Normal families and shared values of meromorphic functions ${ }^{\star}$

Chunlin Lei, Degui Yang, Mingliang Fang*
Department of Applied Mathematics, South China Agricultural University, Guangzhou 510642, PR China

A R T I C L E I N F O

Article history:

Received 17 November 2008
Available online 17 April 2009
Submitted by S. Ruscheweyh

Keywords:

Normal families
Meromorphic functions
Shared values

Abstract

Let $k(\geqslant 2)$ be a positive integer, let \mathcal{F} be a family of meromorphic functions in a domain D, all of whose zeros have multiplicity at least $k+1$, and let $a(z)(\neq 0), h(z)(\not \equiv 0)$ be two holomorphic functions on D. If, for each $f \in \mathcal{F}, f=a(z) \Leftrightarrow f^{(k)}=h(z)$, then \mathcal{F} is normal in D.

© 2009 Published by Elsevier Inc.

1. Introduction

Let D be a domain in the whole complex plane C and \mathcal{F} a family of meromorphic functions defined in D. \mathcal{F} is said to be normal in D, in the sense of Montel, if each sequence $\left\{f_{n}\right\} \subset \mathcal{F}$ has a subsequence $\left\{f_{n_{j}}\right\}$ which converges spherically locally uniformly in D, to a meromorphic function or ∞ (see Hayman [7], Schiff [8], Yang [9]).

Let f and g be meromorphic functions on a domain D, and let a and b be two complex numbers. If $g(z)=b$ whenever $f(z)=a$, we write

$$
f(z)=a \quad \Rightarrow \quad g(z)=b
$$

If $f(z)=a \Rightarrow g(z)=b$ and $g(z)=b \Rightarrow f(z)=a$, we write

$$
f(z)=a \quad \Leftrightarrow \quad g(z)=b
$$

If $f(z)=a \Leftrightarrow g(z)=a$, we say that f and g share a on D.
Schwick [1] was the first to draw a connection between values shared by functions in \mathcal{F} and the normality of the family \mathcal{F}. Specifically, he proved the following theorem.

Theorem A. Let \mathcal{F} be a family of meromorphic functions in a domain D, and let a_{1}, a_{2}, a_{3} be three distinct complex numbers. If, for each $f \in \mathcal{F}, f$ and f^{\prime} share a_{1}, a_{2}, a_{3}, then \mathcal{F} is normal in D.

Fang and Zalcman [2] proved the following theorem.
Theorem B. Let \mathcal{F} be a family of meromorphic functions in a domain D, let k be a positive integer, and let a, b be two nonzero complex numbers. If, for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least $k+1$, and $f=a \Leftrightarrow f^{(k)}=b$, then \mathcal{F} is normal in D.

In this paper, we extend Theorem B as follows.

[^0]Theorem 1. Let $k(\geqslant 2)$ be a positive integer, let \mathcal{F} be a family of meromorphic functions in a domain D, all of whose zeros have multiplicity at least $k+1$, and let $a(z)(\neq 0), h(z)(\not \equiv 0)$ be two holomorphic functions on D. If, for each $f \in \mathcal{F}, f=a(z) \Leftrightarrow f^{(k)}=h(z)$, then \mathcal{F} is normal in D.

In [2], an example was given to shows that the condition in Theorem 1 that $h(z) \not \equiv 0$ is necessary.
Example 1. Let m, k be positive integers; let $D=\{z:|z|<1\}$; and let $\mathcal{F}=\left\{f_{n}\right\}$, where $f_{n}(z)=n z^{m+k}, a(z)=z^{m+k}, h(z)=z^{m}$. Clearly, \mathcal{F} fails to be normal at the origin. However, all the zeros of f_{n} have multiplicity $k+m$, and $f_{n}=a(z) \Leftrightarrow f_{n}^{(k)}=h(z)$ on D. This shows that the condition in Theorem 1 that $a(z) \neq 0$ is necessary.

Remark. The proof of this result follows the general lines of the proof of the main result in [4], with important elaborations based on the argument in the recent paper [10].

We write $\Delta=\{z:|z|<1\}, \Delta_{r}=\{z:|z|<r\}$ and $\Delta_{r}^{\prime}=\{z: 0<|z|<r\}$.

2. Some lemmas

In order to prove our theorems, we require the following results.
Lemma 1. (See [3].) Let k be a positive integer, let \mathcal{F} be a family of functions meromorphic on the unit disc Δ, all of whose zeros have multiplicity at least k, and suppose that there exists $A \geqslant 1$ such that $\left|f^{(k)}(z)\right| \leqslant A$ whenever $f(z)=0$. Then if \mathcal{F} is not normal at z_{0}, there exist, for each $0 \leqslant \alpha \leqslant k$,
(a) points $z_{n} \in \Delta, z_{n} \rightarrow z_{0}$;
(b) functions $f_{n} \in \mathcal{F}$; and
(c) positive numbers $\rho_{n} \rightarrow 0$
such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right)=g_{n}(\zeta) \rightarrow g(\zeta)$ locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C, all of whose zeros have multiplicity at least k, such that $g^{\#}(\zeta) \leqslant g^{\#}(0)=k A+1$. In particular, g has order at most 2.

Lemma 2. (See [4].) Let $g(z)$ be a transcendental meromorphic function of finite order on C, and let $P(z)$ be a polynomial, $P(z) \not \equiv 0$. Suppose that all zeros of $g(z)$ have multiplicity at least $k+1$. Then $g^{(k)}(z)-P(z)$ has infinitely many zeros.

Lemma 3. (See [5].) Let m, k be two positive integers, and let $Q(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{0}+\frac{q(z)}{p(z)}$, where $a_{m}, a_{m-1}, \ldots, a_{0}$ are constants with $a_{m} \neq 0$, and $q(z)(\not \equiv 0), p(z)$ are coprime polynomials with $\operatorname{deg} q(z)<\operatorname{deg} p(z)$. If $Q^{(k)}(z) \neq 1$ for $z \in C$, then

$$
Q(z)=\frac{z^{k}}{k!}+\cdots+a_{0}+\frac{1}{(a z+b)^{n}}
$$

where $a \neq 0$, and n is a positive integer. Additionally, if all zeros of $Q(z)$ have multiplicity at least $k+1$, then $Q(z)=\frac{(c z+d)^{k+1}}{a z+b}$, where c, d are constants with $c \neq 0$.

Lemma 4. (See [6].) Let m, k be two positive integers with $m \geqslant 2, k \geqslant 2$, and let $Q(z)$ be a rational function, all of whose zeros have multiplicity at least $k+1$, and all of whose poles are multiple with the possible exception of $z=0$. Then $Q^{(k)}(z)=z^{m}$ has a solution in C.

Lemma 5. (See [10].) Let $Q(z)$ be a rational function, all of whose poles are multiple and whose zeros all have multiplicity at least $k+1$. If $Q^{(k)}(z) \neq z^{m}, z \in C$ for some integer $m \geqslant 1$, then either
(i) $k=1$ or
(ii) $m=1$ and $Q(z)=\frac{(z+c)^{k+1}}{(k+1)!}$
for some nonzero constant c.

Lemma 6. Let k be a positive integer, let $a_{n}(z)(\neq 0)$ be holomorphic functions with $\left\{\left|a_{n}(z)\right|\right\}$ being locally uniformly bounded away from 0 , and let $\left\{f_{n}\right\}$ be a sequence of meromorphic functions in a domain D, all of whose zeros of f_{n} have multiplicity at least $k+1$. Let $\left\{h_{n}(z)\right\}$ be a sequence of functions holomorphic on D such that $h_{n} \rightarrow h$ locally uniformly on D, where $h(z) \neq 0$ and $\not \equiv \infty$ for $z \in D$. Suppose that for each $n, f_{n}=a_{n}(z) \Leftrightarrow f_{n}^{(k)}=h_{n}(z)$, then $\left\{f_{n}\right\}$ is normal on D.

Proof. Suppose that $\left\{f_{n}\right\}$ is not normal at z_{0}. We may assume that $D=\Delta$ and $h\left(z_{0}\right)=1$. By Lemma 1 , after choosing appropriate subsequences we may assume that there exist $z_{n} \rightarrow z_{0}$, and $\rho_{n} \rightarrow 0^{+}$such that

$$
\rho_{n}^{-k} f_{n}\left(z_{n}+\rho_{n} \zeta\right)=g_{n}(\zeta) \rightarrow g(\zeta)
$$

spherically uniformly on compact subsets of C, where $g(\zeta)$ is a nonconstant meromorphic function on C, all of whose zeros have multiplicity at least $k+1$ and g has order at most 2 .

We claim that
(a) $g^{(k)} \neq 1$; and
(b) no poles of g are simple.

Suppose now that $g^{(k)}\left(\zeta_{0}\right)=1$. We claim that $g^{(k)} \not \equiv 1$. Otherwise, g must be a polynomial of exact degree k, which contradicts the fact that each zero of g has multiplicity at least $k+1$. Since $g^{(k)}\left(\zeta_{0}\right)=1=h\left(z_{0}\right)$ but $g^{(k)} \neq 1$, there exist ζ_{n}, $\zeta_{n} \rightarrow \zeta_{0}$, such that (for n sufficiently large)

$$
f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=g_{n}^{(k)}\left(\zeta_{n}\right)=h_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)
$$

It follows that $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)$, so that

$$
g_{n}\left(\zeta_{n}\right)=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)}{\rho_{n}^{k}}=\frac{a_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)}{\rho_{n}^{k}}
$$

Thus $g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=\infty$, which contradicts $g^{(k)}\left(\zeta_{0}\right)=1$. This proves (a).
Next we prove (b). Suppose $g\left(\zeta_{0}\right)=\infty$. There exists a closed disc $K=\left\{\zeta:\left|\zeta-\zeta_{0}\right| \leqslant \delta\right\}$ on which $1 / g$ and $1 / g_{n}$ are holomorphic (for n sufficiently large) and $1 / g_{n} \rightarrow 1 / g$ uniformly. Hence, $\frac{1}{g_{n}(\zeta)}-\frac{\rho_{n}^{k}}{a_{n}\left(z_{n}+\rho_{n} \zeta\right)} \rightarrow \frac{1}{g(\zeta)}$ uniformly on K; and since $1 / g$ is nonconstant, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that (for n large enough)

$$
\frac{1}{g_{n}\left(\zeta_{n}\right)}-\frac{\rho_{n}^{k}}{a_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)}=0
$$

Hence $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)$. Thus we have

$$
\begin{equation*}
g_{n}^{(k)}\left(\zeta_{n}\right)=f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=h_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right) \tag{2.1}
\end{equation*}
$$

If $k=1$, then we have by (2.1)

$$
\left.\left(\frac{1}{g(\zeta)}\right)^{\prime}\right|_{\zeta=\zeta_{0}}=-\frac{g^{\prime}\left(\zeta_{0}\right)}{g^{2}\left(\zeta_{0}\right)}=\lim _{n \rightarrow \infty}\left[-\frac{g_{n}^{\prime}\left(\zeta_{n}\right)}{g_{n}^{2}\left(\zeta_{n}\right)}\right]=0
$$

so that ζ_{0} is a multiple pole of $g(\zeta)$. Thus no poles of g are simple.
Similarly, if $k=2$, then we have by (2.1)

$$
\begin{align*}
\left.\left(\frac{1}{g(\zeta)}\right)^{\prime \prime}\right|_{\zeta=\zeta_{0}} & =-\frac{g^{\prime \prime}\left(\zeta_{0}\right)}{g^{2}\left(\zeta_{0}\right)}+2 \frac{\left[g^{\prime}\left(\zeta_{0}\right)\right]^{2}}{g^{3}\left(\zeta_{0}\right)} \\
& =\lim _{n \rightarrow \infty}\left[-\frac{g_{n}^{\prime \prime}\left(\zeta_{n}\right)}{g_{n}^{2}\left(\zeta_{n}\right)}+2 \frac{\left[g_{n}^{\prime}\left(\zeta_{n}\right)\right]^{2}}{g_{n}^{3}\left(\zeta_{n}\right)}\right] \\
& =-\lim _{n \rightarrow \infty} \frac{g_{n}^{\prime \prime}\left(\zeta_{n}\right)}{g_{n}^{2}\left(\zeta_{n}\right)}+2 \lim _{n \rightarrow \infty} \frac{\left[g_{n}^{\prime}\left(\zeta_{n}\right)\right]^{2}}{g_{n}^{3}\left(\zeta_{n}\right)} \\
& =2 \lim _{n \rightarrow \infty}\left\{\left[-\frac{g_{n}^{\prime}\left(\zeta_{n}\right)}{g_{n}^{2}\left(\zeta_{n}\right)}\right]^{2} g_{n}\left(\zeta_{n}\right)\right\} \tag{2.2}
\end{align*}
$$

Since $\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=\infty$, by (2.2) we have

$$
\lim _{n \rightarrow \infty}\left[-\frac{g_{n}^{\prime}\left(\zeta_{n}\right)}{g_{n}^{2}\left(\zeta_{n}\right)}\right]^{2}=0
$$

Thus $\left.(1 / g(\zeta))^{\prime}\right|_{\zeta=\zeta_{0}}=0$, so that ζ_{0} is a multiple pole of $g(\zeta)$. Hence no poles of g are simple.
If $k \geqslant 3$, mathematical induction shows that

$$
\begin{equation*}
\left(\frac{1}{u}\right)^{(k)}=-\frac{u^{(k)}}{u^{2}}+k!\frac{\left(u^{\prime}\right)^{k}}{u^{k+1}}+\sum_{0 \leqslant i \leqslant k-2} A_{i}[u] u^{i}, \tag{2.3}
\end{equation*}
$$

where $A_{i}[u]$ is a polynomial of $(1 / u)^{\prime},(1 / u)^{\prime \prime}, \ldots,(1 / u)^{(k-1)}$ for each u meromorphic in D.

Thus by (2.1) and (2.3),

$$
\begin{align*}
\left.\left(\frac{1}{g(\zeta)}\right)^{(k)}\right|_{\zeta=\zeta_{0}}= & \left.\lim _{n \rightarrow \infty}\left(\frac{1}{g_{n}(\zeta)}\right)^{(k)}\right|_{\zeta=\zeta_{n}} \\
= & \lim _{n \rightarrow \infty}\left[-\frac{g_{n}^{(k)}\left(\zeta_{n}\right)}{g_{n}^{2}\left(\zeta_{n}\right)}+k!\frac{\left(g_{n}^{\prime}\left(\zeta_{n}\right)\right)^{k}}{g_{n}^{k+1}\left(\zeta_{n}\right)}+\sum_{0 \leqslant i \leqslant k-2} A_{i}\left[g_{n}\right] g_{n}^{i}\left(\zeta_{n}\right)\right] \\
= & \lim _{n \rightarrow \infty}\left[k!\frac{\left(g_{n}^{\prime}\left(\zeta_{n}\right)\right)^{k}}{g_{n}^{k+1}\left(\zeta_{n}\right)}+\sum_{0 \leqslant i \leqslant k-2} A_{i}\left[g_{n}\right] g_{n}^{i}\left(\zeta_{n}\right)\right] \\
= & \lim _{n \rightarrow \infty}\left[k!\frac{\left(g_{n}^{\prime}\left(\zeta_{n}\right)\right)^{k}}{g_{n}^{k+1}\left(\zeta_{n}\right)}+\sum_{1 \leqslant i \leqslant k-2} A_{i}\left[g_{n}\right] g_{n}^{i}\left(\zeta_{n}\right)\right]+A_{0}[g]\left(\zeta_{0}\right) \\
= & \lim _{n \rightarrow \infty}\left[k!\left(-\frac{\left(g_{n}^{\prime}\left(\zeta_{n}\right)\right)}{g_{n}^{2}\left(\zeta_{n}\right)}\right)^{k}(-1)^{k} g_{n}^{k-2}\left(\zeta_{n}\right)+\sum_{1 \leqslant i \leqslant k-2} A_{i}\left[g_{n}\right] g_{n}^{i-1}\left(\zeta_{n}\right)\right] g_{n}\left(\zeta_{n}\right) \\
& +A_{0}[g]\left(\zeta_{0}\right) \tag{2.4}
\end{align*}
$$

Since $\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=\infty$, by (2.4) we get

$$
\lim _{n \rightarrow \infty}\left[k!\left(-\frac{\left(g_{n}^{\prime}\left(\zeta_{n}\right)\right)}{g_{n}^{2}\left(\zeta_{n}\right)}\right)^{k}(-1)^{k} g_{n}^{k-2}\left(\zeta_{n}\right)+\sum_{1 \leqslant i \leqslant k-2} A_{i}\left[g_{n}\right] g_{n}^{i-1}\left(\zeta_{n}\right)\right]=0
$$

Similarly, we have

$$
\lim _{n \rightarrow \infty}\left[k!\left(-\frac{\left(g_{n}^{\prime}\left(\zeta_{n}\right)\right)}{g_{n}^{2}\left(\zeta_{n}\right)}\right)^{k}(-1)^{k} g_{n}^{k-3}\left(\zeta_{n}\right)+\sum_{2 \leqslant i \leqslant k-2} A_{i}\left[g_{n}\right] g_{n}^{i-2}\left(\zeta_{n}\right)\right]=0
$$

Proceeding inductively, we obtain at last

$$
\lim _{n \rightarrow \infty}\left[-\frac{g_{n}^{\prime}\left(\zeta_{n}\right)}{g_{n}^{2}\left(\zeta_{n}\right)}\right]^{k}=0
$$

It follows that $\left.(1 / g(\zeta))^{\prime}\right|_{\zeta=\zeta_{0}}=0$, so that ζ_{0} is a multiple pole of $g(\zeta)$. Hence no poles of g are simple. This proves (b).
By Lemma $2, g$ is a rational function. By (a), (b) and Lemma $3, g$ is a constant, a contradiction. Thus $\left\{f_{n}\right\}$ is normal on D.

3. Proof of Theorem 1

We may assume that $D=\Delta$. We only need to show that \mathcal{F} is normal at a point z_{0}, for each $z_{0} \in \Delta$. Suppose that $h\left(z_{0}\right) \neq 0$. Then by Lemma 6 , we get that \mathcal{F} is normal at z_{0}.

We now prove that \mathcal{F} is normal at a point z_{0} with $h\left(z_{0}\right)=0$. Without loss of generality, we may assume that $z_{0}=0$. Making standard normalization, we may assume that

$$
h(z)=z^{m}+a_{m+1} z^{m+1}+\cdots=z^{m} b(z), \quad z \in \Delta,
$$

$m \geqslant 1, b(0)=1$, and $h(z) \neq 0$ for $0<|z|<1$.
We argue by contradiction. Choosing a sequence $\left\{f_{n}\right\}$ of \mathcal{F} and renumbering, we may assume that no subsequence of $\left\{f_{n}\right\}$ is normal at 0 .

Let $\mathcal{H}=\left\{F_{n}: F_{n}(z)=\frac{f_{n}(z)}{z^{m}}\right\}$. We claim that $f_{n}(0) \neq 0$. Otherwise, we assume that $f_{n}(0)=0$. Then, since all zeros of f_{n} have multiplicity at least $k+1$, also $f_{n}^{(k)}(0)=0=h(0)$. By the value sharing assumption of the theorem this would imply $f_{n}(0)=a(0) \neq 0$, a contradiction. Hence $f_{n}(0) \neq 0$. Thus, $F_{n}(0)=\infty$. In fact, each F_{n} has a pole of order m at 0 .

Suppose that we have shown that \mathcal{H} is normal at 0 . Next, we prove that \mathcal{F} is normal at 0 . Since \mathcal{H} is normal at $z=0$, there exist $\Delta_{\delta}=\{z:|z|<\delta\}$ and a subsequence of $\left\{F_{n}(z)\right\}$ such that $\left\{F_{n}(z)\right\}$ converges uniformly to a meromorphic function $F(z)$ or ∞ on Δ_{δ}. Noting that $F(0)=\infty$, we can find a $\varepsilon \in[0 ; \delta]$ and a positive constant M such that $|F(z)| \geqslant M$ for all $z \in \Delta_{\varepsilon}$. Therefore, for sufficiently large n, we obtain that $\left|F_{n}(z)\right| \geqslant \frac{M}{2}$. Thus $f_{n}(z) \neq 0$ for sufficiently large n and all $z \in \Delta_{\varepsilon}$. Therefore $\frac{1}{f_{n}}$ is analytic in Δ_{ε}. Thus, for sufficiently large n, we have

$$
\left|\frac{1}{f_{n}(z)}\right|=\left|\frac{1}{F_{n}(z)} \frac{1}{|z|^{m}}\right| \leqslant \frac{2^{m}}{\varepsilon^{m}} \frac{2}{M}, \quad|z|=\frac{\varepsilon}{2}
$$

By the Maximum Principle and Montel's theorem, \mathcal{F} is normal at $z=0$.

We now turn to prove \mathcal{H} is normal at 0 . Suppose not. By Lemma 1 , after choosing appropriate subsequences we may assume that there exist $z_{n} \rightarrow 0$, and $\rho_{n} \rightarrow 0^{+}$such that

$$
\rho_{n}^{-k} F_{n}\left(z_{n}+\rho_{n} \zeta\right)=g_{n}(\zeta) \rightarrow g(\zeta)
$$

spherically uniformly on compact subsets of C, where $g(\zeta)$ is nonconstant meromorphic function on C, all of whose zeros have multiplicity at least $k+1$.

We consider two cases.
Case 1. We may suppose that $\frac{z_{n}}{\rho_{n}} \rightarrow \infty$. We have

$$
\begin{align*}
f_{n}^{(k)}(z) & =z^{m} F_{n}^{(k)}(z)+\sum_{l=1}^{k}\binom{k}{l}\left(z^{m}\right)^{(l)} F_{n}^{(k-l)}(z) \\
& =z^{m} F_{n}^{(k)}(z)+\sum_{l=1}^{k} c_{l} z^{m-l} F_{n}^{(k-l)}(z) \tag{3.1}
\end{align*}
$$

where

$$
c_{l}= \begin{cases}\binom{k}{l} m(m-1) \cdots(m-l+1), & l \leqslant m, \\ 0, & l>m .\end{cases}
$$

Since $\rho_{n}^{l} g_{n}^{(k-l)}(\zeta)=F_{n}^{(k-l)}\left(z_{n}+\rho_{n} \zeta\right), l=0,1, \ldots, k$, we obtain

$$
\begin{equation*}
\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right)}{h\left(z_{n}+\rho_{n} \zeta\right)}=\left[g_{n}^{(k)}(\zeta)+\sum_{l=1}^{k} c_{l} \frac{g_{n}^{(k-l)}(\zeta)}{\left(\frac{z_{n}}{\rho_{n}}+\zeta\right)^{l}}\right] \frac{1}{b\left(z_{n}+\rho_{n} \zeta\right)} \tag{3.2}
\end{equation*}
$$

Now

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{c_{l}}{\left(\frac{z_{n}}{\rho_{n}}+\zeta\right)^{l}}=0, \quad l=1,2, \ldots, k \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{b\left(z_{n}+\rho_{n} \zeta\right)}=1 \tag{3.4}
\end{equation*}
$$

By (3.2), (3.3) and (3.4), we have

$$
\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right)}{h\left(z_{n}+\rho_{n} \zeta\right)} \rightarrow g^{(k)}(\zeta)
$$

uniformly on compact subsets of C disjoint from the poles of g.
We claim that
(i) $g^{(k)} \neq 1$; and
(ii) no poles of g are simple.

Suppose now that $g^{(k)}\left(\zeta_{0}\right)=1$. We claim that $g^{(k)} \not \equiv 1$. Otherwise, g must be a polynomial of exact degree k, which contradicts the fact that each zero of g has multiplicity at least $k+1$. Since $g^{(k)}\left(\zeta_{0}\right)=1$ but $g^{(k)} \not \equiv 1$, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that (for n sufficiently large) $f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=h\left(z_{n}+\rho_{n} \zeta_{n}\right)$. It follows that $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a\left(z_{n}+\rho_{n} \zeta_{n}\right)$, so that

$$
g_{n}\left(\zeta_{n}\right)=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)}{\rho_{n}^{k}\left(z_{n}+\rho_{n} \zeta_{n}\right)^{m}}=\frac{a\left(z_{n}+\rho_{n} \zeta_{n}\right)}{\rho_{n}^{k}\left(z_{n}+\rho_{n} \zeta_{n}\right)^{m}}
$$

Thus $g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=\infty$, which contradicts $g^{(k)}\left(\zeta_{0}\right)=1$. This proves (i).
Next we prove (ii). Suppose $g\left(\zeta_{0}\right)=\infty$. There exists a closed disc $K=\left\{\zeta:\left|\zeta-\zeta_{0}\right| \leqslant \delta\right\}$ on which $1 / g$ and $1 / g_{n}$ are holomorphic (for n sufficiently large) and $1 / g_{n} \rightarrow 1 / g$ uniformly. Hence, $\frac{1}{g_{n}(\zeta)}-\frac{\rho_{n}^{k}\left(z_{n}+\rho_{n} \zeta\right)^{m}}{a\left(z_{n}+\rho_{n} \zeta\right)} \rightarrow \frac{1}{g(\zeta)}$ uniformly on K; and since $1 / g$ is nonconstant, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that (for n large enough)

$$
\frac{1}{g_{n}\left(\zeta_{n}\right)}-\frac{\rho_{n}^{k}\left(z_{n}+\rho_{n} \zeta_{n}\right)^{m}}{a\left(z_{n}+\rho_{n} \zeta_{n}\right)}=0
$$

Hence $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a\left(z_{n}+\rho_{n} \zeta_{n}\right)$. Thus we have

$$
\begin{equation*}
f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=h\left(z_{n}+\rho_{n} \zeta_{n}\right) \tag{3.5}
\end{equation*}
$$

By (3.2) and (3.5) we can obtain

$$
\begin{equation*}
g_{n}^{(k)}\left(\zeta_{n}\right)=\left[\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)}{h\left(z_{n}+\rho_{n} \zeta_{n}\right)} b\left(z_{n}+\rho_{n} \zeta_{n}\right)-\sum_{l=1}^{k} c_{l} \frac{g_{n}^{(k-l)}\left(\zeta_{n}\right)}{\left(\frac{z_{n}}{\rho_{n}}+\zeta_{n}\right)^{l}}\right] \rightarrow 1 . \tag{3.6}
\end{equation*}
$$

Using a similar fashion as Lemma 6, by (2.2), (2.3), (2.4) and (3.6), we can prove (ii).
By Lemma 2, g is a rational function. By (i), (ii) and Lemma 3, g is a constant, a contradiction. Thus $\left\{f_{n}\right\}$ is normal on D.
Case 2. So we may assume that $\frac{z_{n}}{\rho_{n}} \rightarrow \alpha$, a finite complex number. We have

$$
\frac{F_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{k}}=\frac{F_{n}\left(z_{n}+\rho_{n}\left(\zeta-\frac{z_{n}}{\rho_{n}}\right)\right)}{\rho_{n}^{k}} \rightarrow g(\zeta-\alpha)
$$

the convergence being spherically uniform on compact sets of Clearly, all zeros of $g(\zeta-\alpha)$ have multiplicity at least $k+1$, and the pole of $g(\zeta-\alpha)$ at $\zeta=0$ has multiplicity at least m. Now

$$
\begin{equation*}
G_{n}(\zeta)=\frac{f_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{m+k}}=\frac{F_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{k}} \frac{\left(\rho_{n} \zeta\right)^{m}}{\rho_{n}^{m}} \rightarrow \zeta^{m} g(\zeta-\alpha)=G(\zeta) \tag{3.7}
\end{equation*}
$$

uniformly on compact subsets of C. Since $g(\zeta-\alpha)$ has a pole of multiplicity at least m at $\zeta=0, G(0) \neq 0$ and all zeros of $G(\zeta)$ have multiplicity at least $k+1$.

We claim that
(iii) $G^{(k)}(\zeta) \neq \zeta^{m}, \zeta \in C$;
(iv) no poles of g are simple.

Indeed, suppose that $G^{(k)}\left(\zeta_{0}\right)=\zeta_{0}^{m}$. Then $G(\zeta)$ is holomorphic at ζ_{0}, and

$$
\frac{f_{n}^{(k)}\left(\rho_{n} \zeta\right)-h\left(\rho_{n} \zeta\right)}{\rho_{n}^{m}}=G_{n}^{(k)}(\zeta)-\frac{h\left(\rho_{n} \zeta\right)}{\rho_{n}^{m}} \rightarrow G^{(k)}(\zeta)-\zeta^{m}
$$

First we assume that $G^{(k)}(\zeta) \equiv \zeta^{m}$. Then G is a nonconstant polynomial. Therefore G has a zero ς_{0}. Since all zeros of G have multiplicity at least $k+1$, we deduce $\varsigma_{0}^{m}=G^{(k)}\left(\varsigma_{0}\right)=0$, hence $\varsigma_{0}=0$. This contradicts $G(0) \neq 0$. Thus $G^{(k)}(\zeta) \not \equiv \zeta^{m}$. Suppose that $G^{(k)}\left(\zeta_{0}\right)=\zeta_{0}^{m}$. By Hurwitz theorem, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that (for n sufficiently large) $f_{n}^{(k)}\left(\rho_{n} \zeta_{n}\right)-h\left(\rho_{n} \zeta_{n}\right)=0$. It follows that $f_{n}\left(\rho_{n} \zeta_{n}\right)=a\left(\rho_{n} \zeta_{n}\right)$. Thus $G\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} G_{n}\left(\zeta_{n}\right)=\infty$, which contradicts $G^{(k)}\left(\zeta_{0}\right)=\zeta_{0}^{m}$. This proves (iii).

Next we prove (iv). Suppose $G\left(\zeta_{0}\right)=\infty$. There exists a closed disc $K=\left\{\zeta:\left|\zeta-\zeta_{0}\right| \leqslant \delta\right\}$ on which $1 / G$ and $1 / G_{n}$ are holomorphic (for n sufficiently large) and $1 / G_{n} \rightarrow 1 / G$ uniformly. Hence, $\frac{1}{G_{n}(\zeta)}-\frac{\rho_{n}^{k+m}}{a\left(\rho_{n} \zeta\right)} \rightarrow \frac{1}{G(\zeta)}$ uniformly on K; and since $1 / G$ is nonconstant, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that (for n large enough)

$$
\frac{1}{G_{n}\left(\zeta_{n}\right)}-\frac{\rho_{n}^{k+m}}{a\left(\rho_{n} \zeta_{n}\right)}=0
$$

Hence $f_{n}\left(\rho_{n} \zeta_{n}\right)=a\left(\rho_{n} \zeta_{n}\right)$. Thus we have

$$
f_{n}^{(k)}\left(\rho_{n} \zeta_{n}\right)=h\left(\rho_{n} \zeta_{n}\right)
$$

By (3.7) we can obtain

$$
\begin{equation*}
G_{n}^{(k)}\left(\zeta_{n}\right)=\frac{f_{n}^{(k)}\left(\rho_{n} \zeta_{n}\right)}{\rho_{n}^{m}}=\frac{h\left(\rho_{n} \zeta_{n}\right)}{\rho_{n}^{m}}=b\left(\rho_{n} \zeta_{n}\right) \zeta_{n}^{m} \rightarrow \zeta_{0}^{m} \tag{3.8}
\end{equation*}
$$

Using a similar fashion as Lemma 6, by (2.2), (2.3), (2.4) and (3.8), we can prove (iv).
Firstly, Lemma 2 implies that $G(\zeta)$ is rational.
Suppose that $m \geqslant 2$. It follows from Lemma 4 and (iv) that $G^{(k)}(\zeta)=\zeta^{m}$ has a solution in C. This contradicts with (iii). Thus by Lemma 5, we have $m=1$ and

$$
\begin{equation*}
G(\zeta)=\frac{(\zeta+c)^{k+1}}{(k+1)!}, \quad c \neq 0 \tag{3.9}
\end{equation*}
$$

It then follows from (3.7) and (3.9) that there exist points $\zeta_{n} \rightarrow-c$ such that $f_{n}\left(\rho_{n} \zeta_{n}\right)=0$. In fact, $\rho_{n} \zeta_{n}$ are zeros of f_{n} of exact multiplicity $k+1$.

We suppose that the functions f_{n} are all holomorphic in some fixed disc Δ_{ρ}. Recall that the sequence $\left\{f_{n}\right\}$ is not normal at 0 ; on the other hand, by Lemma 6, it is normal on Δ_{ρ}^{\prime}, since $h(z) \neq 0$ there.

We claim that the sequence $\left\{f_{n}\right\}$ tends to ∞ locally uniformly on Δ_{ρ}^{\prime}. In fact, since $\left\{f_{n}\right\}$ is normal on Δ_{ρ}^{\prime}, $\left\{f_{n}\right\}$ is normal in $C_{\rho / 2}=\{z:|z|=\rho / 2\}$. Thus there exists a subsequence $\left\{f_{n_{k}}\right\}$ such that $\left\{f_{n_{k}}\right\}$ converges uniformly to a holomorphic function $f(z)$ or ∞ on $C_{\rho / 2}$.

If $f_{n_{k}}(z) \rightarrow f(z)$, then there exist an integer N and a positive number M such that

$$
\left|f_{n_{k}}(z)\right| \leqslant M
$$

for all $k \geqslant N, z \in C_{\rho / 2}$. By the maximum modulus theorem, we have

$$
\left|f_{n_{k}}(z)\right| \leqslant M
$$

for all $k \geqslant N,|z| \leqslant \rho / 2$. Hence $\left\{f_{n_{k}}\right\}$ is normal in $\{z:|z| \leqslant \rho / 2\}$ by Montel's normality criterion (see [7]). This contradicts with our assumption. Hence $\left\{f_{n}\right\}$ tends to ∞ locally uniformly on Δ_{ρ}^{\prime}.

Suppose first that there exists $0<\delta<\rho$ such that each f_{n} has only the single zero $\xi_{n}=\rho_{n} \zeta_{n}$ in Δ_{δ}. Put

$$
\begin{equation*}
H_{n}(z)=\frac{f_{n}(z)}{\left(z-\xi_{n}\right)^{k+1}} \tag{3.10}
\end{equation*}
$$

Then $\left\{H_{n}\right\}$ is a sequence of nonvanishing holomorphic functions on Δ_{δ} and tending to ∞ locally uniformly on Δ_{δ}^{\prime}. It follows that the sequence $\left\{1 / H_{n}\right\}$ of holomorphic functions tends to 0 locally uniformly on Δ_{δ}^{\prime} and hence, by the maximum principle, on Δ_{δ}. In particular, $H_{n}\left(2 \rho_{n} \zeta_{n}\right) \rightarrow \infty$. But by (3.7), (3.9) and (3.10),

$$
H_{n}\left(2 \rho_{n} \zeta_{n}\right)=\frac{f_{n}\left(2 \rho_{n} \zeta_{n}\right)}{\left(\rho_{n} \zeta_{n}\right)^{k+1}}=\frac{G_{n}\left(2 \zeta_{n}\right)}{\zeta_{n}^{k+1}} \rightarrow \frac{G(-2 c)}{(-c)^{k+1}}=\frac{1}{(k+1)!}
$$

a contradiction. Thus, we may assume that for any $\delta>0, f_{n}$ has at least two distinct zeros in Δ_{δ} for n sufficiently large. Choose η_{n} such that $f_{n}\left(\eta_{n}\right)=0$ and f_{n} has no zeros on $\left\{z: 0<\left|z-\xi_{n}\right|<\left|\eta_{n}-\xi_{n}\right|\right\}$, then $\eta_{n} \rightarrow 0$. We claim that $\eta_{n} / \rho_{n} \rightarrow \infty$. Otherwise, taking a subsequence if necessary, from (3.7) and (3.9), we could deduce $\eta_{n} / \rho_{n} \rightarrow-c$. So G_{n} would have zeros of multiplicity at least $k+1$ in ζ_{n} and η_{n} / ρ_{n}, and both sequences $\left\{\zeta_{n}\right\}$ and $\left\{\eta_{n} / \rho_{n}\right\}$ converge to $-c$ which implies that G has a zero of multiplicity at least $2 k+2$ in $-c$, a contradiction. Since $\eta_{n} / \rho_{n} \rightarrow \infty, \xi_{n} / \eta_{n}=\rho_{n} \zeta_{n} / \eta_{n} \rightarrow 0$. Put

$$
K_{n}(z)=\frac{f_{n}\left(\left(\eta_{n}-\xi_{n}\right) z\right)}{\left(\eta_{n}-\xi_{n}\right)^{k+1}}, \quad \widetilde{h}_{n}(z)=\frac{h_{n}\left(\left(\eta_{n}-\xi_{n}\right) z\right)}{\eta_{n}-\xi_{n}}
$$

Then $\left\{K_{n}\right\}$ is a sequence of functions holomorphic on each bounded set of C for large enough n, all of whose zeros have multiplicity at least $k+1$. Similarly, the sequence of holomorphic functions $\left\{\widetilde{h}_{n}\right\}$ is defined for each $z \in C$ for n sufficiently large, and $\widetilde{h}_{n}(z) \rightarrow z$ locally uniformly on C. Clearly,

$$
K_{n}(z)=\frac{a\left(\left(\eta_{n}-\xi_{n}\right) z\right)}{\left(\eta_{n}-\xi_{n}\right)^{k+1}} \quad \Leftrightarrow \quad K_{n}^{(k)}(z)=\tilde{h}_{n}(z)
$$

Hence, by Lemma $6,\left\{K_{n}\right\}$ is normal on $C-\{0\}$. We claim that $\left\{K_{n}\right\}$ is also normal at 0 . Indeed, otherwise $K_{n} \rightarrow \infty$ locally uniformly on $C-\{0\}$. But this is impossible, as $K_{n}\left(\eta_{n} /\left(\eta_{n}-\xi_{n}\right)\right)=0$ and $\eta_{n} /\left(\eta_{n}-\xi_{n}\right) \rightarrow 1$. Thus $\left\{K_{n}\right\}$ is normal on C. Taking a subsequence and renumbering, we have $K_{n} \rightarrow K$ locally uniformly on C, for an entire function K, all of whose zeros have multiplicity at least $k+1$. Suppose that $K^{(k)}(z) \equiv z$. Thus $K(z)=z^{k+1} /(k+1)$!. But $K_{n}\left(\eta_{n} /\left(\eta_{n}-\xi_{n}\right)\right)=0$ and $\eta_{n} /\left(\eta_{n}-\xi_{n}\right) \rightarrow 1$, so that $K(1)=0$, a contradiction. We claim that $K^{(k)} \neq z$. Otherwise, we may suppose that $K^{(k)}\left(z_{0}\right)=z_{0}$. By Hurwitz theorem, there exist $z_{n}, z_{n} \rightarrow z_{0}$, such that (for n sufficiently large) $K_{n}^{(k)}\left(z_{n}\right)-\widetilde{h}_{n}\left(z_{n}\right)=0$. It follows that $f_{n}\left(\left(\eta_{n}-\xi_{n}\right) z_{n}\right)=a\left(\left(\eta_{n}-\xi_{n}\right) z_{n}\right)$. Thus $K\left(z_{0}\right)=\lim _{n \rightarrow \infty} K_{n}\left(z_{n}\right)=\infty$, which contradicts $K^{(k)}\left(z_{0}\right)=z_{0}$. This proves $K^{(k)} \neq z$. But $K_{n}\left(\xi_{n} /\left(\eta_{n}-\xi_{n}\right)\right)=0$ and $\xi_{n} /\left(\eta_{n}-\xi_{n}\right) \rightarrow 0$, so that $K(0)=0$ and hence $K^{(k)}(0)=0$, a contradiction. The contradiction shows that \mathcal{H} is normal at 0 .

It remains to prove Theorem 1 in the general case, in which the functions f_{n} need not be holomorphic in any fixed disc about the origin. Thus, taking a subsequence if necessary, we may assume that for any $\delta>0, f_{n}$ has both a zero and a pole in Δ_{δ} for n sufficiently large. Choose ω_{n} such that $f_{n}\left(\omega_{n}\right)=\infty$ and f_{n} has no poles on $\left\{z: 0<\left|z-\xi_{n}\right|<\left|\omega_{n}-\xi_{n}\right|\right\}$, then $\omega_{n} \rightarrow 0$. By (3.7) and (3.9), $\omega_{n} / \rho_{n} \rightarrow \infty$, so that $\xi_{n} / \omega_{n}=\rho_{n} \zeta_{n} / \omega_{n} \rightarrow 0$. Put

$$
L_{n}(z)=\frac{f_{n}\left(\left(\omega_{n}-\xi_{n}\right) z\right)}{\left(\omega_{n}-\xi_{n}\right)^{k+1}}, \quad \widehat{h}_{n}(z)=\frac{h_{n}\left(\left(\omega_{n}-\xi_{n}\right) z\right)}{\omega_{n}-\xi_{n}}
$$

Then $\left\{L_{n}\right\}$ is a sequence of meromorphic functions for large enough n, all of whose zeros have multiplicity at least $k+1$. Similarly, the sequence of holomorphic functions $\left\{\widehat{h}_{n}\right\}$ is defined for each $z \in C$ for n sufficiently large, and $\widehat{h}_{n}(z) \rightarrow z$ locally uniformly on C. Clearly,

$$
L_{n}(z)=\frac{a\left(\left(\omega_{n}-\xi_{n}\right) z\right)}{\left(\omega_{n}-\xi_{n}\right)^{k+1}} \Leftrightarrow \quad L_{n}^{(k)}(z)=\widehat{h}_{n}(z)
$$

Hence, by Lemma $6,\left\{L_{n}\right\}$ is normal on $C-\{0\}$. Since $\xi_{n} / \omega_{n} \rightarrow \infty$, the functions L_{n} are holomorphic on $\Delta_{1 / 2}$ for large n. Thus we may apply the fact (already proved) that Theorem 1 holds for functions holomorphic in a neighborhood of 0 to conclude that $\left\{L_{n}\right\}$ is normal on $\Delta_{1 / 2}$. Thus $\left\{L_{n}\right\}$ is normal on C. Taking a subsequence if necessary and renumbering, we
have $L_{n} \rightarrow L$ locally uniformly on C, for a meromorphic function L, all of whose zeros have multiplicity at least $k+1$. Suppose that $L^{(k)}(z) \equiv z$. Thus $L(z)=z^{k+1} /(k+1)$!. But $K_{n}\left(\omega_{n} /\left(\omega_{n}-\xi_{n}\right)\right)=\infty$ and $\omega_{n} /\left(\omega_{n}-\xi_{n}\right) \rightarrow 1$, so that $K(1)=\infty$, a contradiction. We claim that $L^{(k)} \neq z$. Otherwise, we may suppose that $L^{(k)}\left(z_{0}\right)=z_{0}$. By Hurwitz theorem, there exist z_{n}, $z_{n} \rightarrow z_{0}$, such that (for n sufficiently large) $L_{n}^{(k)}\left(z_{n}\right)-\widehat{h}_{n}\left(z_{n}\right)=0$. It follows that $f_{n}\left(\left(\omega_{n}-\xi_{n}\right) z_{n}\right)=a\left(\left(\omega_{n}-\xi_{n}\right) z_{n}\right)$. Thus $L\left(z_{0}\right)=$ $\lim _{n \rightarrow \infty} L_{n}\left(z_{n}\right)=\infty$, which contradicts $L^{(k)}\left(z_{0}\right)=z_{0}$. This proves $L^{(k)} \neq z$. But $L_{n}\left(\xi_{n} /\left(\omega_{n}-\xi_{n}\right)\right)=0$ and $\xi_{n} /\left(\omega_{n}-\xi_{n}\right) \rightarrow 0$, so that $L(0)=0$ and hence $L^{(k)}(0)=0$, a contradiction. The contradiction shows that \mathcal{H} is normal at 0 . It then follows, exactly as before, that \mathcal{F} is normal at 0 . This completes the proof of Theorem 1.

References

[1] W. Schwick, Sharing values and normality, Arch. Math. 59 (1992) 50-54.
[2] M. Fang, L. Zalcman, Normal families and shared values III, Comput. Methods Funct. Theory 2 (2002) 385-395.
[3] X. Pang, L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000) 325-331.
[4] X.C. Pang, D.G. Yang, L. Zalcman, Normal families of meromorphic functions whose derivatives omit a function, Comput. Methods Funct. Theory 2 (2002) 257-265.
[5] Y. Wang, M. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica (N.S.) 14 (1998) 17-26.
[6] C. Lei, M. Fang, D. Yang, X. Wang, Exceptional functions and normal families of meromorphic functions with multiple zeros, J. Math. Anal. Appl. 341 (2008) 224-234.
[7] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[8] J. Schiff, Normal Families, Springer-Verlag, 1993.
[9] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.
[10] G.M. Zhang, X.C. Pang, L. Zalcman, Normal families and omitted functions II, Bull. London Math. Soc. 40 (2009).

[^0]: 战 Supported by the NNSF of China (Grant No. 10771076), the NSF of Guangdong Province (07006700), and by the Presidential Foundation of South China Agricultural University (Grant No. 4900-K07278).

 * Corresponding author.

 E-mail addresses: leichunlin0113@126.com (C. Lei), dyang@scau.edu.cn (D. Yang), hnmlfang@hotmail.com (M. Fang).

