J. Math. Anal. Appl. 364 (2010) 143-150

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Normal families and shared values of meromorphic functions $\stackrel{\star}{\sim}$

Chunlin Lei, Degui Yang, Mingliang Fang*

Department of Applied Mathematics, South China Agricultural University, Guangzhou 510642, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 17 November 2008 Available online 17 April 2009 Submitted by S. Ruscheweyh

Keywords: Normal families Meromorphic functions Shared values

Let $k \ (\geq 2)$ be a positive integer, let \mathcal{F} be a family of meromorphic functions in a domain *D*, all of whose zeros have multiplicity at least k + 1, and let $a(z) \neq 0$, $h(z) \neq 0$ be two holomorphic functions on D. If, for each $f \in \mathcal{F}$, $f = a(z) \Leftrightarrow f^{(k)} = h(z)$, then \mathcal{F} is normal in D.

© 2009 Published by Elsevier Inc.

1. Introduction

Let D be a domain in the whole complex plane C and \mathcal{F} a family of meromorphic functions defined in D. \mathcal{F} is said to be normal in D, in the sense of Montel, if each sequence $\{f_n\} \subset \mathcal{F}$ has a subsequence $\{f_n\}$ which converges spherically locally uniformly in D, to a meromorphic function or ∞ (see Hayman [7], Schiff [8], Yang [9]).

Let f and g be meromorphic functions on a domain D, and let a and b be two complex numbers. If g(z) = b whenever f(z) = a, we write

 $f(z) = a \Rightarrow g(z) = b.$

If $f(z) = a \Rightarrow g(z) = b$ and $g(z) = b \Rightarrow f(z) = a$, we write

$$f(z) = a \quad \Leftrightarrow \quad g(z) = b.$$

If $f(z) = a \Leftrightarrow g(z) = a$, we say that f and g share a on D.

Schwick [1] was the first to draw a connection between values shared by functions in \mathcal{F} and the normality of the family \mathcal{F} . Specifically, he proved the following theorem.

Theorem A. Let \mathcal{F} be a family of meromorphic functions in a domain D, and let a_1, a_2, a_3 be three distinct complex numbers. If, for each $f \in \mathcal{F}$, f and f' share a_1, a_2, a_3 , then \mathcal{F} is normal in D.

Fang and Zalcman [2] proved the following theorem.

Theorem B. Let \mathcal{F} be a family of meromorphic functions in a domain D, let k be a positive integer, and let a, b be two nonzero complex numbers. If, for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least k + 1, and $f = a \Leftrightarrow f^{(k)} = b$, then \mathcal{F} is normal in D.

In this paper, we extend Theorem B as follows.

Corresponding author.

Supported by the NNSF of China (Grant No. 10771076), the NSF of Guangdong Province (07006700), and by the Presidential Foundation of South China Agricultural University (Grant No. 4900-K07278).

E-mail addresses: leichunlin0113@126.com (C. Lei), dyang@scau.edu.cn (D. Yang), hnmlfang@hotmail.com (M. Fang).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2009 Published by Elsevier Inc. doi:10.1016/j.jmaa.2009.04.020

Theorem 1. Let $k \ (\ge 2)$ be a positive integer, let \mathcal{F} be a family of meromorphic functions in a domain D, all of whose zeros have multiplicity at least k+1, and let $a(z) \ (\ne 0)$, $h(z) \ (\ne 0)$ be two holomorphic functions on D. If, for each $f \in \mathcal{F}$, $f = a(z) \Leftrightarrow f^{(k)} = h(z)$, then \mathcal{F} is normal in D.

In [2], an example was given to shows that the condition in Theorem 1 that $h(z) \neq 0$ is necessary.

Example 1. Let *m*, *k* be positive integers; let $D = \{z: |z| < 1\}$; and let $\mathcal{F} = \{f_n\}$, where $f_n(z) = nz^{m+k}$, $a(z) = z^{m+k}$, $h(z) = z^m$. Clearly, \mathcal{F} fails to be normal at the origin. However, all the zeros of f_n have multiplicity k + m, and $f_n = a(z) \Leftrightarrow f_n^{(k)} = h(z)$ on *D*. This shows that the condition in Theorem 1 that $a(z) \neq 0$ is necessary.

Remark. The proof of this result follows the general lines of the proof of the main result in [4], with important elaborations based on the argument in the recent paper [10].

We write $\Delta = \{z: |z| < 1\}$, $\Delta_r = \{z: |z| < r\}$ and $\Delta'_r = \{z: 0 < |z| < r\}$.

2. Some lemmas

In order to prove our theorems, we require the following results.

Lemma 1. (See [3].) Let *k* be a positive integer, let \mathcal{F} be a family of functions meromorphic on the unit disc Δ , all of whose zeros have multiplicity at least *k*, and suppose that there exists $A \ge 1$ such that $|f^{(k)}(z)| \le A$ whenever f(z) = 0. Then if \mathcal{F} is not normal at z_0 , there exist, for each $0 \le \alpha \le k$,

- (a) points $z_n \in \Delta$, $z_n \rightarrow z_0$;
- (b) functions $f_n \in \mathcal{F}$; and
- (c) positive numbers $\rho_n \rightarrow 0$

such that $\rho_n^{-\alpha} f_n(z_n + \rho_n \zeta) = g_n(\zeta) \rightarrow g(\zeta)$ locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C, all of whose zeros have multiplicity at least k, such that $g^{\#}(\zeta) \leq g^{\#}(0) = kA + 1$. In particular, g has order at most 2.

Lemma 2. (See [4].) Let g(z) be a transcendental meromorphic function of finite order on *C*, and let P(z) be a polynomial, $P(z) \neq 0$. Suppose that all zeros of g(z) have multiplicity at least k + 1. Then $g^{(k)}(z) - P(z)$ has infinitely many zeros.

Lemma 3. (See [5].) Let m, k be two positive integers, and let $Q(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_0 + \frac{q(z)}{p(z)}$, where $a_m, a_{m-1}, \ldots, a_0$ are constants with $a_m \neq 0$, and $q(z) \ (\neq 0)$, p(z) are coprime polynomials with $\deg q(z) < \deg p(z)$. If $Q^{(k)}(z) \neq 1$ for $z \in C$, then

$$Q(z) = \frac{z^k}{k!} + \dots + a_0 + \frac{1}{(az+b)^n}$$

where $a \neq 0$, and n is a positive integer. Additionally, if all zeros of Q(z) have multiplicity at least k + 1, then $Q(z) = \frac{(cz+d)^{k+1}}{az+b}$, where c, d are constants with $c \neq 0$.

Lemma 4. (See [6].) Let m, k be two positive integers with $m \ge 2$, $k \ge 2$, and let Q(z) be a rational function, all of whose zeros have multiplicity at least k + 1, and all of whose poles are multiple with the possible exception of z = 0. Then $Q^{(k)}(z) = z^m$ has a solution in C.

Lemma 5. (See [10].) Let Q(z) be a rational function, all of whose poles are multiple and whose zeros all have multiplicity at least k + 1. If $Q^{(k)}(z) \neq z^m$, $z \in C$ for some integer $m \ge 1$, then either

(i) k = 1 or (ii) m = 1 and $Q(z) = \frac{(z+c)^{k+1}}{(k+1)!}$

for some nonzero constant c.

Lemma 6. Let *k* be a positive integer, let $a_n(z) \neq 0$ be holomorphic functions with $\{|a_n(z)|\}$ being locally uniformly bounded away from 0, and let $\{f_n\}$ be a sequence of meromorphic functions in a domain *D*, all of whose zeros of f_n have multiplicity at least k + 1. Let $\{h_n(z)\}$ be a sequence of functions holomorphic on *D* such that $h_n \rightarrow h$ locally uniformly on *D*, where $h(z) \neq 0$ and $\neq \infty$ for $z \in D$. Suppose that for each n, $f_n = a_n(z) \Leftrightarrow f_n^{(k)} = h_n(z)$, then $\{f_n\}$ is normal on *D*.

$$\rho_n^{-\kappa} f_n(z_n + \rho_n \zeta) = g_n(\zeta) \to g(\zeta),$$

spherically uniformly on compact subsets of *C*, where $g(\zeta)$ is a nonconstant meromorphic function on *C*, all of whose zeros have multiplicity at least k + 1 and g has order at most 2.

We claim that

(a) $g^{(k)} \neq 1$; and (b) no poles of g are simple.

Suppose now that $g^{(k)}(\zeta_0) = 1$. We claim that $g^{(k)} \neq 1$. Otherwise, g must be a polynomial of exact degree k, which contradicts the fact that each zero of g has multiplicity at least k + 1. Since $g^{(k)}(\zeta_0) = 1 = h(z_0)$ but $g^{(k)} \neq 1$, there exist ζ_n , $\zeta_n \rightarrow \zeta_0$, such that (for n sufficiently large)

$$f_n^{(k)}(z_n+\rho_n\zeta_n)=g_n^{(k)}(\zeta_n)=h_n(z_n+\rho_n\zeta_n).$$

It follows that $f_n(z_n + \rho_n \zeta_n) = a_n(z_n + \rho_n \zeta_n)$, so that

$$g_n(\zeta_n) = \frac{f_n(z_n + \rho_n \zeta_n)}{\rho_n^k} = \frac{a_n(z_n + \rho_n \zeta_n)}{\rho_n^k}.$$

Thus $g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = \infty$, which contradicts $g^{(k)}(\zeta_0) = 1$. This proves (a).

Next we prove (b). Suppose $g(\zeta_0) = \infty$. There exists a closed disc $K = \{\zeta : |\zeta - \zeta_0| \leq \delta\}$ on which 1/g and $1/g_n$ are holomorphic (for *n* sufficiently large) and $1/g_n \to 1/g$ uniformly. Hence, $\frac{1}{g_n(\zeta)} - \frac{\rho_n^k}{a_n(z_n + \rho_n\zeta)} \to \frac{1}{g(\zeta)}$ uniformly on *K*; and since 1/g is nonconstant, there exist ζ_n , $\zeta_n \to \zeta_0$, such that (for *n* large enough)

$$\frac{1}{g_n(\zeta_n)} - \frac{\rho_n^k}{a_n(z_n + \rho_n \zeta_n)} = 0.$$

Hence $f_n(z_n + \rho_n \zeta_n) = a_n(z_n + \rho_n \zeta_n)$. Thus we have

$$g_n^{(k)}(\zeta_n) = f_n^{(k)}(z_n + \rho_n \zeta_n) = h_n(z_n + \rho_n \zeta_n).$$
(2.1)

If k = 1, then we have by (2.1)

$$\left(\frac{1}{g(\zeta)}\right)'\Big|_{\zeta=\zeta_0} = -\frac{g'(\zeta_0)}{g^2(\zeta_0)} = \lim_{n\to\infty} \left[-\frac{g'_n(\zeta_n)}{g^2_n(\zeta_n)}\right] = 0$$

so that ζ_0 is a multiple pole of $g(\zeta)$. Thus no poles of g are simple. Similarly, if k = 2, then we have by (2.1)

$$\left(\frac{1}{g(\zeta)}\right)''\Big|_{\zeta=\zeta_0} = -\frac{g''(\zeta_0)}{g^2(\zeta_0)} + 2\frac{[g'(\zeta_0)]^2}{g^3(\zeta_0)} = \lim_{n\to\infty} \left[-\frac{g''_n(\zeta_n)}{g^2_n(\zeta_n)} + 2\frac{[g'_n(\zeta_n)]^2}{g^3_n(\zeta_n)}\right] = -\lim_{n\to\infty} \frac{g''_n(\zeta_n)}{g^2_n(\zeta_n)} + 2\lim_{n\to\infty} \frac{[g'_n(\zeta_n)]^2}{g^3_n(\zeta_n)} = 2\lim_{n\to\infty} \left\{ \left[-\frac{g'_n(\zeta_n)}{g^2_n(\zeta_n)}\right]^2 g_n(\zeta_n) \right\}.$$
(2.2)

Since $\lim_{n\to\infty} g_n(\zeta_n) = \infty$, by (2.2) we have

$$\lim_{n\to\infty}\left[-\frac{g_n'(\zeta_n)}{g_n^2(\zeta_n)}\right]^2=0.$$

Thus $(1/g(\zeta))'|_{\zeta=\zeta_0} = 0$, so that ζ_0 is a multiple pole of $g(\zeta)$. Hence no poles of g are simple. If $k \ge 3$, mathematical induction shows that

$$\left(\frac{1}{u}\right)^{(k)} = -\frac{u^{(k)}}{u^2} + k! \frac{(u')^k}{u^{k+1}} + \sum_{0 \leqslant i \leqslant k-2} A_i[u] u^i,$$
(2.3)

where $A_i[u]$ is a polynomial of $(1/u)', (1/u)'', \dots, (1/u)^{(k-1)}$ for each *u* meromorphic in *D*.

Thus by (2.1) and (2.3),

$$\begin{split} \left(\frac{1}{g(\zeta)}\right)^{(k)}\Big|_{\zeta=\zeta_{0}} &= \lim_{n\to\infty} \left(\frac{1}{g_{n}(\zeta)}\right)^{(k)}\Big|_{\zeta=\zeta_{n}} \\ &= \lim_{n\to\infty} \left[-\frac{g_{n}^{(k)}(\zeta_{n})}{g_{n}^{2}(\zeta_{n})} + k!\frac{(g_{n}'(\zeta_{n}))^{k}}{g_{n}^{k+1}(\zeta_{n})} + \sum_{0\leqslant i\leqslant k-2} A_{i}[g_{n}]g_{n}^{i}(\zeta_{n})\right] \\ &= \lim_{n\to\infty} \left[k!\frac{(g_{n}'(\zeta_{n}))^{k}}{g_{n}^{k+1}(\zeta_{n})} + \sum_{0\leqslant i\leqslant k-2} A_{i}[g_{n}]g_{n}^{i}(\zeta_{n})\right] \\ &= \lim_{n\to\infty} \left[k!\frac{(g_{n}'(\zeta_{n}))^{k}}{g_{n}^{k+1}(\zeta_{n})} + \sum_{1\leqslant i\leqslant k-2} A_{i}[g_{n}]g_{n}^{i}(\zeta_{n})\right] + A_{0}[g](\zeta_{0}) \\ &= \lim_{n\to\infty} \left[k!\left(-\frac{(g_{n}'(\zeta_{n}))}{g_{n}^{2}(\zeta_{n})}\right)^{k}(-1)^{k}g_{n}^{k-2}(\zeta_{n}) + \sum_{1\leqslant i\leqslant k-2} A_{i}[g_{n}]g_{n}^{i-1}(\zeta_{n})\right]g_{n}(\zeta_{n}) \\ &\quad + A_{0}[g](\zeta_{0}). \end{split}$$

$$(2.4)$$

Since $\lim_{n\to\infty} g_n(\zeta_n) = \infty$, by (2.4) we get

$$\lim_{n \to \infty} \left[k! \left(-\frac{(g'_n(\zeta_n))}{g_n^2(\zeta_n)} \right)^k (-1)^k g_n^{k-2}(\zeta_n) + \sum_{1 \le i \le k-2} A_i[g_n] g_n^{i-1}(\zeta_n) \right] = 0.$$

45

Similarly, we have

$$\lim_{n \to \infty} \left[k! \left(-\frac{(g'_n(\zeta_n))}{g_n^2(\zeta_n)} \right)^k (-1)^k g_n^{k-3}(\zeta_n) + \sum_{2 \leqslant i \leqslant k-2} A_i[g_n] g_n^{i-2}(\zeta_n) \right] = 0.$$

Proceeding inductively, we obtain at last

$$\lim_{n\to\infty}\left[-\frac{g_n'(\zeta_n)}{g_n^2(\zeta_n)}\right]^k=0$$

It follows that $(1/g(\zeta))'|_{\zeta=\zeta_0} = 0$, so that ζ_0 is a multiple pole of $g(\zeta)$. Hence no poles of g are simple. This proves (b).

By Lemma 2, g is a rational function. By (a), (b) and Lemma 3, g is a constant, a contradiction. Thus $\{f_n\}$ is normal on D.

3. Proof of Theorem 1

We may assume that $D = \Delta$. We only need to show that \mathcal{F} is normal at a point z_0 , for each $z_0 \in \Delta$. Suppose that $h(z_0) \neq 0$. Then by Lemma 6, we get that \mathcal{F} is normal at z_0 .

We now prove that \mathcal{F} is normal at a point z_0 with $h(z_0) = 0$. Without loss of generality, we may assume that $z_0 = 0$. Making standard normalization, we may assume that

$$h(z) = z^m + a_{m+1}z^{m+1} + \dots = z^m b(z), \quad z \in \Delta,$$

 $m \ge 1$, b(0) = 1, and $h(z) \ne 0$ for 0 < |z| < 1.

We argue by contradiction. Choosing a sequence $\{f_n\}$ of \mathcal{F} and renumbering, we may assume that no subsequence of $\{f_n\}$ is normal at 0.

Let $\mathcal{H} = \{F_n: F_n(z) = \frac{f_n(z)}{z^m}\}$. We claim that $f_n(0) \neq 0$. Otherwise, we assume that $f_n(0) = 0$. Then, since all zeros of f_n have multiplicity at least k + 1, also $f_n^{(k)}(0) = 0 = h(0)$. By the value sharing assumption of the theorem this would imply $f_n(0) = a(0) \neq 0$, a contradiction. Hence $f_n(0) \neq 0$. Thus, $F_n(0) = \infty$. In fact, each F_n has a pole of order m at 0.

Suppose that we have shown that \mathcal{H} is normal at 0. Next, we prove that \mathcal{F} is normal at 0. Since \mathcal{H} is normal at z = 0, there exist $\Delta_{\delta} = \{z: |z| < \delta\}$ and a subsequence of $\{F_n(z)\}$ such that $\{F_n(z)\}$ converges uniformly to a meromorphic function F(z) or ∞ on Δ_{δ} . Noting that $F(0) = \infty$, we can find a $\varepsilon \in [0; \delta]$ and a positive constant M such that $|F(z)| \ge M$ for all $z \in \Delta_{\varepsilon}$. Therefore, for sufficiently large n, we obtain that $|F_n(z)| \ge \frac{M}{2}$. Thus $f_n(z) \ne 0$ for sufficiently large n and all $z \in \Delta_{\varepsilon}$. Therefore $\frac{1}{I_n}$ is analytic in Δ_{ε} . Thus, for sufficiently large n, we have

$$\left|\frac{1}{f_n(z)}\right| = \left|\frac{1}{F_n(z)}\frac{1}{|z|^m}\right| \leqslant \frac{2^m}{\varepsilon^m}\frac{2}{M}, \quad |z| = \frac{\varepsilon}{2}$$

By the Maximum Principle and Montel's theorem, \mathcal{F} is normal at z = 0.

$$\rho_n^{-\kappa} F_n(z_n + \rho_n \zeta) = g_n(\zeta) \to g(\zeta),$$

spherically uniformly on compact subsets of *C*, where $g(\zeta)$ is nonconstant meromorphic function on *C*, all of whose zeros have multiplicity at least k + 1.

We consider two cases.

Case 1. We may suppose that $\frac{Z_n}{\rho_n} \to \infty$. We have

$$f_n^{(k)}(z) = z^m F_n^{(k)}(z) + \sum_{l=1}^k \binom{k}{l} (z^m)^{(l)} F_n^{(k-l)}(z)$$

= $z^m F_n^{(k)}(z) + \sum_{l=1}^k c_l z^{m-l} F_n^{(k-l)}(z),$ (3.1)

where

$$c_{l} = \begin{cases} \binom{k}{l}m(m-1)\cdots(m-l+1), & l \leq m, \\ 0, & l > m. \end{cases}$$

Since $\rho_n^l g_n^{(k-l)}(\zeta) = F_n^{(k-l)}(z_n + \rho_n \zeta), \ l = 0, 1, ..., k$, we obtain

$$\frac{f_n^{(k)}(z_n + \rho_n \zeta)}{h(z_n + \rho_n \zeta)} = \left[g_n^{(k)}(\zeta) + \sum_{l=1}^k c_l \frac{g_n^{(k-l)}(\zeta)}{(\frac{z_n}{\rho_n} + \zeta)^l} \right] \frac{1}{b(z_n + \rho_n \zeta)}.$$
(3.2)

Now

$$\lim_{n \to \infty} \frac{c_l}{(\frac{z_n}{\rho_n} + \zeta)^l} = 0, \quad l = 1, 2, \dots, k,$$
(3.3)

and

$$\lim_{n \to \infty} \frac{1}{b(z_n + \rho_n \zeta)} = 1.$$
(3.4)

By (3.2), (3.3) and (3.4), we have

$$\frac{f_n^{(k)}(z_n+\rho_n\zeta)}{h(z_n+\rho_n\zeta)}\to g^{(k)}(\zeta),$$

uniformly on compact subsets of C disjoint from the poles of g.

We claim that

(i) $g^{(k)} \neq 1$; and

(ii) no poles of g are simple.

Suppose now that $g^{(k)}(\zeta_0) = 1$. We claim that $g^{(k)} \neq 1$. Otherwise, g must be a polynomial of exact degree k, which contradicts the fact that each zero of g has multiplicity at least k + 1. Since $g^{(k)}(\zeta_0) = 1$ but $g^{(k)} \neq 1$, there exist $\zeta_n, \zeta_n \to \zeta_0$, such that (for n sufficiently large) $f_n^{(k)}(z_n + \rho_n \zeta_n) = h(z_n + \rho_n \zeta_n)$. It follows that $f_n(z_n + \rho_n \zeta_n) = a(z_n + \rho_n \zeta_n)$, so that

$$g_n(\zeta_n) = \frac{f_n(z_n + \rho_n \zeta_n)}{\rho_n^k (z_n + \rho_n \zeta_n)^m} = \frac{a(z_n + \rho_n \zeta_n)}{\rho_n^k (z_n + \rho_n \zeta_n)^m}$$

Thus $g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = \infty$, which contradicts $g^{(k)}(\zeta_0) = 1$. This proves (i).

Next we prove (ii). Suppose $g(\zeta_0) = \infty$. There exists a closed disc $K = \{\zeta : |\zeta - \zeta_0| \le \delta\}$ on which 1/g and $1/g_n$ are holomorphic (for *n* sufficiently large) and $1/g_n \to 1/g$ uniformly. Hence, $\frac{1}{g_n(\zeta)} - \frac{\rho_n^k(z_n + \rho_n \zeta)^m}{a(z_n + \rho_n \zeta)} \to \frac{1}{g(\zeta)}$ uniformly on *K*; and since 1/g is nonconstant, there exist ζ_n , $\zeta_n \to \zeta_0$, such that (for *n* large enough)

$$\frac{1}{g_n(\zeta_n)} - \frac{\rho_n^k (z_n + \rho_n \zeta_n)^m}{a(z_n + \rho_n \zeta_n)} = 0.$$

Hence $f_n(z_n + \rho_n \zeta_n) = a(z_n + \rho_n \zeta_n)$. Thus we have

$$f_n^{(k)}(z_n + \rho_n \zeta_n) = h(z_n + \rho_n \zeta_n).$$
(3.5)

By (3.2) and (3.5) we can obtain

$$g_{n}^{(k)}(\zeta_{n}) = \left[\frac{f_{n}^{(k)}(z_{n}+\rho_{n}\zeta_{n})}{h(z_{n}+\rho_{n}\zeta_{n})}b(z_{n}+\rho_{n}\zeta_{n}) - \sum_{l=1}^{k}c_{l}\frac{g_{n}^{(k-l)}(\zeta_{n})}{(\frac{z_{n}}{\rho_{n}}+\zeta_{n})^{l}}\right] \to 1.$$
(3.6)

Using a similar fashion as Lemma 6, by (2.2), (2.3), (2.4) and (3.6), we can prove (ii).

By Lemma 2, g is a rational function. By (i), (ii) and Lemma 3, g is a constant, a contradiction. Thus $\{f_n\}$ is normal on D.

Case 2. So we may assume that $\frac{Z_n}{\rho_n} \rightarrow \alpha$, a finite complex number. We have

$$\frac{F_n(\rho_n\zeta)}{\rho_n^k} = \frac{F_n(z_n + \rho_n(\zeta - \frac{z_n}{\rho_n}))}{\rho_n^k} \to g(\zeta - \alpha),$$

the convergence being spherically uniform on compact sets of *C*. Clearly, all zeros of $g(\zeta - \alpha)$ have multiplicity at least k + 1, and the pole of $g(\zeta - \alpha)$ at $\zeta = 0$ has multiplicity at least *m*. Now

$$G_n(\zeta) = \frac{f_n(\rho_n \zeta)}{\rho_n^{m+k}} = \frac{F_n(\rho_n \zeta)}{\rho_n^k} \frac{(\rho_n \zeta)^m}{\rho_n^m} \to \zeta^m g(\zeta - \alpha) = G(\zeta),$$
(3.7)

uniformly on compact subsets of *C*. Since $g(\zeta - \alpha)$ has a pole of multiplicity at least *m* at $\zeta = 0$, $G(0) \neq 0$ and all zeros of $G(\zeta)$ have multiplicity at least k + 1.

We claim that

(iii) $G^{(k)}(\zeta) \neq \zeta^m, \zeta \in C;$

(iv) no poles of g are simple.

Indeed, suppose that $G^{(k)}(\zeta_0) = \zeta_0^m$. Then $G(\zeta)$ is holomorphic at ζ_0 , and

$$\frac{f_n^{(k)}(\rho_n\zeta) - h(\rho_n\zeta)}{\rho_n^m} = G_n^{(k)}(\zeta) - \frac{h(\rho_n\zeta)}{\rho_n^m} \to G^{(k)}(\zeta) - \zeta^m.$$

First we assume that $G^{(k)}(\zeta) \equiv \zeta^m$. Then *G* is a nonconstant polynomial. Therefore *G* has a zero ζ_0 . Since all zeros of *G* have multiplicity at least k + 1, we deduce $\zeta_0^m = G^{(k)}(\zeta_0) = 0$, hence $\zeta_0 = 0$. This contradicts $G(0) \neq 0$. Thus $G^{(k)}(\zeta) \neq \zeta^m$. Suppose that $G^{(k)}(\zeta_0) = \zeta_0^m$. By Hurwitz theorem, there exist $\zeta_n, \zeta_n \to \zeta_0$, such that (for *n* sufficiently large) $f_n^{(k)}(\rho_n\zeta_n) - h(\rho_n\zeta_n) = 0$. It follows that $f_n(\rho_n\zeta_n) = a(\rho_n\zeta_n)$. Thus $G(\zeta_0) = \lim_{n\to\infty} G_n(\zeta_n) = \infty$, which contradicts $G^{(k)}(\zeta_0) = \zeta_0^m$. This proves (iii).

Next we prove (iv). Suppose $G(\zeta_0) = \infty$. There exists a closed disc $K = \{\zeta : |\zeta - \zeta_0| \leq \delta\}$ on which 1/G and $1/G_n$ are holomorphic (for *n* sufficiently large) and $1/G_n \to 1/G$ uniformly. Hence, $\frac{1}{G_n(\zeta)} - \frac{\rho_n^{k+m}}{a(\rho_n\zeta)} \to \frac{1}{G(\zeta)}$ uniformly on *K*; and since 1/G is nonconstant, there exist $\zeta_n, \zeta_n \to \zeta_0$, such that (for *n* large enough)

$$\frac{1}{G_n(\zeta_n)} - \frac{\rho_n^{k+m}}{a(\rho_n\zeta_n)} = 0.$$

Hence $f_n(\rho_n \zeta_n) = a(\rho_n \zeta_n)$. Thus we have

$$f_n^{(k)}(\rho_n\zeta_n) = h(\rho_n\zeta_n)$$

By (3.7) we can obtain

$$G_{n}^{(k)}(\zeta_{n}) = \frac{f_{n}^{(k)}(\rho_{n}\zeta_{n})}{\rho_{n}^{m}} = \frac{h(\rho_{n}\zeta_{n})}{\rho_{n}^{m}} = b(\rho_{n}\zeta_{n})\zeta_{n}^{m} \to \zeta_{0}^{m}.$$
(3.8)

Using a similar fashion as Lemma 6, by (2.2), (2.3), (2.4) and (3.8), we can prove (iv).

Firstly, Lemma 2 implies that $G(\zeta)$ is rational.

Suppose that $m \ge 2$. It follows from Lemma 4 and (iv) that $G^{(k)}(\zeta) = \zeta^m$ has a solution in *C*. This contradicts with (iii). Thus by Lemma 5, we have m = 1 and

$$G(\zeta) = \frac{(\zeta + c)^{k+1}}{(k+1)!}, \quad c \neq 0.$$
(3.9)

It then follows from (3.7) and (3.9) that there exist points $\zeta_n \to -c$ such that $f_n(\rho_n \zeta_n) = 0$. In fact, $\rho_n \zeta_n$ are zeros of f_n of exact multiplicity k + 1.

We suppose that the functions f_n are all holomorphic in some fixed disc Δ_ρ . Recall that the sequence $\{f_n\}$ is not normal at 0; on the other hand, by Lemma 6, it is normal on Δ'_ρ , since $h(z) \neq 0$ there.

We claim that the sequence $\{f_n\}$ tends to ∞ locally uniformly on Δ'_{ρ} . In fact, since $\{f_n\}$ is normal on Δ'_{ρ} , $\{f_n\}$ is normal in $C_{\rho/2} = \{z: |z| = \rho/2\}$. Thus there exists a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}\}$ converges uniformly to a holomorphic function f(z) or ∞ on $C_{\rho/2}$.

If $f_{n_k}(z) \to f(z)$, then there exist an integer N and a positive number M such that

$$|f_{n_k}(z)| \leq M$$

for all $k \ge N$, $z \in C_{\rho/2}$. By the maximum modulus theorem, we have

$$|f_{n_k}(z)| \leq M$$

for all $k \ge N$, $|z| \le \rho/2$. Hence $\{f_{n_k}\}$ is normal in $\{z: |z| \le \rho/2\}$ by Montel's normality criterion (see [7]). This contradicts with our assumption. Hence $\{f_n\}$ tends to ∞ locally uniformly on Δ'_{ρ} .

Suppose first that there exists $0 < \delta < \rho$ such that each f_n has only the single zero $\xi_n = \rho_n \zeta_n$ in Δ_{δ} . Put

$$H_n(z) = \frac{f_n(z)}{(z - \xi_n)^{k+1}}.$$
(3.10)

Then $\{H_n\}$ is a sequence of nonvanishing holomorphic functions on Δ_{δ} and tending to ∞ locally uniformly on Δ'_{δ} . It follows that the sequence $\{1/H_n\}$ of holomorphic functions tends to 0 locally uniformly on Δ'_{δ} and hence, by the maximum principle, on Δ_{δ} . In particular, $H_n(2\rho_n\zeta_n) \rightarrow \infty$. But by (3.7), (3.9) and (3.10),

$$H_n(2\rho_n\zeta_n) = \frac{f_n(2\rho_n\zeta_n)}{(\rho_n\zeta_n)^{k+1}} = \frac{G_n(2\zeta_n)}{\zeta_n^{k+1}} \to \frac{G(-2c)}{(-c)^{k+1}} = \frac{1}{(k+1)!}$$

a contradiction. Thus, we may assume that for any $\delta > 0$, f_n has at least two distinct zeros in Δ_{δ} for n sufficiently large. Choose η_n such that $f_n(\eta_n) = 0$ and f_n has no zeros on $\{z: 0 < |z - \xi_n| < |\eta_n - \xi_n|\}$, then $\eta_n \to 0$. We claim that $\eta_n/\rho_n \to \infty$. Otherwise, taking a subsequence if necessary, from (3.7) and (3.9), we could deduce $\eta_n/\rho_n \to -c$. So G_n would have zeros of multiplicity at least k + 1 in ζ_n and η_n/ρ_n , and both sequences $\{\zeta_n\}$ and $\{\eta_n/\rho_n\}$ converge to -c which implies that G has a zero of multiplicity at least 2k + 2 in -c, a contradiction. Since $\eta_n/\rho_n \to \infty$, $\xi_n/\eta_n = \rho_n\zeta_n/\eta_n \to 0$. Put

$$K_n(z) = \frac{f_n((\eta_n - \xi_n)z)}{(\eta_n - \xi_n)^{k+1}}, \qquad \widetilde{h}_n(z) = \frac{h_n((\eta_n - \xi_n)z)}{\eta_n - \xi_n}$$

Then { K_n } is a sequence of functions holomorphic on each bounded set of *C* for large enough *n*, all of whose zeros have multiplicity at least k + 1. Similarly, the sequence of holomorphic functions { \tilde{h}_n } is defined for each $z \in C$ for *n* sufficiently large, and $\tilde{h}_n(z) \rightarrow z$ locally uniformly on *C*. Clearly,

$$K_n(z) = \frac{a((\eta_n - \xi_n)z)}{(\eta_n - \xi_n)^{k+1}} \quad \Leftrightarrow \quad K_n^{(k)}(z) = \widetilde{h}_n(z)$$

Hence, by Lemma 6, $\{K_n\}$ is normal on $C - \{0\}$. We claim that $\{K_n\}$ is also normal at 0. Indeed, otherwise $K_n \to \infty$ locally uniformly on $C - \{0\}$. But this is impossible, as $K_n(\eta_n/(\eta_n - \xi_n)) = 0$ and $\eta_n/(\eta_n - \xi_n) \to 1$. Thus $\{K_n\}$ is normal on C. Taking a subsequence and renumbering, we have $K_n \to K$ locally uniformly on C, for an entire function K, all of whose zeros have multiplicity at least k + 1. Suppose that $K^{(k)}(z) \equiv z$. Thus $K(z) = z^{k+1}/(k+1)!$. But $K_n(\eta_n/(\eta_n - \xi_n)) = 0$ and $\eta_n/(\eta_n - \xi_n) \to 1$, so that K(1) = 0, a contradiction. We claim that $K^{(k)} \neq z$. Otherwise, we may suppose that $K^{(k)}(z_0) = z_0$. By Hurwitz theorem, there exist z_n , $z_n \to z_0$, such that (for n sufficiently large) $K_n^{(k)}(z_n) - \tilde{h}_n(z_n) = 0$. It follows that $f_n((\eta_n - \xi_n)z_n) = a((\eta_n - \xi_n)z_n)$. Thus $K(z_0) = \lim_{n\to\infty} K_n(z_n) = \infty$, which contradicts $K^{(k)}(z_0) = z_0$. This proves $K^{(k)} \neq z$. But $K_n(\xi_n/(\eta_n - \xi_n)) = 0$ and $\xi_n/(\eta_n - \xi_n) \to 0$, so that K(0) = 0 and hence $K^{(k)}(0) = 0$, a contradiction. The contradiction shows that \mathcal{H} is normal at 0.

It remains to prove Theorem 1 in the general case, in which the functions f_n need not be holomorphic in any fixed disc about the origin. Thus, taking a subsequence if necessary, we may assume that for any $\delta > 0$, f_n has both a zero and a pole in Δ_{δ} for *n* sufficiently large. Choose ω_n such that $f_n(\omega_n) = \infty$ and f_n has no poles on $\{z: 0 < |z - \xi_n| < |\omega_n - \xi_n|\}$, then $\omega_n \to 0$. By (3.7) and (3.9), $\omega_n/\rho_n \to \infty$, so that $\xi_n/\omega_n = \rho_n \zeta_n/\omega_n \to 0$. Put

$$L_n(z) = \frac{f_n((\omega_n - \xi_n)z)}{(\omega_n - \xi_n)^{k+1}}, \qquad \widehat{h}_n(z) = \frac{h_n((\omega_n - \xi_n)z)}{\omega_n - \xi_n}.$$

Then {*L_n*} is a sequence of meromorphic functions for large enough *n*, all of whose zeros have multiplicity at least *k* + 1. Similarly, the sequence of holomorphic functions { \hat{h}_n } is defined for each $z \in C$ for *n* sufficiently large, and $\hat{h}_n(z) \rightarrow z$ locally uniformly on *C*. Clearly,

$$L_n(z) = \frac{a((\omega_n - \xi_n)z)}{(\omega_n - \xi_n)^{k+1}} \quad \Leftrightarrow \quad L_n^{(k)}(z) = \widehat{h}_n(z).$$

Hence, by Lemma 6, $\{L_n\}$ is normal on $C - \{0\}$. Since $\xi_n / \omega_n \to \infty$, the functions L_n are holomorphic on $\Delta_{1/2}$ for large n. Thus we may apply the fact (already proved) that Theorem 1 holds for functions holomorphic in a neighborhood of 0 to conclude that $\{L_n\}$ is normal on $\Delta_{1/2}$. Thus $\{L_n\}$ is normal on C. Taking a subsequence if necessary and renumbering, we have $L_n \to L$ locally uniformly on *C*, for a meromorphic function *L*, all of whose zeros have multiplicity at least k + 1. Suppose that $L^{(k)}(z) \equiv z$. Thus $L(z) = z^{k+1}/(k+1)!$. But $K_n(\omega_n/(\omega_n - \xi_n)) = \infty$ and $\omega_n/(\omega_n - \xi_n) \to 1$, so that $K(1) = \infty$, a contradiction. We claim that $L^{(k)} \neq z$. Otherwise, we may suppose that $L^{(k)}(z_0) = z_0$. By Hurwitz theorem, there exist z_n , $z_n \to z_0$, such that (for *n* sufficiently large) $L_n^{(k)}(z_n) - \hat{h}_n(z_n) = 0$. It follows that $f_n((\omega_n - \xi_n)z_n) = a((\omega_n - \xi_n)z_n)$. Thus $L(z_0) = \lim_{n\to\infty} L_n(z_n) = \infty$, which contradicts $L^{(k)}(z_0) = z_0$. This proves $L^{(k)} \neq z$. But $L_n(\xi_n/(\omega_n - \xi_n)) = 0$ and $\xi_n/(\omega_n - \xi_n) \to 0$, so that L(0) = 0 and hence $L^{(k)}(0) = 0$, a contradiction. The contradiction shows that \mathcal{H} is normal at 0. It then follows, exactly as before, that \mathcal{F} is normal at 0. This completes the proof of Theorem 1.

References

- [1] W. Schwick, Sharing values and normality, Arch. Math. 59 (1992) 50-54.
- [2] M. Fang, L. Zalcman, Normal families and shared values III, Comput. Methods Funct. Theory 2 (2002) 385-395.
- [3] X. Pang, L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000) 325-331.
- [4] X.C. Pang, D.G. Yang, L. Zalcman, Normal families of meromorphic functions whose derivatives omit a function, Comput. Methods Funct. Theory 2 (2002) 257–265.
- [5] Y. Wang, M. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica (N.S.) 14 (1998) 17-26.
- [6] C. Lei, M. Fang, D. Yang, X. Wang, Exceptional functions and normal families of meromorphic functions with multiple zeros, J. Math. Anal. Appl. 341 (2008) 224-234.
- [7] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [8] J. Schiff, Normal Families, Springer-Verlag, 1993.
- [9] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.
- [10] G.M. Zhang, X.C. Pang, L. Zalcman, Normal families and omitted functions II, Bull. London Math. Soc. 40 (2009).