REPEATED BLOCKS IN INDECOMPOSABLE TWOFOLD TRIPLE SYSTEMS

Alexander ROSA*
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

Received 24 February 1986

1. Introduction

A Steiner triple system (STS) (a twofold triple system (TTS)) is a pair (V, B) where V is a v-set, and B is a collection of 3 -subsets of V called blocks or triples such that every 2 -subset of V is contained in exactly one [exactly two] blocks. The number v is called the order of the STS or TTS. It is well-known that an STS of order v exists if and only if $v \equiv 1$ or $3(\bmod 6)$, and a TTS of order v exists if and only if $v \equiv 0$ or $1(\bmod 3)$.

A $\operatorname{TTS}(v)(V, B)$ whose block-set B can be partitioned into two subsets B_{1}, B_{2} such that $\left(V, B_{1}\right),\left(V, B_{2}\right)$ are both $\operatorname{STS}(v)$'s, is called decomposable; otherwise, it is indecomposable. An indecomposable $\operatorname{TTS}(v)$ is known to exist if and only if $v \equiv 0$ or $1(\bmod 3)$ and $v \neq 3,7[2]$.

If a TTS contains two blocks $b_{1}=\{x, y, z\}, b_{2}=\{x, y, z\}$ that are identical as subsets of V then $\{x, y, z\}$ is said to be a repeated block; otherwise, a block is called nonrepeated. In a recent paper [5], the author and D. Hoffman gave a complete answer to the following question:

Given $v \equiv 0$ or $1(\bmod 3)$ and nonnegative integer k, does there exist a $\operatorname{TTS}(v)$ with exactly k repeated triples?

One may ask the same question with the added condition that the TTS be indecomposable. Since trivially any $\operatorname{TTS}(v)$ with $v \equiv 0$ or $4(\bmod 6)$ is indecomposable, the answer to the expanded question for these orders is the same as that for the original question. It is the purpose of this paper to settle completely this expanded question by providing an answer for the cases when $v \equiv 1$ or $3(\bmod 6)$.

2. Preliminaries, recursive construction, and statement of the main theorem

Following [5], let $R(v)=\{k: \exists \operatorname{TTS}(v)$ with exactly k repeated blocks $\}$. It has

[^0]been shown ([5]; cf. also [3]) that for $v>12$,
\[

R(v)= $$
\begin{cases}\left\{0,1, \ldots, b_{v}-6, b_{v}-4, b_{v}\right\}, & \text { if } v \equiv 1 \text { or } 3(\bmod 6), \\ \left\{0,1, \ldots, s_{v}-2, s_{v}\right\}, & \text { if } v \equiv 0 \text { or } 4(\bmod 12), \\ \left\{0,1, \ldots, s_{v}-2, s_{v}-1\right\}, & \text { if } v \equiv 6 \text { or } 10(\bmod 12),\end{cases}
$$
\]

where $b_{v}=\frac{1}{6} v(v-1), s_{v}=\frac{1}{6} v(v-4)$.
Denote now, by analogy, $R_{I}(v)=\{k: \exists$ indecomposable $\operatorname{TTS}(v)$ with exactly k repeated blocks\}. We have trivially $R_{I}(v)=R(v)$ for $v \equiv 0,4(\bmod 6)$, so from now on we concentrate on the case $v \equiv 1$ or $3(\bmod 6)$. For small values of v, we have

$$
\begin{array}{lll}
R(3)=\{1\}, & R_{I}(3)=\emptyset \\
R(7)=\{0,1,3,7\}, & R_{I}(7)=\emptyset & \\
R(9)=\{0,1,2,3,4,6,12\}, & R_{I}(9)=\{0,1,2,4\} & \text { (cf., e.g. [4]). }
\end{array}
$$

But it is easy to see that we have $R_{I}(v) \subsetneq R(v)$ for all $v \equiv 1$ or $3(\bmod 6)$: if a $\operatorname{TTS}(v)$ has b_{v} repeated blocks, it is necessarily decomposable, i.e., $b_{v} \in R(v)$ but $b_{v} \notin R_{I}(v)$.
Let us call a collection T of triples doubly balanced for pairs if any pair $\{x, y\}$ is contained in 0 or 2 triples of T. Such a collection is parity-regular if elements occurring in at least one triple of T all occur in an even number of triples of T, or all occur in an odd number of triples of T, and is separable if it can be partitioned into two subsets T_{1}, T_{2} such that a pair is contained in a triple of T_{1} if and only if it is contained in a triple of T_{2} (i.e., if it can be partitioned into disjoint mutually balanced partial triple systems, cf. [3]).

Clearly, in an indecomposable TTS (v) the nonrepeated blocks must form a non-separable, parity-regular collection doubly balanced for pairs.

Denote $L(v)=\left\{0,1, \ldots, b_{v}-8, b_{v}-6\right\}$.
Lemma 2.1. $R_{I}(v) \subseteq L(v)$ if $v \equiv 1$ or $3(\bmod 6)$.
Proof. Clearly it suffices to consider $v \geqslant 13$. As in this case $R(v)=$ $\left\{0,1, \ldots, b_{v}-6, b_{v}-4, b_{v}\right\}$, the statement of the lemma is equivalent to saying that neither of $b_{v}-7, b_{v}-4$ and b_{v} belongs to $R_{I}(v)$. This has already been shown for b_{v}. Assume now $b_{v}-4 \in R_{I}(v)$. This means that there exists an indecomposable TTS (v) with exactly $b_{v}-4$ repeated blocks and exactly 8 nonrepeated blocks, and the nonrepeated blocks form a collection doubly balanced for pairs that is nonseparable and parity-regular. It is an easy exercise to establish that there are, up to isomorphism, exactly three collections of 8 blocks doubly balanced for pairs. Of these, one is separable, and the other two are not parity-regular. Thus $b_{v}-4 \notin R_{I}(v)$. Assuming $b_{v}-7 \in R_{I}(v)$, we get that there exists an indecomposable $\operatorname{TTS}(v)$ with exactly 14 nonrepeated blocks which form
a collection doubly balanced for pairs. It is tedious but straightforward to verify that each such collection is either separable or not parity-regular.

In what follows, we determine $R_{I}(v)$ for $v \equiv 1$ or $3(\bmod 6), v \geqslant 13$. In particular, we will prove the following

Main Theorem. Let $v \equiv 1$ or $3(\bmod 6), v \geqslant 15$. Then there exists an indecomposable $\operatorname{TTS}(v)$ having exactly k repeated blocks if and only if $k \in L(v)$.

We also determine $R_{I}(13)$ where one exceptional value occurs. The proof of the Main Theorem is given in Section 4.
If x is an element and P is a set of pairs, denote

$$
x^{*} P=\{\{x, a, b\}:\{a, b\} \in P\} .
$$

Lemma 2.2. Let Q be a 2-factorization of $2 K_{v+1}$, and let q be the total number of 2 -cycles of Q. Then $t+q \in R_{I}(2 v+1)$ for all $t \in R_{I}(v)$.

Proof. Let $W=V \cup X$ where $V=\left\{a_{i}: i=1, \ldots, v\right\},|X|=v+1, V \cap X=\emptyset$. Let (V, B) be an indecomposable $\operatorname{TTS}(v)$ with t repeated triples. If $Q=$ $\left\{Q_{1}, \ldots, Q_{v}\right\}$ is a 2 -factorization of $2 K_{v+1}$ on X, and $C=\bigcup_{i=1}^{v} a_{i} * Q_{i}$, then $(W, B \cup C)$ is an indecomposable $\operatorname{TTS}(2 v+1)$ with $t+q$ repeated triples.

Corollary 2.3. Let $v \equiv 1$ or $3(\bmod 6)$. If $t \in R_{I}(v)$, then $t+\frac{1}{2}(s(v+1)) \in R_{I}(2 v+$ 1) for every $s \in\{0,1, \ldots, v-2, v\}$.

Proof. In Lemma 2.2, take $Q_{i}=F_{i} \cup F_{i \alpha}$, where $F=\left\{F_{1}, \ldots, F_{v}\right\}$ is any 1factorization of K_{v+1} on X, and α is any permutation of $\{1,2, \ldots, v\}$ fixing exactly s letters.

Corollary 2.4. For $v \geqslant 13, v \equiv 1$ or $3(\bmod 6), R_{I}(v)=L(v)$ implies $R_{I}(2 v+1)=$ $L(2 v+1)$.

Before proceeding further, we need to describe an auxiliary construction (cf. Construction B in [3]).

Construction B*. Let $W=V \cup X \cup Z$, where $V=\left\{a_{i}: i=1, \ldots, v\right\}, \quad X=$ $\left\{b_{i}: i=1, \ldots, v\right\}, Z=\left\{\infty_{i}: i=1, \ldots, 7\right\},|V \cup X \cup Z|=2 v+7$. Let (V, B) be a $\operatorname{TTS}(v)$, and let (Z, C) be a TTS(7). Let $m=\frac{1}{2}(v-1)$, and let $P=\left\{\left(p_{r}, q_{r}\right): q_{r}-\right.$ $\left.p_{r}=r, r=1,2, \ldots, m\right\}$ be an ($m, 1$)-Langford sequence (perfect or hooked) [7]. Let $Y=X \backslash S$, where

$$
S=\left\{b_{i}: i=p_{r} \text { or } q_{r}, r=4,5, \ldots, m ;\left(p_{r}, q_{r}\right) \in P\right\} .
$$

We have $|Y|=7$, so let $Y=\left\{b_{j_{i}}: i=1,2, \ldots, 7\right\}$. Let further

$$
\begin{aligned}
& E=\left\{\left\{\infty_{i}, a_{t}, b_{i_{i}+t-1}\right\}: i=1,2, \ldots, 7, t=1,2, \ldots, v\right\}, \\
& F=\left\{\left\{a_{t}, b_{p_{r}+t-1}, b_{q_{r}+t-1}\right\}: t=1,2, \ldots, v, r=4,5, \ldots, m ;\left(p_{r}, q_{r}\right) \in P\right\}, \\
& G=\left\{\left\{b_{i}, b_{i+1}, b_{i+3}\right\}: i=1,2, \ldots, v\right\},
\end{aligned}
$$

with subscripts reduced modulo v to the range $\{1,2, \ldots, v\}$ whenever necessary. If α is a permutation of V, let E_{α}, F_{α} be the sets of triples obtained from E, F, respectively, by replacing every $a_{t}, t=1, \ldots, v$, with $a_{t} \alpha$. Further, let

$$
G_{\delta}= \begin{cases}G, & \text { if } \delta=1, \\ \left\{\left\{b_{i}, b_{i+2}, b_{i+3}\right\}: i=1, \ldots, v\right\}, & \text { if } \delta=0 .\end{cases}
$$

Let $D=B \cup C \cup E \cup E_{\alpha} \cup F \cup F_{\alpha} \cup G \cup G_{\delta}$. Then (W, D) is a $\operatorname{TTS}(2 v+7)$.
Lemma 2.5. Let $v \geqslant 9, v \equiv 1$ or $3(\bmod 6)$. If $k \in R_{I}(v)$, then $k+\frac{1}{2}(s(v+7)+$ $\delta v+\gamma \in R_{I}(2 v+7)$ for every $s \in\{0,1, \ldots, v-2, v\}, \delta \in\{0,1\}, \gamma \in\{0,1,3,7\}$.

Proof. In Construction B* above, take (V, B) indecomposable with k repeated triples, and take α that fixes exactly s elements of V. There are exactly 7 triples of E and exactly $\frac{1}{2}(v-7)$ triples of F containing a fixed element a_{t}, so

$$
\left|(E \cup F) \cap\left(E_{\alpha} \cup F_{\alpha}\right)\right|=\frac{1}{2} s(v+7) .
$$

Further, $\left|G \cap G_{\delta}\right|=\delta v$. Finally, take C to contain γ repeated blocks.
Corollary 2.6. For $v \geqslant 15, v \equiv 1$ or $3(\bmod 6), R_{I}(v)=L(v)$ implies $R_{I}(2 v+7)=$ $L(2 v+7)$.

2. Starting the induction

In this section, we determine the sets $R_{I}(v)$ for several small values of v. We start with a trivial

Lemma 3.1. If $n \equiv 1(\bmod 2)$ there exists a decomposition of $2 K_{n}$ into $n-1$ Hamiltonian circuits.

Corollary 3.2. $k \in R(u), u \equiv 0$ or $4(\bmod 6) \rightarrow k \in R_{I}(2 u+1)$.
Lemma 3.3. $\{1,2,3,4,5,7,8,10,12\} \subset R_{I}(13)$.
Proof. Let $W=V \cup X, V=\left\{a_{1}, \ldots, a_{6}\right\}, X=\{1,2, \ldots, 7\}$. Let (V, B) be a $\operatorname{TTS}(6)$, and let $f_{1}, f_{2}, \ldots, f_{17}$ be the 2 -factors of $2 K_{7}$ on X given in Table 1. For $t=1,2,3,4,5,7,8,10,12$, let $F^{(t)}=\left\{F_{1}^{(t)}, F_{2}^{(t)}, F_{3}^{(t)}, F_{4}^{(t)}, F_{3}^{(t)}, F_{6}^{(t)}\right\}$ be the 2-

Table 1
2-factors

f_{1}	$(123)(4567)$	f_{10}	$(157)(26)(34)$
f_{2}	$(123)(45)(67)$	f_{11}	$(1527)(346)$
f_{3}	$(123)(47)(56)$	f_{12}	(1427536)
f_{4}	$(14625)(37)$	f_{13}	(1426357)
f_{5}	$(146)(2537)$	f_{14}	(1624357)
f_{6}	$(146)(25)(37)$	f_{15}	(1634257)
f_{7}	$(146)(27)(35)$	f_{16}	$(16257)(34)$
f_{8}	$(157)(2436)$	f_{17}	$(24357)(16)$
f_{9}	$(157)(24)(36)$		

factorization of $2 K_{7}$ on X given in Table 2. Let $C^{(t)}=\bigcup_{i=1}^{6} a_{i} * F_{i}^{(t)}$. Then $\left(W, B \cup C^{(t)}\right)$ is a $\operatorname{TTS}(13)$ with exactly t repeated blocks; clearly, it is indecomposable.

Lemma 3.4. $\{6,9,11,13,14,15,16,18\} \subset R_{I}(13)$.

Proof. Let $W=U \cup Y, U=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}, Y=\{1,2, \ldots, 9\}$. Let (U, D) be a $\operatorname{TTS}(4)$, and let $g_{1}, g_{2}, \ldots, g_{21}$ be the 212 -factors of $2 K_{9}$ on Y given in Table 3. Let E be the following set of triples: $E=\{159,168,249,267,348,357\}$. For $t=0,3,5,7,8,9,10,12$, let $G^{(t)}=\left\{G_{1}^{(t)}, G_{2}^{(t)}, G_{3}^{(t)}, G_{4}^{(t)}\right\}$ be the set of four 2-factors of $2 K_{9}$ on Y given in Table 4; each $G^{(t)} \cup 2 E$ decomposes $2 K_{9}$ on Y. Let $C^{(t)}=\bigcup_{i=1}^{4} b_{i} * G_{i}^{(t)}$. Then $\left(W, D \cup C^{(t)} \cup 2 E\right)$ is an indecomposable TTS(13) with exactly $t+6$ repeated blocks.

Lemma 3.5. $20 \in R_{I}(13)$.

Proof. Elements: $V=\{1,2, \ldots, 13\}$.

Table 2
2-factorizations

$F^{(t)}$	$F_{1}^{(t)}$	$F_{2}^{(t)}$	$F_{3}^{(t)}$	$F_{4}^{(t)}$	$F_{5}^{(t)}$	$F_{6}^{(t)}$
$F^{(\mathbf{1})}$	f_{1}	f_{1}	f_{4}	f_{11}	f_{12}	f_{14}
$F^{(2)}$	f_{1}	f_{1}	f_{4}	f_{11}	f_{13}	f_{17}
$F^{(3)}$	f_{1}	f_{1}	f_{4}	f_{7}	f_{8}	f_{15}
$F^{(4)}$	f_{2}	f_{3}	f_{5}	f_{5}	f_{8}	f_{8}
$F^{(5)}$	f_{2}	f_{3}	f_{4}	f_{11}	f_{12}	f_{14}
$F^{(7)}$	f_{2}	f_{3}	f_{4}	f_{7}	f_{8}	f_{15}
$F^{(8)}$	f_{2}	f_{3}	f_{6}	f_{7}	f_{8}	f_{8}
$F^{(1)}$	f_{2}	f_{3}	f_{4}	f_{7}	f_{9}	f_{16}
$F^{(12)}$	f_{2}	f_{3}	f_{6}	f_{7}	f_{9}	f_{10}

Table 3
2-factors

g_{1}	$(123)(456)(789)$	g_{12}	$(123654)(789)$
g_{2}	$(147)(258)(369)$	g_{13}	$(12563)(47)(89)$
g_{3}	$(123)(45)(69)(78)$	g_{14}	$(1285647)(39)$
g_{4}	$(123)(47)(56)(89)$	g_{15}	$(1328564)(79)$
g_{5}	$(123)(47)(58)(69)$	g_{16}	$(1364)(789)(25)$
g_{6}	$(147)(25)(36)(89)$	g_{17}	$(23658)(14)(79)$
g_{7}	(123658974)	g_{18}	$(258)(17)(39)(46)$
g_{8}	(125478963)	g_{19}	$(258)(14)(36)(79)$
g_{9}	$(1258974)(36)$	g_{20}	$(456)(17)(28)(39)$
g_{10}	(132587964)	g_{21}	$(789)(14)(25)(36)$
g_{11}	$(1325874)(69)$		

Repeated blocks:

$$
\begin{aligned}
& B_{R}=\{129,11013,11112,21012,21113,369,3710,31213, \\
& 4613,4711,4812,4910,5612,5713,5810,5911, \\
&61011,7912,8913\} .
\end{aligned}
$$

Nonrepeated blocks:

$$
\begin{aligned}
B_{N}=\{ & 134,135,145,167,168,178,234,235,245,267, \\
& 268,278\} .
\end{aligned}
$$

Lemma 3.6. $17 \notin R_{I}(13)$.
Proof. There exists, up to isomorphism, a unique collection D of 18 blocks doubly balanced for pairs which is parity-regular but not separable:
$12 A, 12 B, 13 A, 13 B, 23 A, 23 B, 45 A, 45 C, 46 A, 46 C$,
$56 A, 56 C, 78 B, 78 C, 79 B, 79 C, 89 B, 89 C$.
Suppose there exists a $\operatorname{TTS}(13)(V, B)$ with $V=\{1,2, \ldots, 9, A, B, C, X\}$, and $B=D \cup 2 E$, i.e., X is the only additional element not occurring in triples of D,

Table 4

$G^{(t)}$	$G_{1}^{(t)}$	$G_{2}^{(t)}$	$G_{3}^{(t)}$	$G_{4}^{(t)}$
$G^{(0)}$	g_{1}	g_{1}	g_{2}	g_{2}
$G^{(3)}$	g_{7}	g_{8}	g_{10}	g_{20}
$G^{(5)}$	g_{1}	g_{9}	g_{11}	g_{20}
$G^{(7)}$	g_{5}	g_{12}	g_{16}	g_{20}
$G^{(8)}$	g_{3}	g_{6}	g_{14}	g_{15}
$G^{(9)}$	g_{1}	g_{5}	g_{20}	g_{21}
$G^{(10)}$	g_{3}	g_{13}	g_{17}	g_{18}
$G^{(12)}$	g_{3}	g_{4}	g_{18}	g_{19}

and all blocks of B other than those of D are repeated. Consider the pairs, say, $1 C$ and $2 C$. The triples of E containing these pairs must be $1 C X$ and $2 C X$, respectively, which is a contradiction.

Lemma 3.7. $R_{I}(13)=L(13) \backslash\{17\}$.
Proof. We have $0 \in R_{I}(13)$ by Corollary 3.2. The rest follows from Lemmas 3.3-3.6.

Lemma 3.8. $\{0,1,2,3,4,5,6,7,8,15\} \subset R_{I}(15)$.
Proof. Let $V=X \cup Z_{11}, X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Let h_{1}, \ldots, h_{28} be the 2-factors of $2 K_{11}$ on Z_{11} given in Table 5. Note that h_{1} has a total of four 2-cycles, h_{2} and h_{3} have three 2 -cycles, $h_{4}, h_{5}, h_{6}, h_{7}$ have two 2 -cycles, h_{8}, \ldots, h_{15} have one 2-cycle each, while h_{16}, \ldots, h_{28} have no 2-cycles. For $t=0,1,2,3,4,5,6,7,8$, 15 , let $F^{(t)}=\left\{F_{1}^{(t)}, F_{2}^{(t)}, F_{3}^{(t)}, F_{4}^{(t)}\right\}$ be the following sets of four 2-factors:

$$
\begin{array}{ll}
F^{(0)}=\left\{h_{27}, h_{27}, h_{28}, h_{28}\right\}, & F^{(1)}=\left\{h_{8}, h_{20}, h_{25}, h_{26}\right\}, \\
F^{(2)}=\left\{h_{12}, h_{13}, h_{24}, h_{26}\right\}, & F^{(3)}=\left\{h_{4}, h_{11}, h_{16}, h_{18}\right\}, \\
F^{(4)}=\left\{h_{6}, h_{7}, h_{19}, h_{19}\right\}, & F^{(5)}=\left\{h_{1}, h_{10}, h_{18}, h_{23}\right\}, \\
F^{(6)}=\left\{h_{2}, h_{3}, h_{21}, h_{22}\right\}, & F^{(7)}=\left\{h_{1}, h_{5}, h_{9}, h_{17}\right\}, \\
F^{(8)}=\left\{h_{2}, h_{3}, h_{14}, h_{15}\right\} . &
\end{array}
$$

Further, let $C=\left\{\{i, i+1, i+6\},\{i, i+3, i+7\}: i \in Z_{11}\right\}, \quad D_{1}=\{\{i, i+2, i+$ $\left.6\}: i \in Z_{11}\right\}, \quad D_{2}=\left\{\{i, i+4, i+6\}: i \in Z_{11}\right\}, \quad D=D_{1} \cup D_{2}, \quad D^{\prime}=\{\{i, i+1, i+3\}$, $\left.\{i, i+2, i+3\}: i \in Z_{11}\right\}$, and let (X, E) be a $\operatorname{TTS}(4)$. Put $B=C \cup Y \cup \bigcup_{i=1}^{4} x_{i} *$ $F_{i}^{(t)}$, where

$$
Y= \begin{cases}C, & \text { if } t=1,3,5,7 \\ D, & \text { if } t=2,4,6 \\ D^{\prime} & \text { if } t=0 \\ 2 D_{1}, & \text { if } t=15\end{cases}
$$

Table 5
2-factors on Z_{11}

h_{1}	$(01 T)(24)(35)(68)(79)$	h_{11}	$(08 T 241369)(57)$	h_{21}	$(0196587432 T)$
h_{2}	$(03678)(12)(45)(9 T)$	h_{12}	$(01234589 T)(67)$	h_{22}	$(0198567432 T)$
h_{3}	$(03698)(14)(25)(7 T)$	h_{13}	$(01234789 T)(56)$	h_{23}	$(0258 T 134769)$
h_{4}	$(01 T)(2435)(68)(79)$	h_{14}	$(01967432 T)(58)$	h_{24}	$(03691452 T 78)$
h_{5}	$(456)(789 T)(02)(13)$	h_{15}	$(01987432 T)(56)$	h_{25}	$(0975312468 T)$
h_{6}	$(0123458)(67)(9 T)$	h_{16}	$(02358 T 19)(467)$	h_{26}	$\left\{\{i, i+3\}: i \in Z_{11}\right\}$
h_{7}	$(0123458)(69)(7 T)$	h_{17}	$(03258 T 19)(467)$	h_{27}	$\left\{\{i, i+4\}: i \in Z_{11}\right\}$
h_{8}	$(023456789)(1 T)$	h_{18}	$(0213)(456)(789 T)$	h_{28}	$\left\{\{i, i+5\}: i \in Z_{11}\right\}$
h_{9}	$(08 T 214369)(57)$	h_{19}	$(03652 T)(14789)$		
h_{10}	$(08 T 236419)(57)$	h_{20}	$(013579 T 8642)$		

It is then straightforward to verify that (V, B) is an indecomposable $\operatorname{TTS}(15)$ with exactly t repeated blocks.

Lemma 3.9. $\{20,21,23,27\} \subset R_{I}(15)$.
Proof. Let $V=X \cup Z_{8}, X=\left\{a_{1}, a_{2}, \ldots, a_{7}\right\}$. Let $F=\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\}$ be a maximal set of five 1-factors of K_{8} on Z_{8} whose leave (=complement) is a 2-factor Q consisting of one triangle and one pentagon; e.g., $Q=(123)(45678)$; such a set F is well known to exist (cf., e.g. [6]). For $i=1,2,3,4,5$, let Q_{i} be the 2-factor on Z_{8} obtained by "doubling" each edge of F_{i}. Let $\left(X, C^{(t)}\right)$ be a TTS(7) with t repeated triples, $t \in R(7)=\{0,1,3,7\}$. Put $B=\bigcup_{i=1}^{5} a_{i} * Q \cup a_{6} * Q \cup a_{7} * Q$. Then $\left(V, B \cup C^{(t)}\right)$ is a $\operatorname{TTS}(15)$ with exactly $t+20$ repeated triples, which is clearly indecomposable.

Lemma 3.10. $\{9,10, \ldots, 29\} \backslash\{15,23\} \subset R_{I}(15)$.
Proof. Let again $V=X \cup Z_{8}, \quad X=\left\{a_{1}, \ldots, a_{7}\right\}$ but this time let $F=$ $\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\}$ be a maximal set of four 1-factors of K_{8} on Z_{8} whose leave is the cubic graph K in Fig. 1. Such a maximal set is easily seen to exist (cf. also [6]).

Let Q_{i} be the 2-factor on Z_{8} obtained by doubling each edge of $F_{i}, i=1,2,3,4$. Then $B=\bigcup_{i=1}^{4} a_{i} * Q_{i}$ is a set containing 16 repeated triples. Let $2 K$ be the graph obtained from K by doubling each of its edges. Consider the following 2 -factors of $2 K$:

$$
\begin{array}{lll}
k_{1}=(126783)(45) & k_{4}=(138754)(26) & k_{7}=(12387654) \\
k_{2}=(126754)(38) & k_{5}=(123)(567)(48) & k_{8}=(13265784) \\
k_{3}=(132654)(78) & k_{6}=(12384)(567) &
\end{array}
$$

Then for $s=1,2,3, L^{(s)}=\left\{L_{1}^{(s)}, L_{2}^{(s)}, L_{3}^{(s)}\right\}$, where $L^{(1)}=\left\{k_{1}, k_{6}, k_{8}\right\}, L^{(2)}=$ $\left\{k_{4}, k_{5}, k_{7}\right\}, L^{(3)}=\left\{k_{2}, k_{3}, k_{5}\right\}$, is a decomposition of $2 K$ into 2 -factors. Put $D^{(s)}=\bigcup_{i=5}^{p} a_{i} * L_{i}^{(s)}$, and let $\left(X, C^{(t)}\right)$ be a $\operatorname{TTS}(7)$ with t repeated triples. Then $\left(V, B \cup C^{(t)} \cup D^{(s)}\right)$ is an indecomposable $\operatorname{TTS}(15)$ with $16+t+s$ repeated triples. Since $t \in\{0,1,3,7\}$ and $s \in\{1,2,3\}$, this gives $\{17,18,19,20,21,22$, $24,25,26\} \subset R_{I}(15)$.

Let now $Q_{1}^{\prime}=Q_{2}^{\prime}=F_{3} \cup F_{4}$. If B^{\prime} is obtained from B by replacing Q_{1}, Q_{2} with $Q_{1}^{\prime}, Q_{2}^{\prime}$, respectively, then $\left(V, B^{\prime} \cup C^{(t)} \cup D^{(s)}\right)$ is an indecomposable $\operatorname{TTS}(15)$

Fig. 1. Graph K.
with $8+t+s$ repeated triples. This implies $\{9,10,11,12,13,14,16,17,18\} \subset$ $R_{I}(15)$ which completes the proof of the lemma.

Lemma 3.11. $29 \in R_{I}(15)$.
Proof. Elements: $V=\{1,2, \ldots, 15\}$.
Nonrepeated blocks:

$$
B_{N}=\{134,135,145,167,168,178,234,235,245,267,268,278\}
$$

Repeated blocks:

$$
\begin{aligned}
B_{R}=\{ & 129,11013,11114,11215,21015,21112,21314,3610, \\
& 3711,3812,3913,31415,4613,4714,4815,4911, \\
& 41012,5611,5715,5813,5912,51014,6915,61214, \\
& 7910,71213,8914,81011,111315\} .
\end{aligned}
$$

Lemma 3.12. $R_{I}(15)=L(15)$.
Proof. Lemmas 3.8-3.11.

Lemma 3.13. $5 s+t+2 \in R_{I}(19)$ for $s \in\{0,1,2,3,4,6\}, t \in R(9)$.
Proof. Let $V=X \cup Z_{10}, X=\left\{x_{i}: i=1,2, \ldots, 9\right\}$. Let $F=\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}\right\}$ be a set of six 1-factors of K_{10} on Z_{10} such that its leave is the graph C in Fig. 2. (It is easily seen that such a set exists.) From the set F, form a set Q of six 2-factors Q_{1}, \ldots, Q_{6} on Z_{10} by taking unions $F_{i} \cup F_{j}$ of two 1-factors in such a way that
(i) Q is a decomposition of $2 \bar{C}$ (the complement of $2 C$) into 2-factors, and
(ii) exactly s of the Q_{i} 's consist of double edges only (i.e., are obtained by taking the union $F_{i} \cup F_{i}$ for some i).
Clearly, such a set Q exists if and only if $s \in\{0,1,2,3,4,6\}$. Let further $Q_{7}=(12987)(456)(03), Q_{8}=(01764392)(58), Q_{9}=(012)(3456789)$. It is easy to see that $\left\{Q_{7}, Q_{8}, Q_{9}\right\}$ is a decomposition of $2 C$ into 2-factors. Let now $B=\bigcup_{i=1}^{9} x_{i} * Q_{i}$, and let $\left(X, D^{(t)}\right)$ be a $\operatorname{TTS}(9)$ with t repeated triples. Then $\left(V, B \cup D^{(t)}\right)$ is an indecomposable $\operatorname{TTS}(19)$ with $5 s+t+2$ repeated triples.

Fig. 2. Graph C.

Lemma 3.14. $t+q+30 \in R_{I}(19)$ for $t \in R(9), q \in\{6,9\}$.
Proof. Let again $V=X \cup Z_{10}, X=\left\{x_{i}: i=1, \ldots, 9\right\}$. Let $F=\left\{F_{1}, \ldots, F_{6}\right\}$ be a set of six 1-factors of K_{10} on Z_{10} whose leave is the graph D in Fig. 3. It is again easily seen that such a set F exists (consider, e.g. the (unique) cyclic 1 factorization of K_{10}, cf. [1]). For $i=1,2, \ldots, 6$, let Q_{i} be the 2 -factor obtained from F_{i} by doubling each of its edges. Consider the following 2 -factors of the graph $2 D: \quad g_{1}=(05)(12)(34)(67)(89), \quad g_{2}=(3467)(05)(12)(89), \quad g_{3}=$ $(019)(456)(23)(78), g_{4}=(019)(456)(28)(37), g_{5}=(019)(34567)(28)$. If we take for the set $\left\{Q_{7}, Q_{8}, Q_{9}\right\}$ the set $\left\{g_{1}, g_{3}, g_{4}\right\}$ or $\left\{g_{2}, g_{3}, g_{5}\right\}$, this set of 2-factors will contain 9 or 6 double edges, respectively. If $\left(X, D^{(t)}\right)$ is a TTS(9) with t repeated triples and $B=\bigcup_{i=1}^{9} x_{i} * Q_{i}$ then $\left(V, B \cup D^{(t)}\right.$) is an indecomposable $\operatorname{TTS}(19)$ with $30+q+t$ repeated triples, where $q=6$ or 9 .

Lemma 3.15. $R_{I}(19)=L(19)$.

Proof. Corollary 2.3 implies $k \in R_{I}(19)$ for all $k \in L(19)$ except for $k=3,8,13$, 18, 23, 28, 33, 38, 40, 41, 42, 43, 44, 48, 51. Taking in Lemma 3.13 consecutively $s=0,1,2,3,4,6$ and $t=1$ gives $3,8,13,18,23,33 \in R_{I}(19) ;$ taking $s=4, t=6$ gives $28 \in R_{I}(19)$, and taking $s=6, t=12$ gives $44 \in R_{I}(19)$. Taking in Lemma $3.14 q=6, t=6,12$ gives $38,48 \in R_{I}(19)$, and taking $q=9, t=1,2,3,4,6,12$ gives $40,41,42,43,45,51 \in R_{I}(19)$.

Lemma 3.16. $T=\{8,18,28,38,48,50,58,59,60,62\} \subset R_{I}(21)$.
Proof. Let $V=X \cup Z_{12}, X=\left\{a_{1}, \ldots, a_{9}\right\}$. Let G be the graph with $V(G)=Z_{12}$, $E(G)=\{\{x, y\}:|x-y| \in\{1,2,3,5,6\}\}$, and let $F=\left\{F_{1}, \ldots, F_{9}\right\}$ be any 1factorization of G. Put $Q_{i}=F_{i} \cup F_{i \alpha}$, where α is any permutation of $\{1,2, \ldots, 9\}$ fixing exactly s letters. Let $C=\left\{\{i, i+4, i+8\}: i \in Z_{12}\right\}$, and let (X, D) be an indecomposable TTS(9) with t repeated blocks $(t \in\{0,1,2,4\}$). Then ($V, 2 C \cup$ $\left.D \cup \bigcup_{i=1}^{9} a_{i} * Q_{i}\right)$ is an indecomposable $\operatorname{TTS}(21)$ with $6 s+t+4$ repeated triples ($s \in\{0,1, \ldots, 7,9\}$). This implies $k \in R_{I}(21)$ for all $k \in T$.

Fig. 3. Graph D.

Lemma 3.17. $U=\{51,52,53,54,56\} \subset R_{I}(21)$.
Proof. Let $V=Z_{7} \times Z_{3}$, and consider the direct product P of an $\operatorname{STS}(7)$ on Z_{7} with an STS(3) on Z_{3}. If $\{x, y, z\},\{x, u, v\}$ are two triples of the $\operatorname{STS}(7)$, replace the sub-STS(9) of P on $\left\{(x, i),(y, i),(z, i): i \in Z_{3}\right\}$ with an indecomposable TTS(9) having 4 repeated blocks, and replace the sub-STS(9) of P on $\left\{(x, i),(u, i),(v, i): i \in Z_{3}\right\}$ with a $\operatorname{TTS}(9)$ having t repeated blocks $(t \in$ $\{1,2,3,4,6,12\})$ in such a way that $\{(x, 0),(x, 1),(x, 2)\}$ is a repeated block; "double" all other blocks of P. The result is an indecomposable TTS(21) with $t+50$ repeated blocks which implies $k \in R_{I}(21)$ for all $k \in U$.

Lemma 3.18. $\{57,64\} \in R_{I}(21)$.

Proof. Let $V=X \cup Z_{14}, X=\left\{a_{1}, \ldots, a_{7}\right\}$. Let $C=\left\{\{i, i+3, i+8\}: i \in Z_{14}\right\}$. Let G be the graph with $V(G)=Z_{14}, E(G)=\{\{x, y\}:|x-y|=4$ or 7$\}$, and let $F=\left\{F_{1}, F_{2}, F_{3}\right\}$ be a decomposition of G into three 1 -factors (which exists by [8]). Double each edge of F_{i} to obtain a 2-factor $Q_{i}, i=1,2,3$. Let further $Q_{4}=(0113)(678)(23)(45)(910)(1112), \quad Q_{5}=(0113)(678)(24)(35)(911)(1012)$, $Q_{6}=(02)(13)(46)(57)(89)(1011)(1213), Q_{7}=(12)(34)(56)(79)(810)(1113)(012)$. and let (X, D) be a $\operatorname{TTS}(7)$ with t repeated blocks. Then it is straightforward to verify that $\left(V, 2 C \cup D \cup \bigcup_{i=1}^{R} a_{i} * Q_{i}\right)$ is a $\operatorname{TTS}(21)$ with $t+57$ repeated blocks. Taking $t=0$ and 7 , respectively, gives $57,64 \in R_{I}(21)$.

Lemma 3.19. $61 \in R_{I}(21)$.

Proof. Elements: $V=\{A, B, C, 1,2, \ldots, 9, \overline{1}, \overline{2}, \ldots, \overline{9}\}$.
Repeated blocks:

$$
\begin{aligned}
B_{R}=\{ & \{B C, A 1 \overline{1}, A 2 \overline{2}, A 3 \overline{3}, B 4 \overline{4}, B 5 \overline{5}, B 6 \overline{6}, C 7 \overline{7}, C 8 \overline{8}, C 9 \overline{9}, 14 \overline{7}, 1 \overline{4} 7, \overline{1} 47, \\
& 25 \overline{8}, 25 \overline{5} 8, \overline{2} 58,36 \overline{9}, 3 \overline{6} 9, \overline{3} 69,159,267,348,168,249,357\} \cup B_{R}^{\prime},
\end{aligned}
$$

where B_{R}^{\prime} consists of 36 repeated blocks given in Table 6 (if the entry in row
Table 6

	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	$\overline{8}$	$\overline{9}$
$\overline{1}$		9	8	C	6	5	B	3	2
$\overline{2}$	9		7	6	C	4	3	B	1
$\overline{3}$	8	7		5	4	C	2	1	B
$\overline{4}$	C	6	5		3	2	A	9	8
$\overline{5}$	6	C	4	3		1	9	A	7
$\overline{6}$	5	4	C	2	1		8	7	A
$\overline{7}$	B	3	2	A	9	8		6	5
$\overline{8}$	3	B	1	9	A	7	6		4
$\overline{9}$	2	1	B	8	7	A	5	4	

labelled \bar{i} and column labelled \bar{j} is x, form triple $\overline{i j} x$).
Nonrepeated blocks:

$$
\begin{aligned}
B_{N}= & \{445, A 46, A 56, A 78, A 79, A 89, B 12, B 13, B 23, B 78, B 79, B 89, \\
& C 12, C 13, C 23, C 45, C 46, C 56\} .
\end{aligned}
$$

Lemma 3.20. $55 \in R_{I}(21)$.

Proof. Elements: $V=\{a, b, c, x, y, z\} \cup\{1,2, \ldots, 15\}$.
Repeated blocks:

$$
\begin{aligned}
B_{R}=\{ & \{b x, a c y, b c z, a z 11, b y 6, c x 5, a 1213, a 1415, b 78, \\
& b 910, c 12, c 34, x 110, x 23, x 412, x 67, x 813, x 914, \\
& x 1115, y 15, y 213, y 314, y 47, y 89, y 1015, y 1112, \\
& z 115, z 28, z 39, z 45, z 610, z 712, z 1314, x y z\} \cup\left(T \backslash T_{1}\right),
\end{aligned}
$$

where T is the set of blocks of any transversal design $\operatorname{TD}(3,5)$ whose groups are $G_{1}=\{1,2,3,4,5\}, G_{2}=\{6,7,8,9,10\}, G_{3}=\{11,12,13,14,15\}$ and such that $T_{1}=\{11015,2813,3914,4712\} \subset T$.

Nonrepeated blocks:

$$
\begin{aligned}
B_{R}= & \{\{a, i, i+1\},\{b, i, i+1\}: i=1,2,3,4,5 ; 5+1=1\} \\
& \cup\{\{a, i, i+1\},\{c, i, i+1\}: i=6,7,8,9,10 ; 10+1=6\} \\
& \cup\{\{b, i, i+1\},\{c, i, i+1\}: i=11,12,13,14,15 ; 15+1=11\}
\end{aligned}
$$

Lemma 3.21. $R_{I}(21)=L(21)$.
Proof. Consider the following 2-factorizations of $2 K_{11}$ on $Z_{10} \cup\{\infty\}$:

$$
\begin{aligned}
& Q^{(0)}=\{(\infty 0192837465)(\bmod 10)\} \\
& Q^{(1)}=\{(01)(\infty 38)(264759)(\bmod 10)\} \\
& Q^{(2)}=\{(01)(25)(\infty 648397)(\bmod 10)\} \\
& Q^{(3)}=\{(01)(35)(69)(\infty 4827)(\bmod 10)\} \\
& Q^{(4)}=\{(01)(35)(48)(69)(\infty 27)(\bmod 10)\}
\end{aligned}
$$

Clearly, each $Q^{(i)}$ has $q=10 i$ 2-cycles. Thus, applying Lemma 2.2 gives $10 i+t \in R_{I}(21)$ for $i \in\{0,1,2,3,4\}, t \in R_{I}(10)$. Lemmas 3.16-3.20 yield $k \in$ $R_{I}(21)$ for all remaining $k \in L(21)$.

Lemma 3.22. $8 s+r+t+56 \in R_{I}(25)$ for $s \in\{0,1,2\}$, $r \in\{0,1,2,3,4,5,7,8\}$, $t \in R(9)=\{0,1,2,3,4,6,12\}$.

Proof. Let $V=\left(Z_{8} \times\{1,2\} \cup X, X=\left\{a_{1}, \ldots, a_{9}\right\}\right.$. Let C be the following set of triples on $Z_{8} \times\{1,2\}$:

$$
C=\left\{\{(x, 1),(x+3,1),(x+4,2)\},\{(x, 1),(x, 2),(x+3,2)\} x \in Z_{8}\right\} .
$$

For $r=0,1,2,3,4,5,7,8$, let $Q^{(r)}=\left\{Q_{1}^{(r)}, Q_{2}^{(r)}, \ldots, Q_{9}^{(r)}\right\}$ be the 2-factorization of the graph, that is obtained by removing from the complete multigraph $2 K_{16}$ on $Z_{8} \times\{1,2\}$ all edges occurring in the triples of $2 C$, given by:

$$
\begin{aligned}
& Q_{1}^{(r)}=\left\{\{(x, i),(x+4, i)\}: i \in\{1,2\}, x \in Z_{8}\right\} \\
& Q_{2}^{(r)}=\left\{\{(x, 1),(x+2,2)\}: x \in Z_{8}\right\} \\
& Q_{3}^{(r)}=\left\{\{(x, 1),(x+5,2)\}: x \in Z_{8}\right\}, \\
& Q^{(r)}=\left\{\{(x, 1),(x+6,2)\}: x \in Z_{8}\right\}, \\
& Q_{5}^{(r)}=\left\{\left\{(x, 1),(x+7,2): x \in Z_{8}\right\},\right.
\end{aligned}
$$

for all $r=0,1,2,3,4,5,7,8$ (all edges here are "repeated").
As for 2-factors $Q_{j}^{(r)}, j=6,7,8,9$, these are given by $Q_{j}^{(r)}=Q_{j 1}^{(r)} \cup Q_{j 2}^{(r)}$, where $Q_{j 1}^{(r)}$ are from Table 7(b), and $Q_{j 2}^{(r)}$ are from Table 8 (any of the possibilities P_{0}, P_{1}, P_{2} may be taken; note that P_{s} yields a total of 8 s 2 -cycles).

Let (X, D) be any $\operatorname{TTS}(9)$ with t repeated triples. Then $\left(V, 2 C \cup D \cup \bigcup_{i=1}^{9} a_{i} *\right.$ Q_{i}) is an indecomposable $\operatorname{TTS}(25)$ with exactly $8 s+r+t+56$ repeated triples.

Lemma 3.23. $8 s+t+16 \in R_{I}(25)$ for $s \in\{0,1, \ldots, 7,9\}, t \in R_{I}(9)=\{0,1,2,4\}$.

Table 7

(a) List of 2-factors on $Z_{8} \times\{1\}$ (second coordinate 1 omitted)

$$
\begin{array}{lll}
q_{1}=(123)(45786), & q_{7}=(128643)(57), & q_{12}=(2354)(18)(67), \\
q_{2}=(17653428), & q_{8}=(235764)(18), & q_{13}=(2468)(17)(35), \\
q_{3}=(17532468), & q_{9}=(234)(567)(18), & q_{14}=(3465)(17)(28), \\
q_{4}=(12867543), & q_{10}=(243568)(17), & q_{15}=(17)(28)(34)(56) \\
q_{5}=(1768)(2354), & q_{11}=(1243)(57)(68), & q_{16}=(18)(24)(35)(67) \\
q_{6}=(123)(456)(78), & &
\end{array}
$$

(b) 2-factors $Q_{j 1}^{(r)}$

r	$Q_{61}^{(r)}$	$Q_{71}^{(r)}$	$Q_{81}^{(r)}$	$Q_{91}^{(r)}$
0	q_{1}	q_{1}	q_{2}	q_{2}
1	q_{2}	q_{3}	q_{4}	q_{6}
2	q_{2}	q_{5}	q_{6}	q_{7}
3	q_{4}	q_{6}	q_{8}	q_{10}
4	q_{4}	q_{6}	q_{9}	q_{13}
5	q_{6}	q_{7}	q_{10}	q_{12}
7	q_{6}	q_{11}	q_{12}	q_{14}
8	q_{1}	q_{1}	q_{15}	q_{16}

Table 8
(a) List of 1-factors on $Z_{8} \times\{2\}$
$f_{1}=\{\{(0,2),(1,2)\},\{(2,2),(3,2)\},\{(4,2),(5,2)\},\{(6,2),(7,2)\}\}$,
$f_{2}=\{\{(1,2),(2,2)\},\{(3,2),(4,2)\},\{(5,2),(6,2)\},\{(7,2),(0,2)\}\}$,
$f_{3}=\{\{(0,2),(2,2)\},\{(1,2),(3,2)\},\{(4,2),(6,2)\},\{(5,2),(7,2)\}\}$,
$f_{4}=\{\{(2,2),(4,2)\},\{(3,2),(5,2)\},\{(6,2),(7,2)\},\{(7,2),(1,2)\}\}$,
(b) 2-factors $Q_{j 2}^{(r)}$
$P_{0}=\left\{f_{1} \cup f_{2}, f_{1} \cup f_{2}, f_{3} \cup f_{4}, f_{3} \cup f_{4}\right\}$,
$P_{1}=\left\{2 f_{1}, 2 f_{2}, f_{3} \cup f_{4}, f_{3} \cup f_{4}\right\}$,
$P_{2}=\left\{2 f_{1}, 2 f_{2}, 2 f_{3}, 2 f_{4}\right\}$.

Proof. Let $V=Z_{16} \cup X, X=\left\{a_{1}, \ldots, a_{9}\right\}$. Let $C=\left\{\{i, i+1, i+3\}: i \in Z_{16}\right\}$, and let $F=\left\{F_{1}, \ldots, F_{9}\right\}$ be a 1-factorization of the graph G obtained by removing all edges of C from the complete graph K_{16} on Z_{16}. Let α be a permutation of $\{1,2, \ldots, 9\}$ fixing exactly s letters. Put $Q_{i}=F_{i} \cup F_{i \alpha}$. Let further (X, D) be an indecomposable TTS(9) with t repeated triples. Then $(V, 2 C \cup D \cup$ $\left.\bigcup_{i=1}^{9} a_{i} * Q_{i}\right)$ is an indecomposable $\operatorname{TTS}(25)$ with $8 s+t+16$ repeated triples.

Lemma 3.24. $94 \in R_{I}(25)$.
Proof. Elements: $V=\{A, B, X, Y, Z, a, b, c, d, e, f, 1,2, \ldots, 7, \overline{1}, \overline{2}, \ldots, \overline{7}\}$.
Repeated blocks:

$$
\begin{aligned}
B_{R}= & \{X 14, X 25, X \overline{12}, X 3 \overline{3}, X \overline{45}, X \overline{67}, Y 1 \overline{17}, Y \overline{23}, Y 4 \overline{4}, Y 5 \overline{5}, Y 6 \overline{6}, Z 1 \overline{1}, \\
& Z 2 \overline{2}, Z \overline{34}, Z \overline{56}, Z 7 \overline{7}, X Y 7, X Z 6, Y Z 3, X a d, X b e, X c f, Y a e, Y b f, \\
& Y c d, Z a f, Z b d, Z c e, X A B, A 26, B 1 \overline{7}, a 15, b 1 \overline{2}, c 13, d 16, e 1 \overline{6}, \\
& f 1 \overline{5}, 12 \overline{4}, A 37, B 36, a 2 \overline{1}, b 2 \overline{3}, c 24, d 27, e 2 \overline{7}, f 2 \overline{6}, 23 \overline{5}, A 5 \overline{4}, \\
& B 47, a 3 \overline{2}, b 3 \overline{4}, c 57, d 35, e 3 \overline{1}, f 3 \overline{7}, 34 \overline{6}, A \overline{15}, B \overline{14}, a 4 \overline{3}, b 5 \overline{6}, \\
& c 6 \overline{7}, d 4 \overline{5}, e 4 \overline{2}, f 4 \overline{1}, 45 \overline{7}, A \overline{26}, B \overline{25}, a 6 \overline{5}, b 46, c \overline{16}, d \overline{13}, e 5 \overline{3}, \\
& f 5 \overline{2}, 56 \overline{1}, A \overline{37}, B \overline{36}, a 7 \overline{6}, b 7 \overline{1}, c \overline{24}, d \overline{27}, e 6 \overline{4}, f 6 \overline{3}, 67 \overline{2}, A 1 Y, \\
& B 2 Y, a 4 \overline{7}, b \overline{57}, c \overline{35}, d \overline{46}, e 7 \overline{5}, f 7 \overline{4}, 71 \overline{3}, A 4 Z, B 5 Z\} .
\end{aligned}
$$

Nonrepeated blocks:

$$
B_{N}=\{A a b, A a c, A b c, A d e, A d f, A e f, B a b, B a c, B b c, B d e, B d f, B e f\}
$$

[^1]Proof. Consider the following 2-factorizations of $2 K_{13}$ on $Z_{12} \cup\{\infty\}$:

$$
\begin{aligned}
& Q^{(0)}=\{(\infty 01112103948576)(\bmod 12)\} \\
& Q^{(1)}=\{(01)(\infty 493102117586)(\bmod 12)\} \\
& Q^{(2)}=\{(011)(68)(\infty 152103947)(\bmod 12)\} \\
& Q^{(3)}=\{(210)(34)(58)(\infty 9706111)(\bmod 12)\} \\
& Q^{(4)}=\{(110)(29)(35)(48)(\infty 76011)(\bmod 12)\}
\end{aligned}
$$

Here each $Q^{(i)}$ has $q=12 i$ 2-cycles. Applying Lemma 2.2 gives $12 i+t \in R_{I}(25)$ for $i \in\{0,1,2,3,4\}, t \in R_{I}(12)=\{0,1, \ldots, 13,16\}$. In particular, it gives $\{0,1, \ldots, 61\} \in R_{I}(25)$. Lemma 3.22 gives $k \in R_{I}(25)$ for all $k \in\{56,57, \ldots, 92\}$ except for $k=90$. Applying Lemma 3.23 with $s=9, t=2$ gives $90 \in R_{I}(25)$. Finally, Lemma 3.24 gives $94 \in R_{I}(25)$.

Lemma 3.26. $108 \in R_{I}(27)$.
Proof. Elements: $V=\{A, B, C, X, Y, Z, a, b, c, d, e, f, g, h, j, x, y, z, 1$, 2, . . , 9\}.

Repeated blocks:

$$
\begin{aligned}
B_{R}=\{ & a X 1, c X 2, b X 3, g X 4, j X 5, h X 6, d X 7, f X 8, e X 9, A X x, B X y, C X z, \\
& a Y 2, c Y 3, b Y 1, g Y 5, j Y 6, h Y 4, d Y 8, f Y 9, e Y 7, A Y y, B Y z, C Y x, \\
& a Z 3, c Z 1, b Z 2, g Z 6, j Z 4, h Z 5, d Z 9, f Z 7, e Z 8, A Z z, B Z x, C Z y, \\
& a x 4, c x 5, b x 6, g x 7, j x 8, h x 9, d x 1, f x 2, e x 3, A 14, B 17, C 47, \\
& a y 5, c y 6, b y 4, g y 8, j y 9, h y 7, d y 2, f y 3, e y 1, A 25, B 28, C 58, \\
& a z 6, c z 4, b z 5, g z 9, j z 7, h z 8, d z 3, f z 1, e z 2, A 36, B 39, C 69, \\
& a 78, c 89, b 79, g 12, j 23, h 13, d 45, f 56, e 46, A a 9, B d 6, C g 3, \\
& a d g, a e j, a f h, b e h, b f g, b d j, c f j, c d h, c e g, A b 8, B e 5, C h 2, \\
& A B C, X Y Z, x y z, 159,267,348,168,249,357, A c 7, B f 4, C j 1\} .
\end{aligned}
$$

Nonrepeated blocks:

$$
\begin{aligned}
B_{N}= & \{A d e, A d f, \text { Aef, Agh, Agj, Ahj, Bab, Bac, Bbc, Bgh, Bgj, Bhj }, \\
& C a b, C a c, C b c, C d e, C d f, C e f\} .
\end{aligned}
$$

Lemma 3.27. $R_{i}(27)=L(27)$.
Proof. Applying Lemma 2.2 to $R_{I}(13)$ gives $k \in R_{I}(27)$ for all $k \in L(27)$ except for $k=108$ in which case Lemma 3.26 applies.

Lemma 3.28. $176 \in R_{I}(33)$.
Proof. Let $V=Z_{18} \cup X, X=\left\{a_{1}, \ldots, a_{15}\right\}$. Let (X, D) be an indecomposable $\operatorname{TTS}(15)$ with 26 repeated blocks (which exists by Lemma 3.10). Let $C=$ $\left\{\{i, i+6, i+12\}: i \in Z_{18}\right\}$, and let $F=\left\{F_{1}, \ldots, F_{15}\right\}$ be a 1 -factorization of $2 K_{18}$ on Z_{18} from which the edges of $2 C$ have been removed. Let Q_{i} be the 2-factor obtained by doubling $F_{i}, i=1, \ldots, 15$. Then ($V, 2 C \cup D \cup \bigcup_{i=1}^{15} a_{i} * Q_{i}$) is an indecomposable TTS(33) with $6+26+135=167$ repeated blocks.

Lemma 3.29. $R_{I}(33)=L(33)$.
Proof. Lemma 2.5 applied to $R_{I}(13)$ gives $k \in R_{I}(33)$ for all $k \in L(33)$ except for $k=167$ in which case Lemma 3.28 applies.

4. Proof of the Main Theorem

Let $v \geqslant 15, v \equiv 1$ or $3(\bmod 6)$. The necessity was proved in Lemma 2.1. As for sufficiency, for $v=15,19,21,25,27,33$ it was shown in Section 3. Also applying Lemma 2.2 with $v=15$ gives $R_{I}(31)=L(31)$, so we may assume that $v \geqslant 37$. Assume that for all $u \leqslant v(u \geqslant 15), R_{I}(u)=L(u)$. If $v \equiv 3$ or $7(\bmod 12)$ then $u=\frac{1}{2}(v-1) \equiv 1$ or $3(\bmod 6), u \geqslant 15$, and so $R_{I}(u)=L(u)$. By Lemma 2.2, we get $R_{I}(v)=L(v)$. If $v \equiv 1$ or $9(\bmod 12)$, then $u=\frac{1}{2}(v-7) \equiv 1$ or $3(\bmod 6)$, $u \geqslant 15$. Therefore $R_{I}(u)=L(u)$, and by Lemma 2.5 , we get $R_{I}(v)=L(v)$ as well. This completes the proof.

References

[1] A. Hartman and A. Rosa, Cyclic one-factorization of the complete graph, Europ. J. Combin. 6 (1985) 45-48.
[2] E.S. Kramer, Indecomposable triple systems, Discrete Math. 9 (1974) 173-180.
[3] C.C. Lindner and A. Rosa, Steiner triple systems having a prescribed number of triples in common, Canad. J. Math. 27 (1975) 1166-1175; Corrigendum: Canad. J. Math. 30 (1978) 896.
[4] R. Mathon and A. Rosa, A census of Mendelsohn triple systems of order 9, Ars Combin. 4 (1977) 309-315.
[5] A. Rosa and D. Hoffman, The number of repeated blocks in twofold triple systems, J. Combin. Theory Ser. A 41 (1986) 61-88.
[6] A. Rosa and W.D. Wallis, Premature sets of 1 -factors, or How not to schedule round robin tournaments, Discrete Appl. Math. 4 (1982) 291-297.
[7] J.E. Simpson, Langford sequences: perfect and hooked, Discrete Math. 44 (1983) 97-104.
[8] G. Stern and H. Lenz, Steiner triple systems with given subspaces; another proof of the Doyen-Wilson theorem, Boll. Un. Mat. Ital. A (5) 17 (1980) 109-114.

[^0]: * Research supported by NSERC Grant No. A7268.

 0012-365X/87/\$3.50 © 1987, Elsevier Science Publishers B.V.(North-Holland)

[^1]: Lemma 3.25. $R_{I}(25)=L(25)$.

