then there exists a disk D in L n 0 such that -Log d violates the 
mean-value property on D. It is possible to write D = {u E C* 1 u = uO + to, 
1 tJ < r}, with u,, in a, w  = (w,, wJ a constant vector for which we can 
suppose without loss of generality that w, # 0. Because the mean-value 
property is not true on D, there exists a polynomial p(t) and t, such that 
( t, 1 < r verifying: 

(1) -Log d(u, + tw) < Rep(t) for ItI = r 
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and 

(2) -Log d(u, + t,w) - Rep(t,) > 0 and maximum on {tl It\ < r}. 

Then d(u, + t, co) < lempcfl)l, so d(u, + t, co) = pI e’“e-p’fL’, for some 
0 < pr ( 1 and a real. We now define the analytic disk D, by 

D, = {uj u = uO + tco + ,Iei”e-P”‘a, I cl < r}, 

where a is a unit vector pointing at u0 + t, w to the nearest point of LM2. With 
the definition of p, it is obvious that the interior of D,, meets XI and using 
(1) and (2), D, c R for p < pr, with aD,, c 52. We introduce 
u,(t)=u,+tw+pe e ia -P(t)a = (n:(t), u:(t)). Then D,, is the set of (u’ (t), 
u:,(t)), for ItI <r, and D,, meets Xl at (ui,(t,), uL,(tl)). The function ii,(l) 
takes the value uL,(t,) on the open set {t 11 tl < r}; hence, by the implicit 
theorem, for every p near p,, there exists t, such that ui(tp) = uL,(tr), with t, 
going to 1, when p goes to p,. Then (uL(t,), ui(t,)) = (uA,(t,), ui(t,,)) is on 
the vertical line defined by ui,(tl), and also in D,, consequently in R if 
p < pl. But (ui(t,), ui(t,,)) goes to (uL,(t,), ui,(t,)) which is in 30, when p 
goes to pl. Hence &u,(t,)) + + co, because # is a vertical function for L2. 
But the restriction of 4 to D, is subharmonic so: 

(3) 

for p < p,, . Because aD, c 0, for p < p, , there exists a compact K in R such 
that aD, c K, for 0 Q p < p,, . But 4 attains its maximum A4 on K, and this is 
a contraction with (3), because #(u,(i,)) goes to infinity. I 

Obviously this theorem is a generalization of the theorem which says that 
R is a domain of holomorphy if and only if there exists 4 pluri-subharmonic 
on 52 such that 4(u) + + co when u +X? (this last result being directly 
equivalent to Oka-Norguet-Bremermann theorem). Using this proof and 
some arguments of [52], J. Wermer remarked that it is then possible to prove 
the local maximum modulus principle for X contained in C”. 

We now intend to give elementary proofs of the fact that A + Spf@) and 
;1 -K,(A) are analytic multivalued functions. This is really the most 
important point in Section 3 of this paper, which says precisely that we now 
have in functional analysis very important and new examples of analytic 
multivalued functions. 

THEOREM 3.2. Let h + f (I) be an analytic function from a domain D of 
C into a complex Banach algebra A; then ,I -+ Spf(A) is an analytic 
multivalued function. 
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ProoJ: Obviously D = {(A., z)l A E D, z & Spf(A)} is the set of (A., I), for 
which A E D and f(A) - z is invertible. Let us take 

#(A, z) = [/(f(A) - z)-’ II-Log dist(A, 80). 

The last term is subharmonic in I because every domain of C is a domain of 
holomorphy of C. If we restrict (J(A) - z) - ’ to the trace on J2 of a complex 
line L = {(A, al + P)lA E D} then by using Cauchy’s integral formula 

(f(A,) - (cd, + P))-’ = $.i, v(n) ;,;y d/l, 

with subadditivity of the norm and continuity of (A, z) --t II - z)-‘1) on 
Q, we conclude that the first term is pluri-subharmonic and then #(A, z) is 
pluri-subharmonic. Let us prove that $(A, z) goes to infinity when (A, z) goes 
to the boundary of a. Suppose on the contrary that there exists (A,, ZJ in 
aa (A”) -+ &I 9 (z,> --t zo 3 M > 0, such that (A,, z,) E ~2 and #(A,, z,J < M. 
Because dist(A,, 80) > ePM, first we conclude that 1, E D, f(,l,) - z. is not 
invertible. But 

f@o) - zo =f@n> - z, + z, - zo +f@o) -fW 
=fGL) - z, + U@” 9 4 
= [f(4J-z,lIJ + (f(~,>-z,>-‘u(~,,z,>l. 

When (,$,) -+ A, and (z,) + z. we have IIu(A,, z,Jll -+ 0 and 

Ilw,) - Z”> - l G” 9 ZJII < hf’ II 4l3 ZnIl + 0 for some M’ > 0; 

hencef(A,) - z. is invertible as the product of two invertible elements, which 
is a contradiction. 4 is a pluri-subharmonic function on R which goes to 
infinity of the boundary, so R is a domain of holomorphy. 1 

In the case of the fiber function A+ K,(A), the solution is more com- 
plicated. 

Let A be a commutative Banach algebra and f be given. For x in A we 
denote by YA the class of x in A, = A/(f- A) A. 

LEMMA 3.3. Let A be a commutative Banach algebra and f be an 
element of A. Suppose that z + x(z) is an analytic function from 

B(zo,s)= {zllz-zol (~1 

into A such that x(z)~ is invertible in A, for (A, z) in the polydisk B(Jo, r) X 
B(zo, s). Then there exist rl , 1 s such that 0 < r, Q r and 0 < s, < s and there 

607144’1 4 
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exist two analytic functions (,I, z) + u(& z) and (4 z) -+ v(& z) from the 
polydisk B(&,, r,) x B(z,, s,) suxh that 

x(z) u(l, z) = 1 + (f- A) u(A, z), 

for every (A, z) in this polydisk. 

Proof. We denote x(z,,) by X. This element x is invertible in AnO, then 
there exists u,,, uO in A such that XU, = 1 + (f- A,) uO. Then x(z) a0 = 
(x(z) - x) u,, + 1 + (f- A) u,, + (A - A,) uO. For rI, s1 small enough and 
IA-A,) <r,, (z - zO) < s1 we have Il(A -A,) vO + (x(z) -x) ~~1) < 1, then 
1 + (A - A,) u,, + (x(z) - x) a,, invertible. Consequently: 

x(z) u, = [ 1 + (f- A) vg( 1 + (A - &) ug + (x(z) - x) UJ’ ] 

x [l + (A - A,) u, + (x(z) -x> u,]. 

Taking 

up, z) = ug[ 1 + (A - A,) vg + (x(z) - x) uo] -I 
and 

v@, z) = vg[ 1 + (n - A,) u, + (x(z) - x) u,] -I, 

which are obviously analytic on the polydisk S(A,,, ri) x B(z,, s,), we obtain 
the result. 1 

THEOREM 3.4. Let A, M, X, W be as in Theorem 2.2. Suppose that f 
and g are in A and define K,(A) by {x(g)(x ET’(A), A E W}. Let us take 
f2 = ((A, z)I z @ K,(A), A E W}. Then: 

lo (A, z) + - Log dist(z, K,(A)) is pluri-subharmonic on 0. 

2O fJ is a domain of holomorphy, i.e., A -+ K,(A) is analytic multivalued 
on W. 

Proof. lo If (A, z) E Q then z #x(g), for x ET’(A). But j”(A) can be 
interpreted as the set of characters of A,, consequently z -iA”, the class of 
z - g in A,, is invertible in A,. Then 

@, z> = -Log Wz, K,(l)) = Log Max,,pcA, , z _:(g), 

=Logp,((z -g”)-‘), 

where pA denote the spectral radius in A,. We fix (&,,.z,,) in G and we 
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chooser,s>Osuchthat~I-2,~<rand~z-t,~<simplies(~,z)~SZ.By 
a compacity argument there exists x0 ET’&,) such that 

Two, zo) = Log Izo -;o(g)l = Log Ixdhl -g”“r% (4) 

This character is a linear functional of norm 1 on A. By Lemma 2.10, there 
exists an analytic function A+ I, from S(&, E) into A *, such that 
~,,=x~,I~((~-A)A)=O and IIZ,I(<2I(x,,ll, for IA-&( <E, where E is 
small enough. If we decrease r it is even possible to suppose that E = r. For 
]~-IZ,~<rand~z-z,~<s,z-g”isinvertibleinA,,then,byLemma3.3, 
there exist ri, s1 such that 0 < rl < r, 0 < s, < s, and an analytic function 
(12, z) + a@, I) from B(&, rl) X B(z,, si) into A such that 

(z-g)u(A,z)- 1 E (J---L)/& (5) 

for 112 -&I < rr, Iz - zOj < s,. For every integer n > 1, (A, z) --t IA@@, z)~) is 
analytic on this polydisk, consequently (A, z) + (l/n) Log I ZA(u(12, z)“)l is 
pluri-subharmonic on this polydisk. Perhaps I&A, z) = lim,,, (l/n) 
J&t I mw ZYYI is not pluri-subharmonic, but it satisfies the mean value 
inequality on every complex line restricted to the polydisk. We have 
xowo 7 zo)“) =x0@@ O,~,J)n, and by (5) we obtain 

w@o, 4 = !wo 9 zo)* (6) 

If we succeed in proving that v/Q, z) Q #(A, z) on the polydisk the proof of lo 
will be finished. In fact if (A, h(l)) is a parametrization of a complex line 
through (A,,, z,,), with h(A,) = zO, we have 

< &I’” #(A, + pe@, h(A, + pefe)) de, 
0 

if p is small enough. But it is easy to prove that Q is upper semi-continuous, 
so it is locally pluri-subharmonic, hence pluri-subharmonic. Now we prove 
that t&A, z) < $(A, z) on the polydisk. We have 

I l,IW, z)“)I Q 2 Illav Ill* 9 

where 111 IllA denotes the norm in A,. But in A,, by relation (5), 

qp=(Z-&-n, 



50 

so 

BERNARD AUPETIT 

2O To prove that Q is a domain of holomorphy we use Theorem 3.1 
and the fact that (A, z) + -Log dist(z, K(A)) is a vertical function for Sz, 
pluri-subharmonic on R, by 1”. B 

Remark. This proof is not completely satisfactory because it uses 
Theorem 3.1. If it were possible to prove elementarily that there exist two 
analytic functions (A, z) + u(A, z) and (A, z) + ~(1, z), from R into A such 
that 

(z - g> @, z) = 1 + (f- A) I& z>, 
for (A, z) E Q, it would be easy to prove that ~2 is a domain of holomorphy. 
The proof, in fact, would be similar to the proof of Theorem 3.2. We take 
e(A, z) = 11 u(A, z)II + 11 u(A, z)II - Log dist(A, 8D). It is obvious that B is pluri- 
subharmonic on D. Let us prove now that 0(,4, z) -+ + cc, when (A, z) goes to 
the boundary of 9. Suppose, on the contrary, that there exists (A,, zJ E 852, 
(hJ+~~ (Z,>~ZO~ M > 0, such that (A,, z,J E 0 and &A,,, z,,) < M. We 
have A, E D and 

Go - g> 4,* z,> = w9l~ zdz, - g + zo - zn> 

= 1 + (f- &J wn, zn) + aI, z&o - ZJ 

= 1 + (f-no) q,, Z”) + Go - A,> uoLn, ZJ 

+ 4L > z,)(zo - zn> 

= 1 + (&-A,) u(l,, zn) + 4”, zn)(zo - zn> 

+ u-no> 440 ZJ. 

But Il(~,-4J%~ ~,>+~~~,~~,~~~o-~,~lI < Wo-41+l~o-z,l)7 where 
C < M + 2 Log dist(A,, aD>, for n large enough. Consequently 1 + (A, -A,) 
v(A,, zn) + u(&, z,)(zo - zn) has an inverse y, in A and we have 

But this indicates that z. -gAO is invertible in A+ which is a contradiction, 
so D is a domain of holomorphy. 3 

I have not been able to prove easily the result I mentioned at the beginning 
of this remark, but neverheless this result is true. I shall now mention quickly 
how it is possible to prove it using a complicated method. 
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THEOREM 3.5. Let A, -R, X, W be as in Theorem 2.2. Suppose that f 
and g are in A and that $2 = { (,I, z)lz 6S K,(1), rl E W}. Then there exist two 
analytic functions (2, z) -P u(J, z) and (A, z) + u(J, z), from a into A such 
that 

(z -g> 44 z) + (E- -f> 44 z) = 1, 

for (A, z) in 0. 

Sketch of proof: It is enough to prove that there exists a 2 x 2 invertible 
matrix M, where the coefficients are analytic functions from 52 into A, such 
that 

By Lemma 3.3, this property is true locally on 0. With x(z) = z -g, on the 
polydisk B(&,, r,) X B(zo, s,) we consider 

M(&,zo9rl,sl)= ( 
u(ll,z) 9 @9 z> 

1 l-f, g-z ' 

such that 

M(&, zo, rl, sl)-l = 
( 

z-g ) u&z) 
A-f , -4&z) ) 

which verifies M(&, z,,, rl, sI)(a) = 6, where a is the column vector 

and b the column vector 

To extend this result globally on 0 we follow now the method given by 
H. Cartan in [56] (which is essentially the basic paper on the foundations of 
coherent sheaves). We suppose that A,, A, are two compact polycylinders 
with the same components for all the variables, except one, and for which we 
have a local solution of (7). Then 

M,(a)=b on A,, 

M,(a) = b on A, 

and 

M&;‘(b) = b on A,nAz. 

Every invertible 2 x 2 matrix S, with coefficients analytic on A, n A,, 
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leaving b invariant, can be written in the from S;‘S,, where S, is invertible, 
leaving b invariant, with coefficients analytic on A, and where S, is inver- 
tible, leaving b invariant, with coefficients analytic on A,. If we have 

s= ( l 
0 

a 1 
P’ 

s;‘= ( 1 a1 1 a2 
o PI 

) 
7 

ST’= ( 
o p2 

1 

we must have p, = &, a, = a2 t a/3*. But it is possible to solve the 
multiplicative and the additive Cousin’s problems on A, n A,. The proof is 
more complicated than in the case of analytic functions with values in C but 
adapting the proof given in [ 17, pp. 192-2011, it is possible to prove that for 
the invertible analytic function /? from R into A we can find pi, pz invertible, 
with values in A, the first one being analytic on A, and the second one on 
A,, such that p, = P/3,. The function /3* being chosen we use the analog of 
the additive problem to find a1 and a2 respectively analytic on A, and A,. 
Now we have M,M;’ = S;‘S, on A, n A,, with S,(b) = b and S,(b) = b, so 
S,M, = S,M, on A, nd,. We define an analytic matrix M, on A, VA, by 

M3=S1M, on A, 

= S,M, on A,. 

It is invertible and M,(a) = 6. So we have solved (7) on A, U A,. By 
Theorem 3.4, R is a domain of holomorphy, so there exists a sequence of 
compact polycylinders, having the property of the beginning, exhausting 52. 
Consequently, by successive steps we can solve (7) on 0. It is also possible 
to give a solution of (7) by using a-theory of P-functions taking values in 
A. i 

Now I intend to give a certain number of theorems concerning analytic 
multivalued functions, but without complete proofs. For further details the 
reader will have to consult the given references. Later on I intend to publish 
a book giving a systematic introduction to this new theory. 

THEOREM 3.6. Let D be a domain of C. We suppose that for every 
integer n > 1 there exists an analytic multivalued function A+ K,,(A) defined 
on D. 

1” If for every A E D the set IJ n> I K,,(A) is relatively compact then 
A+ UOl K,(I) is analytic multivalued on D. 

2” Zf for euery 1 E D we have Kl(n) 3 K,(A) 3 . . . 2 K,(A) 3 
K,+,(A)1 . . . . then n+n ,,,K,(k) is analytic multivalued on D. 

Sketch ofproof. 1” This is true because the interior of the intersection of 
a family of pseudoconvex domains is pseudoconvex (see [48, pp. 94-951). 2O 
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This result comes immediately from the Behnke-Stein theorem, which says 
that an increasing sequence of domains of holomorphy is a domain of 
holomorphy (see [48, pp. 146-1481). I 

THEOREM 3.7. Let L + K(A) be an analytic multivalued function defined 
on a domain D of Cc; then: 

1” I + Log &K(A)), where p(K(A)) = Max 1 z I, fir z E K(A), is subhar- 
monic on D. 

2O A + Log &(K(/I)), where 6, denotes the nth diameter of K(A) for 
n > 1, is subharmonic on D. 

3“ A --) Log c(K(A)), h w ere c denotes the capacity of K(A), is subhar- 
monic on D. 

Sketch ofproof. Part 3” comes immediaely from part 2O. There are 
several methods to prove 1’ and 2O. I will merely indicate the simplest one 
given by H. Yamaguchi [54] (in [30], T. Nishino had obtained a proof of 
subharmonicity of A+ Log S, (K(A)), similar to the proof I obtained in [4]). 
If sd is a domain of holomorphy it is the union of an increasing sequence of 
fi, = {(A, z) E a(21 $,(A, z) < 0}, where the Ok are C” and pluri-subharmonic 
functions, and such that for every point in aQk there exists an analytic 
variety, going through this point and non-singular at this point, which is not 
locally in s1,. It says that 

k>l 

where the graph of K,(A) is the complement of ak, and that for each 
z,, E 8K,(A,) there exists an analytic function h, such that hk(&) = z0 and 
hk(A) E Kk()L) in a neighbourhood of z,, (see [48, pp. 183-1741 and the 
theorem of Levi-Krzoska [48, pp. 157-1601). By using these analytic 
selections it is not difficult to prove that L + I..ogp(K,@)) and 
A + Log 6,(K,@)) are subharmonic and taking the limits, with some 
technical details we obtain the result. m 

Remarks. Of course E. Vesentini’s theorem for spectrum and J. Wermer’s 
theorem for fibers, mentioned respectively in Sections 1 and 2, are particular 
cases of lo in the previous theorem. Part 2” also implies directly easy proofs 
of the scarcity theorem for finite spectrum and of the theorem of E. Bishop 
for tinite fibers. 

If L --) {h(l)} is an analytic multivalued function, where h is a function 
from D into C; then it is easy to see that A-+ {h(A) - aA -/I} is also analytic 
multivalued. By I’, A+ Log Ih(A) - aA - p] is subharmonic, so, by 
Lemma 2.6, h is holomorphic. It is exactly the theorem of F. Hartogs. 
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Using part 2’ of Theorem 3.7 and the same argument as in the remark just 
after Corollary 1.4, we obtain immediately the following: 

THEOREM 3.8. Let A -+ K(A) be an analytic multivalued function defined 
on a domain D of C; then: 

- either the set of 1 for which K(A) is finite is of outer capacity zero, 

- or there exists an integer n > 1 such that #K(A) = n, for euery ,I in D, 
except on a closed discrete countable set E of D. In this case the points of 
K(A) vary holomorphically tfn is outside of E. 

THEOREM 3.9 (Functional calculus for analytic multivalued functions). 
Let A --f K(A) be an analytic multivalued function defined on a domain D of 
C and let u(A, z) be holomorphic in a neighbourhood of the graph 
G = {(A, z)IA E D, z E K(A)}. Then A+ (u(A, z)lz E K(A)} is analytic 
multivalued on D. 

Sketch ofproof. lo First we suppose that u(A, z) is rational, without 
singularities on G. For instance, 

u(A z) = P(A z)/q(A z), 

where p, q are two polynomials and q does not vanish on G. We consider 
F(;1, p) = {z E C ( ~(2, z) - ,uq(A, z) = O}. Because q does not vanish on G, we 
have F(A, p) n K(A) # 0 if and only if p E {u(A, z)l z E K(A)}. Let 0’ be the 
set of (A, ,D) such that A E D, ,u E C, ,U 6?2 (u(A, z)l z E K(A)}. We have to prove 
that this set is a domain of holomorphy. Of course 0’ = {(A, p)]J. E D, 
p E 6, {A} x F(A, P) c Q), where D is the domain of holomorphy associated 
to the analytic multivalued function IE + K(A). We know that 
(A, z) + $(A, z) = -Log dist((A, z), &!) is pluri-subharmonic on R, so it is not 
difficult to prove that (A, P) --) ~(2, p) = Max,,.o,,, 4(A, z) is pluri- 
subharmonic on S2’ and goes to infinity when (A, p) goes to the boundary of 
Q’. 2” We now suppose that ~(1, z) is holomorphic in a neighbourhood of G. 
We introduce L(A) = {u(& z)lz E K(A)}. It is easy to prove that 
(A, ,u) --t -Log dist@, L(A)) is upper semi-continuous on R’. We fix A, E D. 
By upper semi-continuity, there exists r > 0 and an open set U in G such that 
K(1) c U, for ] ;1- A,, I < r and such that B(A,, , r) x I!? is included in the open 
set of C* where u is holomorphic. This product of rationally convex sets is 
rationally convex in C*; hence every function holomorphic in a 
neighbourhood of g(A,,, r) x 0 is a uniform limit on this set of rational 
functions without singularities on this set (it is the generalization for Cn of 
Runge’s theorem-see, for instance, the paper of K. Oka [57]). Hence u(& z) 
is approximated on B(A,,, r) X fl by rational functions u,(Iz, z) without 
singularities on this set. The sequence $,(A, ,D) = -Log distb, L,(A)), where 
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L@> = k(A z)lz E K(A)} is uniformly bounded on @A,, r), for a fixed ,u, 
and converges pointwise on &lo, r) to -Log distb, L(A)). If we prove that 
the ), are locally pluri-subharmonic then (A, p) + -Log dist@, L(A)) satisfies 
the mean inequality on each complex line, and it is upper semi-continuous, 
so it is pluri-subharmonic. Using Theorem 3.1 the proof will be finished. The 
functions 4, are locally subharmonic, for n large enough, because 
4,@, P) = Log ,o(M,,@)), where 

and we use part l”, and Theorem 3.7, part 1’. For more details see [42]. 1 

COROLLARY 3.10. Let L + K(A) be an analytic multivalued function 
defined on a domain D of C. We suppose that ,u 6G K(&) then there exists 
r > 0 such that p 4 K(A) for II - A,, 1 < r and 1--t -Log distk, K(A)) is 
subharmonic on II&,, r). 

Proof This result comes immediately from part lo of the previous 
theorem and part lo of Theorem 3.7. J 

In fact this result, with Theorem 3.1, says that a is a domain of 
holomorphy if and only if (A, z) + Log dist(z, $(A)) is pluri-subharmonic on 
R. We now give two corollaries which are extensions of two results of 
J. D. Newburgh, for spectrum. 

The following result is obviously a generalization of Theorem 1.2.5, p. 17, 
in [6]. 

THEOREM 3.11 (Holomorphic variation of isolated points). Let I, + K(A) 
be an analytic multivalued function defined on a domain D of @. We suppose 
that a, is isolated in K(&) and that s > 0 is small enough such that 
K(&) rTB(a,, s) = {a,}. Then there exists r > 0 such that: 

lo either the set of L vergying IA - &I < r for which K(A) n B(a,, s) 
has one point is of capacity zero, 

2” or K(A) n B(a,, s) = {h(A)}, for every 1 such that (A - A,1 < r, 
where h is holomorhic on this disk. 

Sketch of proof: By Theorem 3.9 we localize the problem in a 
neighbourhood of A,. To get 1” we use part 2” of Theorem 3.7 and to get 2” 
we use the last remark given after Theorem 3.7. 1 

Using Corollary 3.10, and translating the proofs of Theorem 1.2.3., p. 12, 
and Theorem 1.4.1, p. 32, in [6], we then obtain: 
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THEOREM 3.12 (Principle of maximum). Let ,I -+ K(13) be an analytic 
multivalued function dej%ed on a domain D of C. We suppose that there 
exists & E D such that K(A) c K($,), for every ,I E D. Then aK(;1,,) c aK(A), 
for every A E D. In particular, if K(A) c K(&), for every A in D and some 1, 
in D then K(n) = K(&), f or every I in D (here Z?(A) denotes the polynomially 
convex hull of K(A)). 

THEOREM 3.13 (Pseudo-continuity). Let 1+ K(A) be an analytic 
multivalued function defined on a domain D of C. We suppose that ,I, E D 
and that E is a subset of D, non-thin at &-for example, E is a Jordan arc 
ending at L, or a connected open subset with &, in its boundary. Then there 
exists a sequence (2,) of points of E, converging to 1, such that 
lim n~m A(K(&,), K(&,)) = 0, where A denotes the Hausdorff s distance. 

The analog propositions with only K(k) are not true. See the 
corresponding examples, with spectrum, given in 16, pp. 13, 34411. 

THEOREM 3.14 (Desintegration of analytic multivalued functions). Let 
I--t K(A) be an analytic multivalued function defined on a domain D of C. 
Suppose that i, E D and that C is a non-void open and closed subset of 
K(&). For every disjoint open sets U, V such that C c U and K(&)\C c V, 
there exists r > 0 such that II - A, 1 < r implies ,I E D with K(A) c UV V 
and K(A) n U # 0. Then 1 -+ K(1) fl U is analytic multivalued on B(&, r). 

Proof. Doing a translation we can suppose that 0 @ V. By upper semi- 
continuity we have K(A) c UU V for 1A - &/ < r if r is small enough. We 
apply Theorem 3.9 with u(k, zf = z on B(1,. r) X U and ~(1, z) = 0 on 
B(&, r) x V. We get an analytic multivalued function A -+ L(A), defined on 
B(&,, r), such that Cc L(&) c CU (O} and L(1) c UU (0). Let E = 
{Al I?, - LoI < r and K(I) c V}; by upper semi-continuity this set is open. If 
this set is empty the first part of the theorem is proved. So we suppose E 
non-void. In this case L(Iz) = (0) on E and in particular on each component 
E, of E. It is impossible that E, = B(I.,, r) because 2, &E; so E, has a 
boundary point a in B(&, r). By Theorem 3.13, there exists a sequence (A,,) 
converging to a with I,, # a, /1, in E, and Km,,, A(L(a), L(n,,)) = 0. So 
L(o) = {O}. But a is not in E, so L(a) has a point in U which is not zero, so 
we have a contradiction. Hence the first part of the theorem is true. By upper 
semi-continuity of il + K(2) we have upper semi-continuity of k + K(2) n U 
on B(&, r). We have only to prove that R’ = { (2, z)l I& - &I < r, 
z 4: K(A) f’~ U) is pseudoconvex. If K(&)\C is empty it is obvious. If not we 
have L(&) = CU {O} and L(1) = (K(A) f7 v>U (0) for III -&I < r. By 
Theorem 3.9, 52” = ((&z)l II -&,I < r, z @L(k)} is pseudoconvex. Of 
course Q’ = R” U {(A, z)/ Ill- A,/ < r, z = 0). A small technical argument 
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shows that a’ is locally pseudoconvex at each of its boundary points. So it 
is pseudoconvex. 1 

COROLLARY 3.15. With the hypotheses of Theorem 3.14, if K(&) is 
totally disconnected then L + K(A) is continuous at A,. 

We come now to the more important results of this section. They had been 
conjectured, without connection to spectral theory and fibers theory, by 
K. Oka [32] in order to generalize Hartogs’ theorem. But they have been 
proved for the first time by T. Nishino [30]. Their proofs, mainly the proof 
of Lemma 3.16, are too complicated to be given. Consequently we refer the 
reader to [ 30,421. 

We shall say that a, in K(A,) is a first kind isolated point if for s > 0 
given such that K(&) n B(A.,, s) = {aO} there exists r > 0 such that 
]I - A,,1 c r implies #(K(A) n B(&, , s)) < co. By Theorems 3.7 and 3.8 this 
means that the graph of I+ K(A), restricted to a small neighbourhood of 
(A,,, a,), is an analytic variety. We then define DK(A) by K(1) minus the set 
of first kind isolated points of K(A). Obviously DK(A) is closed and 
K(l)’ c DK(iz). 

LEMMA 3.16 (Oka-Nishino). Let A + K(A) be an analytic multivalued 
function defined on a domain D of C. Then: 

lo either K(A) ispnite for every 1 in D and then DK(1) is always void, 

2” or DK(I) is non-void for every I in D and I + DK(A) is analytic 
multivalued on D. 

For every transfinite number a it is then possible to define D”K(il) by 

(a) D”K(,l) = D(D”-‘K(A)), if a is not a limit ordinal, 

(b) DnW> = fh<n D4K(A), if a is a limit ordinal. 

If DaK@) is non-void, then by the previous lemma A + D”K(A) is an 
analytic multivalued function. 

THEOREM 3.17 (Oka-Nishino). Let A--) K(A) be an analytic multivalued 
function defined on a domain D of Cc. We suppose that K(A) is countable for 
every 1 in a set E of positive outer capacity. Then K(A) is countable for every 
A in D. More precisely there exists a E X such that the a-topological 
derivative of K(A) is void for every A in D. 

COROLLARY 3.18. Conjecture 3 is true. 

ProoJ By Theorem 3.2, 1 + Spf(A) is analytic multivalued on D, so we 
apply the previous theorem. i 



58 BERNARD AUPETIT 

As mentioned in Section 2 we can globalize Theore 2.8, when A is 
separable, in the form of Theorem 2.9. 

COROLLARY 3.19. Theorem 2.9 is true. 

ProoJ With the hypotheses of Theorem 2.9 and using Theorem 3.17, we 
obtain that 1+ K,(A) is countable for every L in W. If A is separable, 
A, = A/(f- ,I) A is also separable and commutative. If fE A then 
Sp ia = K&L) is countable. But if for every element x of a commutative 
separable Banach algebra B we have Sp x countable, then the set of 
characters M(B) is countable. Consequently f’(A), which can be identified 
to M(An), is countable, for every J in D. The proof is now finished as in [7] 
or [8]. 1 

If A is not separable it may happen that K,(A) is countable for every f in 
A, with.?‘@) uncountable, but very “thin.” For example, let us take X a one- 
point compactification of a discrete uncountable set, Y = X x 2, with 
d = {A ] 113. ] < 11 and A the algebra of continuous functions f on Y such that 
IE +f(x, A) is holomorphic on A for every x E X. Of course &7(A) = Y. If we 
take f: (x, II) + A, for a fixed A,, in A we have f ‘(Q = X x {A,,} uncountable 
and K,(J) countable, because it is compact with only one limit point. 

To conclude this paper I would like to say that the method of multivalued 
analytic functions seems powerful because it reduces some spectral and fiber 
problems to the study of the geometry of domains of holomorphy, for which 
we have a lot of classical results. Perhaps it may also apply to other fields, 
for instance, cluster sets theory, differential equations, etc. 

For more information see [ 13, 53, 58, 59, 611. 

REFERENCES 

1. L. V. AHLFORS, “Complex Analysis,” McGraw-Hill, New York, 1966. 

2. H. ALEXANDER, Polynomial approximation and hulls of sets of finite linear measure in 
C”, Amer. J. Math. 93 (1971), 65-75. 

3. J. C. ALEXANDER, Compact Banach algebras, Proc. London Math. Sot. (3) 18 (1968) 
1-18. 

4. B. AUPETIT, Caracterisation spectrale des algebres de Banach de dimension finie, J. Funct. 
Anal. 26 (1977), 232-250. 

5. B. AUPETIT, L’approximation des fonctions de plusieurs variables complexes, Ann. Sci. 

Math. Quhbec 3 (1979), 169-183. 
6. B. AUPETIT, “Proprietes spectrales des algebres de Banach,” Lecture Notes in 

Mathematics No. 735, Springer-Verlag, Berlin, 1979. 
7. B. AUPETIT AND J. WERMER, Capacity and uniform algebras, J. Funcr. Anal. 28 (1978), 

386400. 
8. R. F. BASENER, A condition for analytic structure, Proc. Amer. Math. Sot. 36 (1972) 

156-160. 



BANACH AND UNIFORM ALGEBRAS 59 

9. R. F. BASENER, A generalized Shilov boundary and analytic structure, Proc. Amer. Math. 

sot. 47 (1975), 98-104. 
10. H. S. BEAR AND G. N. HILE, Analytic structure in function algebras, Houston J. Math. 5 

(1979), 21-28. 
11. E. BISHOP, Holomorphic completions, analytic continuations, and the interpolation of 

semi-norms, Ann. of Math. 78 (1963), 468-500. 
12. F. F. BONSALL AND J. DUNCAN, “Complete Normed Algebras,” Ergebnisse der 

Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, Berlin, 1973. 
13. G. DLOUSSKY, Enveloppes d’holomorphie et prolongements d’hypersurfaces, in 

“S6minaire Pierre Lelong, annee 1975/76,” pp. 217-235, Lecture Notes in Mathematics 
No. 578, Springer-Verlag, Berlin, 1977. 

14. T. GAMELIN, Polynomial approximation on thin sets, in “Symposium on Several Complex 
Variables, Park City, Utah, 1970,” pp. 50-78, Lecture Notes in Mathematics No. 184, 
Springer-Verlag, Berlin, 197 1. 

15. T. GAMELIN, Cluster values of bounded analytic functions, Trans. Amer. Math. Sot. 225 

(1977) 295-306. 
16. I. C. GOHBERG AND M. G. KREIN, “Introduction a la theorie des operateurs liniaires non 

auto-adjoints dans un espace hilbertien,” Dunod, Paris, 1971. 
17. R. C. GUNNING AND H. Ross], “Analytic Functions of Several Complex Variables,” Pren- 

tice-Hall, Englewood Cliffs, N. J., 1965 
18. P. R. HALMOS, “A Hilbert Space Problem Book,” Van Nostrand, Princeton, N. J., 1967. 
19. P. R. HALMOS, Capacity in Banach algebras, Indiana Univ. Math. J. 20 (1971), 855-863. 
20. R. HARTE, The exponential spectrum in Banach algebras, Proc. Amer. Math. Sot. 58 

(1976) 114-l 18. 
21. W. K. HAYMAN AND P. B. KENNEDY, “Subharmonic Functions,” Vol. 1, Academic Press, 

New York/London, 1976. 
22. K. HOFFMAN, “Banach Spaces of Analytic Functions,” PrenticeHall, Englewood Cliffs, 

N. J., 1962. 
23. T. HURUYA, A spectral characterization of a class of C*-algebras, Sci. Rq. Niigata Univ. 

Ser. A 15 (1978), 21-24. 
24. P. JAK~BCZAK, On the existence of analytic structure in the spectrum of a uniform 

algebra, Bull. Acad. Polon. Sci. Sk. Sci. Math. Astronotn. Phys. 26 (1978), 595-601. 
25. H. E. JENSEN, Scattered C*-algebras, Math. Stand. 41 (1977), 308-314. 
26. E. KIRCHBERG, Banach algebras whose elements have at most countable spectra, I and II, 

Studia Math., in press. 
27. D. KUMAGAI, Subharmonic functions and uniform algebras, Proc. Amer. Math. Sot. 78 

(1980) 23-29. 
28. K. KURATOWSKI, “Topologie,” 3rd ed. corr., Vol. 1, Polska Akademia Nauk, 

Monographie Mathematyczne 20, Warsaw, 1961. 
29. R. NARASIMHAN, “Several Complex Variables,” Univ. of Chicago Press, Chicago, 197 1. 
30. T. NISHINO, Sur les ensembles pseudoconcaves, J. Marh. Kyoto Univ. l(2) (1962), 

225-245. 
3 1. K. NOSHIRO, “Cluster Sets,” Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 28, 

Springer-Verlag. Berlin, 1960. 
32. K. OKA, Note sur les familles de fonctions analytiques multiformes etc., J. Sci. Hiroshima 

Univ. 4 (1934), 93-98. 
33. A. PE~X&ISKI AND Z. SEMADENI, Spaces of continuous functions. III. Spaces C(a) for Q 

without perfect subsets, Studia Math. 18 (1959), 21 l-222. 
34. C. E. RICKART, “General Theory of Banach Algebras,” Van Nostrand, Princeton, N. J., 

1960. 
35. W. RUDIN, “Real and Complex Analysis,” 2nd ed., McGraw-Hill, New York, 1974. 



60 BERNARD AUPETIT 

36. W. RUDIN, “Function Theory in Polydiscs,” Benjamin, New York, 1969. 
37. M. SCHECHTER, On the spectra of operators on tensor products, J. Funct. Anal. 4 (1969). 

95-99. 
38. V. N. SENICHKIN, The maximality of the algebra of continuous functions on the extended 

complex plane and analytic in the complement of a completely discontinuous compact 
set, in “Reports of a Research Seminar LOMI 22 (1971), Investigations on Linear 
Operator and Function Theory II,” pp. 130-138. [In Russian.] 

39. V. N. SENICHKIN, Subharmonic functions and the analytic structure in the space of 
maximal ideals of a uniform algebra, Mat. Sb. 108 (150) (1979), 115-133. [In Russian.) 

40. N. SIBONY, Multi-dimensional analytic structure in the spectrum of uniform algebra, in 
“Spaces of Analytic Functions, Seminar Held at Kristiansand, Norway, June 9-14, 

1975,” pp. 139-165, Lecture Notes in Mathematics No. 512, Springer-Verlag, 1976. 
41. 2. SLODKOWSKI, On subharmonicity of the capacity of the spectrum, Proc. Amer. Math. 

Sot. 81 (1981), 243-249. 
42. Z. S~ODKOWSKI, Analytic set-valued functions and spectra, Math. Ann. 256 (1981). 

363-386. 
43. M. R. F. SMYTH, Riesz theory in Banach algebras, Math. 2. 145 (1975), 145-155. 
44. D. S. G. STIRLING, Perturbations of operators which leave capacity invariant, J. London 

Math. Sot. (2) 10 (1976), 75-78. 
45. M. TSUJI, “Potential Theory in Modern Function Theory,” Maruzen, Tokyo, 1959. 

Second edition corrected, Chelsea, New York, 1975. 
46. E. VESENTINI, On the subharmonicity of the spectral radius, Boll. CJn. Mat. Ital. 4 (1968), 

427429. 
47. E. VESENTINI, Maximum theorems for spectra, in “Essays on Topology and Related 

Topics (Memoires dedits i Georges de Rham).” pp. 11 l-l 17. Springer-Verlag, 

New York, 1970. 
48. V. S. VLADIMIROV, “Methods of the Theory of Functions of Many Complex Variables,” 

MIT Press, Cambridge, Mass., 1966. 
49. J. WERMER, Subharmonicity and hulls, Pacific J. Math. 58 (1975), 283-290. 
50. J. WERMER, “Banach Algebras and Several Complex Variables,” 2nd ed., Springer-Verlag. 

New York, 1976. 
51. J. WERMER, Capacity and uniform algebras, in “Proceedings of Symposia in Pure 

Mathematics,” Vol. 35, pp. 445449. Amer. Math. Sot., Providence, R. I.. 1979. 

52. J. WERMER, Maximum modulus algebras and singularity sets, to appear. 
53. J. WERMER. Potential theory and function algebras in “Texas Tech Math. Series..” in 

press. 
54. H. YAMAGUCHI, Sur une uniformite des surfaces constantes d’une fonction entiere de deux 

variables complexes, J. Math. K.voto Univ. 13 (1973), 417-433. 
55. L. HBRMANDER. “An Introduction to Complex Analysis in Several Variables.” Elsevier, 

Amsterdam/New York, 1973. 

56. H. CARTAN, Sur les matrices holomorphes de n variables complexes, J. Math. Pures Appl. 
19 (1940), l-26. 

57. K. OKA. Domaines convexes par rapport aux fonctions rationnelles, J. Sci. Hiroshima 
Univ. Ser. A 6 (1936), 245-255. 

58. B. AUPETIT, Some applications of analytic multivalued functions to Banach algebras, 
Proc. Roy Irish Acad. 81 A (1981), 37-47. 

59. B. AUPETIT AND J. ZEMANEK, On zeros of analytic multivalued functions, to appear. 
60. W. SIERPI~~SKI, “Cardinal and Ordinal Numbers,” Polish Scientific Publishers, Warsaw, 

1965. 

61. Z. SEODKOWSKI, Analytic families of operators: Variation of the spectrum, Proc. Roy. 
Irish Acad. 81A (1981), 121-126. 


