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Let k (� 2) be a positive integer, let F be a family of meromorphic functions in a
domain D , all of whose zeros have multiplicity at least k + 1, and let a(z) (�= 0), h(z) ( �≡ 0)

be two holomorphic functions on D . If, for each f ∈ F , f = a(z) ⇔ f (k) = h(z), then F is
normal in D .

© 2009 Published by Elsevier Inc.

1. Introduction

Let D be a domain in the whole complex plane C and F a family of meromorphic functions defined in D . F is said
to be normal in D , in the sense of Montel, if each sequence { fn} ⊂ F has a subsequence { fn j } which converges spherically
locally uniformly in D , to a meromorphic function or ∞ (see Hayman [7], Schiff [8], Yang [9]).

Let f and g be meromorphic functions on a domain D , and let a and b be two complex numbers. If g(z) = b whenever
f (z) = a, we write

f (z) = a ⇒ g(z) = b.

If f (z) = a ⇒ g(z) = b and g(z) = b ⇒ f (z) = a, we write

f (z) = a ⇔ g(z) = b.

If f (z) = a ⇔ g(z) = a, we say that f and g share a on D .
Schwick [1] was the first to draw a connection between values shared by functions in F and the normality of the

family F . Specifically, he proved the following theorem.

Theorem A. Let F be a family of meromorphic functions in a domain D, and let a1,a2,a3 be three distinct complex numbers. If, for
each f ∈ F , f and f ′ share a1,a2,a3 , then F is normal in D.

Fang and Zalcman [2] proved the following theorem.

Theorem B. Let F be a family of meromorphic functions in a domain D, let k be a positive integer, and let a,b be two nonzero complex
numbers. If, for each f ∈ F , the zeros of f have multiplicity at least k + 1, and f = a ⇔ f (k) = b, then F is normal in D.

In this paper, we extend Theorem B as follows.
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Theorem 1. Let k (� 2) be a positive integer, let F be a family of meromorphic functions in a domain D, all of whose zeros have
multiplicity at least k+1, and let a(z) (�= 0), h(z) (�≡ 0) be two holomorphic functions on D. If, for each f ∈ F , f = a(z) ⇔ f (k) = h(z),
then F is normal in D.

In [2], an example was given to shows that the condition in Theorem 1 that h(z) �≡ 0 is necessary.

Example 1. Let m,k be positive integers; let D = {z: |z| < 1}; and let F = { fn}, where fn(z) = nzm+k , a(z) = zm+k , h(z) = zm .
Clearly, F fails to be normal at the origin. However, all the zeros of fn have multiplicity k + m, and fn = a(z) ⇔ f (k)

n = h(z)
on D . This shows that the condition in Theorem 1 that a(z) �= 0 is necessary.

Remark. The proof of this result follows the general lines of the proof of the main result in [4], with important elaborations
based on the argument in the recent paper [10].

We write � = {z: |z| < 1}, �r = {z: |z| < r} and �′
r = {z: 0 < |z| < r}.

2. Some lemmas

In order to prove our theorems, we require the following results.

Lemma 1. (See [3].) Let k be a positive integer, let F be a family of functions meromorphic on the unit disc �, all of whose zeros have
multiplicity at least k, and suppose that there exists A � 1 such that | f (k)(z)| � A whenever f (z) = 0. Then if F is not normal at z0 ,
there exist, for each 0 � α � k,

(a) points zn ∈ �, zn → z0;
(b) functions fn ∈ F ; and
(c) positive numbers ρn → 0

such that ρ−α
n fn(zn + ρnζ ) = gn(ζ ) → g(ζ ) locally uniformly with respect to the spherical metric, where g is a nonconstant mero-

morphic function on C , all of whose zeros have multiplicity at least k, such that g#(ζ ) � g#(0) = kA + 1. In particular, g has order at
most 2.

Lemma 2. (See [4].) Let g(z) be a transcendental meromorphic function of finite order on C , and let P (z) be a polynomial, P (z) �≡ 0.
Suppose that all zeros of g(z) have multiplicity at least k + 1. Then g(k)(z) − P (z) has infinitely many zeros.

Lemma 3. (See [5].) Let m,k be two positive integers, and let Q (z) = amzm + am−1zm−1 + · · · + a0 + q(z)
p(z) , where am,am−1, . . . ,a0

are constants with am �= 0, and q(z) (�≡ 0), p(z) are coprime polynomials with deg q(z) < deg p(z). If Q (k)(z) �= 1 for z ∈ C, then

Q (z) = zk

k! + · · · + a0 + 1

(az + b)n
,

where a �= 0, and n is a positive integer. Additionally, if all zeros of Q (z) have multiplicity at least k + 1, then Q (z) = (cz+d)k+1

az+b , where
c,d are constants with c �= 0.

Lemma 4. (See [6].) Let m,k be two positive integers with m � 2, k � 2, and let Q (z) be a rational function, all of whose zeros have
multiplicity at least k + 1, and all of whose poles are multiple with the possible exception of z = 0. Then Q (k)(z) = zm has a solution
in C .

Lemma 5. (See [10].) Let Q (z) be a rational function, all of whose poles are multiple and whose zeros all have multiplicity at least
k + 1. If Q (k)(z) �= zm, z ∈ C for some integer m � 1, then either

(i) k = 1 or

(ii) m = 1 and Q (z) = (z+c)k+1

(k+1)!

for some nonzero constant c.

Lemma 6. Let k be a positive integer, let an(z)(�= 0) be holomorphic functions with {|an(z)|} being locally uniformly bounded away
from 0, and let { fn} be a sequence of meromorphic functions in a domain D, all of whose zeros of fn have multiplicity at least k + 1.
Let {hn(z)} be a sequence of functions holomorphic on D such that hn → h locally uniformly on D, where h(z) �= 0 and �≡ ∞ for z ∈ D.
Suppose that for each n, fn = an(z) ⇔ f (k)

n = hn(z), then { fn} is normal on D.
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Proof. Suppose that { fn} is not normal at z0. We may assume that D = � and h(z0) = 1. By Lemma 1, after choosing
appropriate subsequences we may assume that there exist zn → z0, and ρn → 0+ such that

ρ−k
n fn(zn + ρnζ ) = gn(ζ ) → g(ζ ),

spherically uniformly on compact subsets of C , where g(ζ ) is a nonconstant meromorphic function on C , all of whose zeros
have multiplicity at least k + 1 and g has order at most 2.

We claim that

(a) g(k) �= 1; and
(b) no poles of g are simple.

Suppose now that g(k)(ζ0) = 1. We claim that g(k) �≡ 1. Otherwise, g must be a polynomial of exact degree k, which
contradicts the fact that each zero of g has multiplicity at least k + 1. Since g(k)(ζ0) = 1 = h(z0) but g(k) �≡ 1, there exist ζn ,
ζn → ζ0, such that (for n sufficiently large)

f (k)
n (zn + ρnζn) = g(k)

n (ζn) = hn(zn + ρnζn).

It follows that fn(zn + ρnζn) = an(zn + ρnζn), so that

gn(ζn) = fn(zn + ρnζn)

ρk
n

= an(zn + ρnζn)

ρk
n

.

Thus g(ζ0) = limn→∞ gn(ζn) = ∞, which contradicts g(k)(ζ0) = 1. This proves (a).
Next we prove (b). Suppose g(ζ0) = ∞. There exists a closed disc K = {ζ : |ζ − ζ0| � δ} on which 1/g and 1/gn are

holomorphic (for n sufficiently large) and 1/gn → 1/g uniformly. Hence, 1
gn(ζ )

− ρk
n

an(zn+ρnζ )
→ 1

g(ζ )
uniformly on K ; and

since 1/g is nonconstant, there exist ζn , ζn → ζ0, such that (for n large enough)

1

gn(ζn)
− ρk

n

an(zn + ρnζn)
= 0.

Hence fn(zn + ρnζn) = an(zn + ρnζn). Thus we have

g(k)
n (ζn) = f (k)

n (zn + ρnζn) = hn(zn + ρnζn). (2.1)

If k = 1, then we have by (2.1)(
1

g(ζ )

)′∣∣∣∣
ζ=ζ0

= − g′(ζ0)

g2(ζ0)
= lim

n→∞

[
− g′

n(ζn)

g2
n(ζn)

]
= 0,

so that ζ0 is a multiple pole of g(ζ ). Thus no poles of g are simple.
Similarly, if k = 2, then we have by (2.1)(

1

g(ζ )

)′′∣∣∣∣
ζ=ζ0

= − g′′(ζ0)

g2(ζ0)
+ 2

[g′(ζ0)]2

g3(ζ0)

= lim
n→∞

[
− g′′

n (ζn)

g2
n(ζn)

+ 2
[g′

n(ζn)]2

g3
n(ζn)

]

= − lim
n→∞

g′′
n (ζn)

g2
n(ζn)

+ 2 lim
n→∞

[g′
n(ζn)]2

g3
n(ζn)

= 2 lim
n→∞

{[
− g′

n(ζn)

g2
n(ζn)

]2

gn(ζn)

}
. (2.2)

Since limn→∞ gn(ζn) = ∞, by (2.2) we have

lim
n→∞

[
− g′

n(ζn)

g2
n(ζn)

]2

= 0.

Thus (1/g(ζ ))′|ζ=ζ0 = 0, so that ζ0 is a multiple pole of g(ζ ). Hence no poles of g are simple.
If k � 3, mathematical induction shows that(

1

u

)(k)

= −u(k)

u2
+ k! (u′)k

uk+1
+

∑
0�i�k−2

Ai[u]ui, (2.3)

where Ai[u] is a polynomial of (1/u)′, (1/u)′′, . . . , (1/u)(k−1) for each u meromorphic in D .
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Thus by (2.1) and (2.3),(
1

g(ζ )

)(k)∣∣∣∣
ζ=ζ0

= lim
n→∞

(
1

gn(ζ )

)(k)∣∣∣∣
ζ=ζn

= lim
n→∞

[
− g(k)

n (ζn)

g2
n(ζn)

+ k! (g′
n(ζn))k

gk+1
n (ζn)

+
∑

0�i�k−2

Ai[gn]gi
n(ζn)

]

= lim
n→∞

[
k! (g′

n(ζn))k

gk+1
n (ζn)

+
∑

0�i�k−2

Ai[gn]gi
n(ζn)

]

= lim
n→∞

[
k! (g′

n(ζn))k

gk+1
n (ζn)

+
∑

1�i�k−2

Ai[gn]gi
n(ζn)

]
+ A0[g](ζ0)

= lim
n→∞

[
k!

(
− (g′

n(ζn))

g2
n(ζn)

)k

(−1)k gk−2
n (ζn) +

∑
1�i�k−2

Ai[gn]gi−1
n (ζn)

]
gn(ζn)

+ A0[g](ζ0). (2.4)

Since limn→∞ gn(ζn) = ∞, by (2.4) we get

lim
n→∞

[
k!

(
− (g′

n(ζn))

g2
n(ζn)

)k

(−1)k gk−2
n (ζn) +

∑
1�i�k−2

Ai[gn]gi−1
n (ζn)

]
= 0.

Similarly, we have

lim
n→∞

[
k!

(
− (g′

n(ζn))

g2
n(ζn)

)k

(−1)k gk−3
n (ζn) +

∑
2�i�k−2

Ai[gn]gi−2
n (ζn)

]
= 0.

Proceeding inductively, we obtain at last

lim
n→∞

[
− g′

n(ζn)

g2
n(ζn)

]k

= 0.

It follows that (1/g(ζ ))′
∣∣
ζ=ζ0

= 0, so that ζ0 is a multiple pole of g(ζ ). Hence no poles of g are simple. This proves (b). �
By Lemma 2, g is a rational function. By (a), (b) and Lemma 3, g is a constant, a contradiction. Thus { fn} is normal on D .

3. Proof of Theorem 1

We may assume that D = �. We only need to show that F is normal at a point z0, for each z0 ∈ �. Suppose that
h(z0) �= 0. Then by Lemma 6, we get that F is normal at z0.

We now prove that F is normal at a point z0 with h(z0) = 0. Without loss of generality, we may assume that z0 = 0.
Making standard normalization, we may assume that

h(z) = zm + am+1zm+1 + · · · = zmb(z), z ∈ �,

m � 1, b(0) = 1, and h(z) �= 0 for 0 < |z| < 1.
We argue by contradiction. Choosing a sequence { fn} of F and renumbering, we may assume that no subsequence of

{ fn} is normal at 0.
Let H = {Fn: Fn(z) = fn(z)

zm }. We claim that fn(0) �= 0. Otherwise, we assume that fn(0) = 0. Then, since all zeros of fn

have multiplicity at least k + 1, also f (k)
n (0) = 0 = h(0). By the value sharing assumption of the theorem this would imply

fn(0) = a(0) �= 0, a contradiction. Hence fn(0) �= 0. Thus, Fn(0) = ∞. In fact, each Fn has a pole of order m at 0.
Suppose that we have shown that H is normal at 0. Next, we prove that F is normal at 0. Since H is normal at z = 0,

there exist �δ = {z: |z| < δ} and a subsequence of {Fn(z)} such that {Fn(z)} converges uniformly to a meromorphic function
F (z) or ∞ on �δ . Noting that F (0) = ∞, we can find a ε ∈ [0; δ] and a positive constant M such that |F (z)| � M for all
z ∈ �ε . Therefore, for sufficiently large n, we obtain that |Fn(z)| � M

2 . Thus fn(z) �= 0 for sufficiently large n and all z ∈ �ε .
Therefore 1

fn
is analytic in �ε . Thus, for sufficiently large n, we have∣∣∣∣ 1

fn(z)

∣∣∣∣ =
∣∣∣∣ 1

Fn(z)

1

|z|m
∣∣∣∣ � 2m

εm

2

M
, |z| = ε

2
.

By the Maximum Principle and Montel’s theorem, F is normal at z = 0.
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We now turn to prove H is normal at 0. Suppose not. By Lemma 1, after choosing appropriate subsequences we may
assume that there exist zn → 0, and ρn → 0+ such that

ρ−k
n Fn(zn + ρnζ ) = gn(ζ ) → g(ζ ),

spherically uniformly on compact subsets of C , where g(ζ ) is nonconstant meromorphic function on C , all of whose zeros
have multiplicity at least k + 1.

We consider two cases.

Case 1. We may suppose that zn
ρn

→ ∞. We have

f (k)
n (z) = zm F (k)

n (z) +
k∑

l=1

(
k

l

)(
zm)(l)

F (k−l)
n (z)

= zm F (k)
n (z) +

k∑
l=1

cl z
m−l F (k−l)

n (z), (3.1)

where

cl =
{(k

l

)
m(m − 1) · · · (m − l + 1), l � m,

0, l > m.

Since ρl
n g(k−l)

n (ζ ) = F (k−l)
n (zn + ρnζ ), l = 0,1, . . . ,k, we obtain

f (k)
n (zn + ρnζ )

h(zn + ρnζ )
=

[
g(k)

n (ζ ) +
k∑

l=1

cl
g(k−l)

n (ζ )

( zn
ρn

+ ζ )l

]
1

b(zn + ρnζ )
. (3.2)

Now

lim
n→∞

cl

( zn
ρn

+ ζ )l
= 0, l = 1,2, . . . ,k, (3.3)

and

lim
n→∞

1

b(zn + ρnζ )
= 1. (3.4)

By (3.2), (3.3) and (3.4), we have

f (k)
n (zn + ρnζ )

h(zn + ρnζ )
→ g(k)(ζ ),

uniformly on compact subsets of C disjoint from the poles of g .
We claim that

(i) g(k) �= 1; and
(ii) no poles of g are simple.

Suppose now that g(k)(ζ0) = 1. We claim that g(k) �≡ 1. Otherwise, g must be a polynomial of exact degree k, which
contradicts the fact that each zero of g has multiplicity at least k + 1. Since g(k)(ζ0) = 1 but g(k) �≡ 1, there exist ζn , ζn → ζ0,
such that (for n sufficiently large) f (k)

n (zn + ρnζn) = h(zn + ρnζn). It follows that fn(zn + ρnζn) = a(zn + ρnζn), so that

gn(ζn) = fn(zn + ρnζn)

ρk
n(zn + ρnζn)m

= a(zn + ρnζn)

ρk
n(zn + ρnζn)m

.

Thus g(ζ0) = limn→∞ gn(ζn) = ∞, which contradicts g(k)(ζ0) = 1. This proves (i).
Next we prove (ii). Suppose g(ζ0) = ∞. There exists a closed disc K = {ζ : |ζ − ζ0| � δ} on which 1/g and 1/gn are

holomorphic (for n sufficiently large) and 1/gn → 1/g uniformly. Hence, 1
gn(ζ )

− ρk
n (zn+ρnζ )m

a(zn+ρnζ )
→ 1

g(ζ )
uniformly on K ; and

since 1/g is nonconstant, there exist ζn , ζn → ζ0, such that (for n large enough)

1

gn(ζn)
− ρk

n(zn + ρnζn)m

a(zn + ρnζn)
= 0.

Hence fn(zn + ρnζn) = a(zn + ρnζn). Thus we have

f (k)
n (zn + ρnζn) = h(zn + ρnζn). (3.5)
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By (3.2) and (3.5) we can obtain

g(k)
n (ζn) =

[
f (k)
n (zn + ρnζn)

h(zn + ρnζn)
b(zn + ρnζn) −

k∑
l=1

cl
g(k−l)

n (ζn)

( zn
ρn

+ ζn)l

]
→ 1. (3.6)

Using a similar fashion as Lemma 6, by (2.2), (2.3), (2.4) and (3.6), we can prove (ii).
By Lemma 2, g is a rational function. By (i), (ii) and Lemma 3, g is a constant, a contradiction. Thus { fn} is normal on D .

Case 2. So we may assume that zn
ρn

→ α, a finite complex number. We have

Fn(ρnζ )

ρk
n

= Fn(zn + ρn(ζ − zn
ρn

))

ρk
n

→ g(ζ − α),

the convergence being spherically uniform on compact sets of C . Clearly, all zeros of g(ζ − α) have multiplicity at least
k + 1, and the pole of g(ζ − α) at ζ = 0 has multiplicity at least m. Now

Gn(ζ ) = fn(ρnζ )

ρm+k
n

= Fn(ρnζ )

ρk
n

(ρnζ )m

ρm
n

→ ζm g(ζ − α) = G(ζ ), (3.7)

uniformly on compact subsets of C . Since g(ζ − α) has a pole of multiplicity at least m at ζ = 0, G(0) �= 0 and all zeros of
G(ζ ) have multiplicity at least k + 1.

We claim that

(iii) G(k)(ζ ) �= ζm , ζ ∈ C ;
(iv) no poles of g are simple.

Indeed, suppose that G(k)(ζ0) = ζm
0 . Then G(ζ ) is holomorphic at ζ0, and

f (k)
n (ρnζ ) − h(ρnζ )

ρm
n

= G(k)
n (ζ ) − h(ρnζ )

ρm
n

→ G(k)(ζ ) − ζm.

First we assume that G(k)(ζ ) ≡ ζm . Then G is a nonconstant polynomial. Therefore G has a zero ς0. Since all ze-
ros of G have multiplicity at least k + 1, we deduce ςm

0 = G(k)(ς0) = 0, hence ς0 = 0. This contradicts G(0) �= 0. Thus
G(k)(ζ ) �≡ ζm . Suppose that G(k)(ζ0) = ζm

0 . By Hurwitz theorem, there exist ζn , ζn → ζ0, such that (for n sufficiently large)

f (k)
n (ρnζn) − h(ρnζn) = 0. It follows that fn(ρnζn) = a(ρnζn). Thus G(ζ0) = limn→∞ Gn(ζn) = ∞, which contradicts

G(k)(ζ0) = ζm
0 . This proves (iii).

Next we prove (iv). Suppose G(ζ0) = ∞. There exists a closed disc K = {ζ : |ζ − ζ0| � δ} on which 1/G and 1/Gn are

holomorphic (for n sufficiently large) and 1/Gn → 1/G uniformly. Hence, 1
Gn(ζ )

− ρk+m
n

a(ρnζ )
→ 1

G(ζ )
uniformly on K ; and since

1/G is nonconstant, there exist ζn , ζn → ζ0, such that (for n large enough)

1

Gn(ζn)
− ρk+m

n

a(ρnζn)
= 0.

Hence fn(ρnζn) = a(ρnζn). Thus we have

f (k)
n (ρnζn) = h(ρnζn).

By (3.7) we can obtain

G(k)
n (ζn) = f (k)

n (ρnζn)

ρm
n

= h(ρnζn)

ρm
n

= b(ρnζn)ζm
n → ζm

0 . (3.8)

Using a similar fashion as Lemma 6, by (2.2), (2.3), (2.4) and (3.8), we can prove (iv).
Firstly, Lemma 2 implies that G(ζ ) is rational.
Suppose that m � 2. It follows from Lemma 4 and (iv) that G(k)(ζ ) = ζm has a solution in C . This contradicts with (iii).

Thus by Lemma 5, we have m = 1 and

G(ζ ) = (ζ + c)k+1

(k + 1)! , c �= 0. (3.9)

It then follows from (3.7) and (3.9) that there exist points ζn → −c such that fn(ρnζn) = 0. In fact, ρnζn are zeros of fn of
exact multiplicity k + 1.

We suppose that the functions fn are all holomorphic in some fixed disc �ρ . Recall that the sequence { fn} is not normal
at 0; on the other hand, by Lemma 6, it is normal on �′

ρ , since h(z) �= 0 there.
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We claim that the sequence { fn} tends to ∞ locally uniformly on �′
ρ . In fact, since { fn} is normal on �′

ρ , { fn} is normal
in Cρ/2 = {z: |z| = ρ/2}. Thus there exists a subsequence { fnk } such that { fnk } converges uniformly to a holomorphic
function f (z) or ∞ on Cρ/2.

If fnk (z) → f (z), then there exist an integer N and a positive number M such that∣∣ fnk (z)
∣∣ � M

for all k � N , z ∈ Cρ/2. By the maximum modulus theorem, we have∣∣ fnk (z)
∣∣ � M

for all k � N , |z| � ρ/2. Hence { fnk } is normal in {z: |z| � ρ/2} by Montel’s normality criterion (see [7]). This contradicts
with our assumption. Hence { fn} tends to ∞ locally uniformly on �′

ρ .
Suppose first that there exists 0 < δ < ρ such that each fn has only the single zero ξn = ρnζn in �δ . Put

Hn(z) = fn(z)

(z − ξn)k+1
. (3.10)

Then {Hn} is a sequence of nonvanishing holomorphic functions on �δ and tending to ∞ locally uniformly on �′
δ . It

follows that the sequence {1/Hn} of holomorphic functions tends to 0 locally uniformly on �′
δ and hence, by the maximum

principle, on �δ . In particular, Hn(2ρnζn) → ∞. But by (3.7), (3.9) and (3.10),

Hn(2ρnζn) = fn(2ρnζn)

(ρnζn)k+1
= Gn(2ζn)

ζ k+1
n

→ G(−2c)

(−c)k+1
= 1

(k + 1)! ,

a contradiction. Thus, we may assume that for any δ > 0, fn has at least two distinct zeros in �δ for n sufficiently large.
Choose ηn such that fn(ηn) = 0 and fn has no zeros on {z: 0 < |z−ξn| < |ηn −ξn|}, then ηn → 0. We claim that ηn/ρn → ∞.
Otherwise, taking a subsequence if necessary, from (3.7) and (3.9), we could deduce ηn/ρn → −c. So Gn would have zeros
of multiplicity at least k + 1 in ζn and ηn/ρn , and both sequences {ζn} and {ηn/ρn} converge to −c which implies that G
has a zero of multiplicity at least 2k + 2 in −c, a contradiction. Since ηn/ρn → ∞, ξn/ηn = ρnζn/ηn → 0. Put

Kn(z) = fn((ηn − ξn)z)

(ηn − ξn)k+1
, h̃n(z) = hn((ηn − ξn)z)

ηn − ξn
.

Then {Kn} is a sequence of functions holomorphic on each bounded set of C for large enough n, all of whose zeros have
multiplicity at least k + 1. Similarly, the sequence of holomorphic functions {̃hn} is defined for each z ∈ C for n sufficiently
large, and h̃n(z) → z locally uniformly on C . Clearly,

Kn(z) = a((ηn − ξn)z)

(ηn − ξn)k+1
⇔ K (k)

n (z) = h̃n(z).

Hence, by Lemma 6, {Kn} is normal on C − {0}. We claim that {Kn} is also normal at 0. Indeed, otherwise Kn → ∞ locally
uniformly on C − {0}. But this is impossible, as Kn(ηn/(ηn − ξn)) = 0 and ηn/(ηn − ξn) → 1. Thus {Kn} is normal on C .
Taking a subsequence and renumbering, we have Kn → K locally uniformly on C , for an entire function K , all of whose
zeros have multiplicity at least k + 1. Suppose that K (k)(z) ≡ z. Thus K (z) = zk+1/(k + 1)!. But Kn(ηn/(ηn − ξn)) = 0 and
ηn/(ηn − ξn) → 1, so that K (1) = 0, a contradiction. We claim that K (k) �= z. Otherwise, we may suppose that K (k)(z0) = z0.
By Hurwitz theorem, there exist zn , zn → z0, such that (for n sufficiently large) K (k)

n (zn) − h̃n(zn) = 0. It follows that
fn((ηn − ξn)zn) = a((ηn − ξn)zn). Thus K (z0) = limn→∞ Kn(zn) = ∞, which contradicts K (k)(z0) = z0. This proves K (k) �= z.
But Kn(ξn/(ηn − ξn)) = 0 and ξn/(ηn − ξn) → 0, so that K (0) = 0 and hence K (k)(0) = 0, a contradiction. The contradiction
shows that H is normal at 0.

It remains to prove Theorem 1 in the general case, in which the functions fn need not be holomorphic in any fixed disc
about the origin. Thus, taking a subsequence if necessary, we may assume that for any δ > 0, fn has both a zero and a pole
in �δ for n sufficiently large. Choose ωn such that fn(ωn) = ∞ and fn has no poles on {z: 0 < |z − ξn| < |ωn − ξn|}, then
ωn → 0. By (3.7) and (3.9), ωn/ρn → ∞, so that ξn/ωn = ρnζn/ωn → 0. Put

Ln(z) = fn((ωn − ξn)z)

(ωn − ξn)k+1
, ĥn(z) = hn((ωn − ξn)z)

ωn − ξn
.

Then {Ln} is a sequence of meromorphic functions for large enough n, all of whose zeros have multiplicity at least k + 1.
Similarly, the sequence of holomorphic functions {̂hn} is defined for each z ∈ C for n sufficiently large, and ĥn(z) → z locally
uniformly on C . Clearly,

Ln(z) = a((ωn − ξn)z)

(ωn − ξn)k+1
⇔ L(k)

n (z) = ĥn(z).

Hence, by Lemma 6, {Ln} is normal on C − {0}. Since ξn/ωn → ∞, the functions Ln are holomorphic on �1/2 for large n.
Thus we may apply the fact (already proved) that Theorem 1 holds for functions holomorphic in a neighborhood of 0 to
conclude that {Ln} is normal on �1/2. Thus {Ln} is normal on C . Taking a subsequence if necessary and renumbering, we
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have Ln → L locally uniformly on C , for a meromorphic function L, all of whose zeros have multiplicity at least k + 1.
Suppose that L(k)(z) ≡ z. Thus L(z) = zk+1/(k + 1)!. But Kn(ωn/(ωn − ξn)) = ∞ and ωn/(ωn − ξn) → 1, so that K (1) = ∞,
a contradiction. We claim that L(k) �= z. Otherwise, we may suppose that L(k)(z0) = z0. By Hurwitz theorem, there exist zn ,
zn → z0, such that (for n sufficiently large) L(k)

n (zn)− ĥn(zn) = 0. It follows that fn((ωn −ξn)zn) = a((ωn −ξn)zn). Thus L(z0) =
limn→∞ Ln(zn) = ∞, which contradicts L(k)(z0) = z0. This proves L(k) �= z. But Ln(ξn/(ωn − ξn)) = 0 and ξn/(ωn − ξn) → 0, so
that L(0) = 0 and hence L(k)(0) = 0, a contradiction. The contradiction shows that H is normal at 0. It then follows, exactly
as before, that F is normal at 0. This completes the proof of Theorem 1.
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