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1. Introduction

Let D be a domain in the whole complex plane C and F a family of meromorphic functions defined in D. F is said
to be normal in D, in the sense of Montel, if each sequence {fy} C F has a subsequence {fy;} which converges spherically
locally uniformly in D, to a meromorphic function or oo (see Hayman [7], Schiff [8], Yang [9]).

Let f and g be meromorphic functions on a domain D, and let a and b be two complex numbers. If g(z) =b whenever
f(z) =a, we write

f@=a = g@=>
If f(z)=a= g(z)=b and g(z) =b = f(z) =a, we write
f@)=a & g@=b.

If f(z) =a < g(z) =a, we say that f and g share a on D.
Schwick [1] was the first to draw a connection between values shared by functions in F and the normality of the
family . Specifically, he proved the following theorem.

Theorem A. Let F be a family of meromorphic functions in a domain D, and let ay, az, as be three distinct complex numbers. If, for
each f € F, f and f’ share a1, az, as, then F is normal in D.

Fang and Zalcman [2] proved the following theorem.

Theorem B. Let F be a family of meromorphic functions in a domain D, let k be a positive integer, and let a, b be two nonzero complex
numbers. If, for each f e F, the zeros of f have multiplicity at least k + 1, and f =a < f® =b, then F is normal in D.

In this paper, we extend Theorem B as follows.
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Theorem 1. Let k (> 2) be a positive integer, let F be a family of meromorphic functions in a domain D, all of whose zeros have
multiplicity at least k+1, and let a(z) ( 0), h(z) ( 0) be two holomorphic functions on D.If foreach f € F, f = a(z) < f® =h(2),
then F is normal in D.

In [2], an example was given to shows that the condition in Theorem 1 that h(z) # 0 is necessary.

Example 1. Let m, k be positive integers; let D = {z: |z| < 1}; and let F = {f,}, where f,(z) =nz"t* a(z) = z2"t* h(z) = z™.
Clearly, F fails to be normal at the origin. However, all the zeros of f, have multiplicity k +m, and f, =a(z) & fék) =h(2)
on D. This shows that the condition in Theorem 1 that a(z) # 0 is necessary.

Remark. The proof of this result follows the general lines of the proof of the main result in [4], with important elaborations
based on the argument in the recent paper [10].
We write A ={z: |z| <1}, Ar={z: |z| <r}and A, ={z: 0 < |z| <T}.

2. Some lemmas
In order to prove our theorems, we require the following results.

Lemma 1. (See [3].) Let k be a positive integer, let F be a family of functions meromorphic on the unit disc A, all of whose zeros have
multiplicity at least k, and suppose that there exists A > 1 such that | f ®(z)| < A whenever f(z) = 0. Then if F is not normal at zo,
there exist, for each 0 < o <k,

(a) points z, € A, zy — zo;
(b) functions f, € F; and
(c) positive numbers p, — 0

such that p;* fa(zn + pn¢) = gn (&) — g(¢) locally uniformly with respect to the spherical metric, where g is a nonconstant mero-
morphic function on C, all of whose zeros have multiplicity at least k, such that g* (¢) < g% (0) = kA + 1. In particular, g has order at
most 2.

Lemma 2. (See [4].) Let g(z) be a transcendental meromorphic function of finite order on C, and let P(z) be a polynomial, P(z) 0.
Suppose that all zeros of g(z) have multiplicity at least k + 1. Then g®)(z) — P(z) has infinitely many zeros.

Lemma 3. (See [5].) Let m, k be two positive integers, and let Q (z) = az™ + Am_12™ 1 + - +ao + %, where ap, Gm-1, ...,dQ

are constants with am, # 0, and q(z) (2 0), p(z) are coprime polynomials with degq(z) < deg p(2). If Q ¥ (2) £ 1 for z € C, then
2
Q(z)=ﬁ+---+ao+m,

_ (CZ+d)"+1

arh where

where a # 0, and n is a positive integer. Additionally, if all zeros of Q (z) have multiplicity at least k + 1, then Q (2)
¢, d are constants with c # 0.

Lemma 4. (See [6].) Let m, k be two positive integers with m > 2, k > 2, and let Q (z) be a rational function, all of whose zeros have
multiplicity at least k + 1, and all of whose poles are multiple with the possible exception of z = 0. Then Q ¥)(z) = z™ has a solution
inC.

Lemma 5. (See [10].) Let Q (z) be a rational function, all of whose poles are multiple and whose zeros all have multiplicity at least
k+1.1fQ®(2) £ 2™, z € C for some integer m > 1, then either

(i) k=1or
N k+1
(i) m=1and 0 2 = G0k

for some nonzero constant c.

Lemma 6. Let k be a positive integer, let a,(z)(# 0) be holomorphic functions with {|a,(z)|} being locally uniformly bounded away
from 0, and let { f,} be a sequence of meromorphic functions in a domain D, all of whose zeros of f,, have multiplicity at least k + 1.
Let {hy(2)} be a sequence of functions holomorphic on D such that h, — h locally uniformly on D, where h(z) # 0 and # oo for z € D.

Suppose that for each n, fn, = an(z) & fn(k) = hy(2), then { f,} is normal on D.
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Proof. Suppose that {f,} is not normal at zp. We may assume that D = A and h(zp) = 1. By Lemma 1, after choosing
appropriate subsequences we may assume that there exist z;, — 2o, and p, — 0" such that

o7 fu (2 + onl) = gn(0) — £(2),

spherically uniformly on compact subsets of C, where g(¢) is a nonconstant meromorphic function on C, all of whose zeros
have multiplicity at least k+ 1 and g has order at most 2.
We claim that

(a) g® +£1; and
(b) no poles of g are simple.

Suppose now that g®(z9) = 1. We claim that g®) = 1. Otherwise, g must be a polynomial of exact degree k, which
contradicts the fact that each zero of g has multiplicity at least k + 1. Since g% (zg) = 1 = h(zg) but g®) = 1, there exist &,
Zn — o, such that (for n sufficiently large)

£ + Pntn) = 817 (Gn) = hn(zn + Pnn).
It follows that f;(zn + pnén) = an(zn + Pnén), So that
fa@n+ pndn)  an(zn + pnén)
ok pk

Thus g(Zo) = limp_, o0 81 (n) = 0o, which contradicts g (¢g) = 1. This proves (a).
Next we prove (b). Suppose g(¢p) = co. There exists a closed disc K ={¢: |¢ — ¢o| < &} on which 1/g and 1/g, are
k

&n(Gn) =

holomorphic (for n sufficiently large) and 1/g, — 1/g uniformly. Hence, % ~ e %
since 1/g is nonconstant, there exist ¢, ¢ — o, such that (for n large enough)

uniformly on K; and

1 oK —o
&n(¢n)  an(zn + Pnén) S
Hence f;(zn + onén) = an(zn + Pnén). Thus we have

g1(1k) (&) = n(k)(zn + Pnén) = hn(zn + Pndn). 21
If k=1, then we have by (2.1)
<L) _ 860 _ [_ g;(cn)] _o,
80 ) l=gy  &%C0) ool gl(cn)

so that ¢p is a multiple pole of g(¢). Thus no poles of g are simple.
Similarly, if k =2, then we have by (2.1)

<L)//
&)

A OB (O
=% g%(%0) g3(%0)
— lim [_g,’{@n) z[g,;(;n)]z]
oo g2 (¢n) 23 (Zn)

17" / 2
n—>00 g (Zn) n—>00  g5(¢n)
. g,;@n)T }
=2 lim {|— n(Cn) - 2.2
Hw{[ g (22)
Since limy_, o0 gn(¢n) = 00, by (2.2) we have

, 2
lim [— gg@")] =0.
n—>oo| - gy (&n)
Thus (1/g(¢)) |¢=¢, =0, so that ¢g is a multiple pole of g(¢). Hence no poles of g are simple.
If k > 3, mathematical induction shows that

(k) (k) "k )
<1> =—”u—2+k'(”) + Y Al (2.3)

Tk
u u
0<i<k—2

where A;[u] is a polynomial of (1/u)’, (1/u)”, ..., (1/u)*=V for each u meromorphic in D.
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Thus by (2.1) and (2.3),

() |l
— = 11m
g0)) g oo\

&=l

r (k) ’ k .
= lim (n) k! (‘i’ffn)) + Z Ai[gn]g;](fn)]
n=oo| g2 (n)  ogick—2
k
— fim | (i'ff“” Y Adg) gn(;w}
L ) ogick—2
r / k X
~ lim (g,gff”)) > Ai[gnJg:,(cn>}+Ao[g](;o>
L ) ik
_ , k ,
= lim k!(—(g’;@"))> Dfg @+ Y Af[gn]gﬁ,‘l(cn)]gn(zn)
L 7 (¢n) 1<ig<k—2
+ Aolgl (%) (2.4)

Since limy_, o0 gn(&n) = 00, by (2.4) we get

lim k!( (g"@”)))( DEg @+ Y Ailgalg (fn 1=o.

n=oof g (¢n) 1<ick—2

Similarly, we have

- 'k!(_ Gl

n—oo

)( D@+ Y. Ailgnlg (;n) =0.

&n(&n) 2<ick—2
Proceeding inductively, we obtain at last

’ k
lim _g;({n):| _
n—oo| gy (¢n)

It follows that (1/g(¢))

|§:§0: 0, so that ¢ is a multiple pole of g(¢). Hence no poles of g are simple. This proves (b). O

By Lemma 2, g is a rational function. By (a), (b) and Lemma 3, g is a constant, a contradiction. Thus { f,} is normal on D.
3. Proof of Theorem 1

We may assume that D = A. We only need to show that F is normal at a point zg, for each zg € A. Suppose that
h(zp) #0. Then by Lemma 6, we get that F is normal at zg.

We now prove that F is normal at a point zg with h(zg) = 0. Without loss of generality, we may assume that zo = 0.
Making standard normalization, we may assume that

h(z) =2™ 4+ am1 2™ + - =2"b(2), zeA,

m>1,b0)=1,and h(z) #0 for 0 < |z| < 1.

We argue by contradiction. Choosing a sequence {f,} of 7 and renumbering, we may assume that no subsequence of
{fn} is normal at 0.

Let H = {Fn: Fn(2) = f"(z)} We claim that f;(0) # 0. Otherwise, we assume that f;;(0) = 0. Then, since all zeros of f;,
have multiplicity at least k + 1, also fnk) (0) =0 =h(0). By the value sharing assumption of the theorem this would imply
fn(0) =a(0) #0, a contradiction. Hence f;(0) # 0. Thus, F,(0) = oco. In fact, each F, has a pole of order m at 0.

Suppose that we have shown that H is normal at 0. Next, we prove that F is normal at 0. Since H is normal at z=0,
there exist As ={z: |z| < 4} and a subsequence of {F,(z)} such that {F,(z)} converges uniformly to a meromorphic function
F(z) or oo on Ag. Noting that F(0) = oo, we can find a € € [0; §] and a positive constant M such that |F(z)| > M for all
z € Ag. Therefore, for sufficiently large n, we obtain that |F,(z)| > % Thus fr(z) # 0 for sufficiently large n and all z € Aq.
Therefore ﬁ is analytic in Ag. Thus, for sufficiently large n, we have

] J—
i@ |

By the Maximum Principle and Montel’s theorem, F is normal at z=0.

1 1

o 2m 2 e
Fn(2) |2I™

SemM’ 2"
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We now turn to prove H is normal at 0. Suppose not. By Lemma 1, after choosing appropriate subsequences we may
assume that there exist z, — 0, and o, — 0% such that

P ¥ Fn(zn + pnl) = 8(2) — 8(0),

spherically uniformly on compact subsets of C, where g(¢) is nonconstant meromorphic function on C, all of whose zeros
have multiplicity at least k + 1.
We consider two cases.

Case 1. We may suppose that % — 00. We have

k
® o _ mp K\ O o
f(z) = 2"Fy <z)+§(,)(z ) Fa @

k

="FP @)+ Y a"E D @), (31)
=1
where
= { (l;)m(m—])...(m_H_]), I<m,
0, I >m.

Since p,ﬁgﬁkfl) @)= F,gkil) (zn 4+ pnt), 1=0,1,...,k, we obtain

(k) k (k=I)
n (Zn + pPnt) [ 1) &n (;)i| 1
o =g + z . 3.2
hant o) | Ot L E o b 52
Now
o]

lim —=0, [=1,2,...,k, 3.3
n=oo (2 4+ ¢)f 63

and

lim —— =1.
n—00 b(zn + Pn¢)
By (3.2), (3.3) and (3.4), we have
fn(k)(zn + Pn)
h(zn + pn?)

uniformly on compact subsets of C disjoint from the poles of g.
We claim that

- g® ),

(i) g® +£1; and
(ii) no poles of g are simple.

Suppose now that g®)(z) = 1. We claim that g® = 1. Otherwise, g must be a polynomial of exact degree k, which
contradicts the fact that each zero of g has multiplicity at least k+ 1. Since g® (z9) =1 but g® = 1, there exist &s, & — o,
such that (for n sufficiently large) ,1(") (zn + Pn&n) = h(zn + pnln). It follows that fr(zn + pnin) = a(zy + Pnin), so that

Jn(@Zn + pntn) a(zn + Pn&n)
&n(Gn) = X = & o
Pn(Zn + Pntn) Pn(Zn + Pntn)
Thus g(Zo) = limp_ o0 gn(Zn) = 0o, which contradicts g® (¢9) = 1. This proves (i).
Next we prove (ii). Suppose g(¢p) = co. There exists a closed disc K = {¢: |¢ — ¢o| < &} on which 1/g and 1/g, are

holomorphic (for n sufficiently large) and 1/g, — 1/g uniformly. Hence, —— — Dh Gt - L
p y latg &n & Y- CT@ T aGatmd . E©

since 1/g is nonconstant, there exist ¢,, &, — o, such that (for n large enough)

uniformly on K; and

1 p;’f(zn + onCa)™

&n(&n) a(zn + Pnln)
Hence f(zn + onén) = a(zn + Pn&n). Thus we have

n(k)(zn + Pn&n) = h(zn + Pnln). (3.5)
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By (3.2) and (3.5) we can obtain

k

(k) (k—1)
(k) _ fa @n+ pPntn) b _ g (&) ] 1 36
& (&)= [—h(zn ¥ ontn) (zZn + Pnn) IE:] o] —(;_: o) — 1. (3.6)

Using a similar fashion as Lemma 6, by (2.2), (2.3), (2.4) and (3.6), we can prove (ii).
By Lemma 2, g is a rational function. By (i), (ii) and Lemma 3, g is a constant, a contradiction. Thus {f;} is normal on D.

Case 2. So we may assume that % — «, a finite complex number. We have

Falong)  Fn(zn+pn(C = 22)
nfns) — — - g —w),
Pn Pn
the convergence being spherically uniform on compact sets of C. Clearly, all zeros of g(¢ — «) have multiplicity at least
k+ 1, and the pole of g(¢ — ) at ¢ =0 has multiplicity at least m. Now
fa(pnd)  Fa(png) (o)™

Gn®) = i =~ ST — @) =6, (3.7)

uniformly on compact subsets of C. Since g(¢ — «) has a pole of multiplicity at least m at ¢ =0, G(0) # 0 and all zeros of
G(¢) have multiplicity at least k + 1.
We claim that

(iii) GV () #¢™, ¢ eC;
(iv) no poles of g are simple.

Indeed, suppose that G® (o) = ¢§'- Then G(¢) is holomorphic at o, and

£ (ong) = h(pnd)

¢W ) —¢m.
o -G ¢

h(ont)
=G @) - =
Pn
First we assume that G®(z) = ¢™. Then G is a nonconstant polynomial. Therefore G has a zero ¢p. Since all ze-
ros of G have multiplicity at least k 4+ 1, we deduce ¢J' = G(k)(go) =0, hence ¢p = 0. This contradicts G(0) # 0. Thus
G® () £ ¢™. Suppose that G®(z9) = ¢™. By Hurwitz theorem, there exist &, & — &o, such that (for n sufficiently large)
0
,,(k)(,ongn) — h(pntn) = 0. It follows that fr(on¢n) = a(pnln). Thus G(Zo) = limp— oo Gn(¢n) = oo, which contradicts
G® (g9) = ¢ This proves (iii).
Next we prove (iv). Suppose G(gp) = oo. There exists a closed disc K = {¢: |¢ — ¢o| < &} on which 1/G and 1/G, are
k+m

holomorphic (for n sufficiently large) and 1/G, — 1/G uniformly. Hence, ﬁ — a’?;)—n;) — %;)

1/G is nonconstant, there exist ¢, ¢ — o, such that (for n large enough)

uniformly on K; and since

1 o™
Gn(Gn)  a(pntn)
Hence f(on&n) = a(onén). Thus we have

fr(tk) (on&n) = h(on&n).
By (3.7) we can obtain

(k)
G gy = I 060 _ BORG) o yem  gm. (38)
Pn Pn
Using a similar fashion as Lemma 6, by (2.2), (2.3), (2.4) and (3.8), we can prove (iv).
Firstly, Lemma 2 implies that G(¢) is rational.
Suppose that m > 2. It follows from Lemma 4 and (iv) that G® (¢) = ¢™ has a solution in C. This contradicts with (iii).
Thus by Lemma 5, we have m =1 and

(¢ + ot
(k+1)!
It then follows from (3.7) and (3.9) that there exist points ¢, — —c such that f,(on¢n) = 0. In fact, p¢, are zeros of f, of

exact multiplicity k + 1.
We suppose that the functions f,, are all holomorphic in some fixed disc A,. Recall that the sequence {fy} is not normal
at 0; on the other hand, by Lemma 6, it is normal on A’, since h(z) # 0 there.

G() = , c#0. (3.9)
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We claim that the sequence {f,} tends to oo locally uniformly on A;). In fact, since {f;} is normal on A’, {f;} is normal
in Cp2 ={z: |z| = p/2}. Thus there exists a subsequence {fp,} such that {f,} converges uniformly to a holomorphic
function f(z) or oo on Cp 2.

If fu,(2) = f(2), then there exist an integer N and a positive number M such that

| fo (@] <M

for all k> N, z € Cp/2. By the maximum modulus theorem, we have

|fn @] <M

for all k> N, |z| < p/2. Hence {f,} is normal in {z: |z| < p/2} by Montel's normality criterion (see [7]). This contradicts
with our assumption. Hence {f,} tends to oo locally uniformly on A;].
Suppose first that there exists 0 < § < p such that each f,; has only the single zero &, = p, ¢, in As. Put

fn(2)
(z— &)k’

Then {H,} is a sequence of nonvanishing holomorphic functions on A;s and tending to oo locally uniformly on Af. It
follows that the sequence {1/H,} of holomorphic functions tends to 0 locally uniformly on A} and hence, by the maximum
principle, on Ajs. In particular, H,(20,¢n) — o0. But by (3.7), (3.9) and (3.10),

fnQRpntn)  Gn(28n) G(—=20) 1
Hp(2 = = - i
NGO = T T (SR kD)
a contradiction. Thus, we may assume that for any § > 0, f, has at least two distinct zeros in A for n sufficiently large.
Choose n, such that f;(17,) =0 and f, has no zeros on {z: 0 < |z—&,| < |y —&gl}, then n, — 0. We claim that 5, /0, — oc.
Otherwise, taking a subsequence if necessary, from (3.7) and (3.9), we could deduce n,/pn — —c. So G, would have zeros
of multiplicity at least k+ 1 in ¢, and n,/pn, and both sequences {¢,} and {n,/pn} converge to —c which implies that G
has a zero of multiplicity at least 2k + 2 in —c, a contradiction. Since 1,/pn — 00, &/Nn = Pnln/Mn — 0. Put

fn((n — &0)2) >~ ha((n — &n)2)
_ hp(z2) = —————.
(M — En)kH1 @ N — &n

Then {Kp,} is a sequence of functions holomorphic on each bounded set of C for large enough n, all of whose zeros have
multiplicity at least k + 1. Similarly, the sequence of holomorphic functions {h,} is defined for each z € C for n sufficiently
large, and h;(z) — z locally uniformly on C. Clearly,

a((Mn — &n)2)
(1 — &)k H1

Hence, by Lemma 6, {K} is normal on C — {0}. We claim that {K,} is also normal at 0. Indeed, otherwise K, — oo locally
uniformly on C — {0}. But this is impossible, as K,(7,/(nn — &) =0 and n,/(nn — &) — 1. Thus {K,} is normal on C.
Taking a subsequence and renumbering, we have K, — K locally uniformly on C, for an entire function K, all of whose
zeros have multiplicity at least k + 1. Suppose that K®(z) = z. Thus K(z) = z"“/(k + 1. But K;(nn/(nn — &r)) =0 and
Nn/ (M — &) — 1, so that K(1) =0, a contradiction. We claim that K® = z. Otherwise, we may suppose that K ® (zg) = z,.
By Hurwitz theorem, there exist z,, z; — zp, such that (for n sufficiently large) K,gk)(zn) — En(zn) = 0. It follows that
Fa((n — E)zn) = a((n — &n)zn). Thus K(z9) = limy_, oo Kn(zn) = 0o, which contradicts K® (zo) = zo. This proves K® =+ z.
But Ky (&:/(n — &) =0 and &,/(1jn — &) — 0, so that K(0) = 0 and hence K® (0) =0, a contradiction. The contradiction
shows that H is normal at O.

It remains to prove Theorem 1 in the general case, in which the functions f; need not be holomorphic in any fixed disc
about the origin. Thus, taking a subsequence if necessary, we may assume that for any § > 0, f; has both a zero and a pole
in As for n sufficiently large. Choose w, such that f,(w,) =00 and f; has no poles on {z: 0 < |z — &| < |wy — &}, then
wp — 0. By (3.7) and (3.9), wn/pn — o0, so that &,/wn = pn&n/wn — 0. Put

fal(wn —&n)2) ’E ha((wn — &n)2)
(on — EkFT (@) =——"—.
(wn — &n) wn —&n

Then {L,} is a sequence of meromorphic functions for large enough n, all of whose zeros have multiplicity at least k + 1.
Similarly, the sequence of holomorphic functions {h,} is defined for each z € C for n sufficiently large, and h,(z) — z locally
uniformly on C. Clearly,
a((wn — én)2)
(wn — En)k+1
Hence, by Lemma 6, {L,} is normal on C — {0}. Since &;/w, — oo, the functions L, are holomorphic on Aj/; for large n.

Thus we may apply the fact (already proved) that Theorem 1 holds for functions holomorphic in a neighborhood of 0 to
conclude that {L,} is normal on A1;. Thus {L,} is normal on C. Taking a subsequence if necessary and renumbering, we

Hn(2) = (3.10)

Kn(2) =

Kn(2) = o kW) =h).

Ln(2) =

Ln(2) = o W@ =h@.
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have L, — L locally uniformly on C, for a meromorphic function L, all of whose zeros have multiplicity at least k + 1.
Suppose that L® (z) = z. Thus L(z) = Zt1/(k + 1)\. But Ky(wn/(wn — &) = oo and wy/(wp — &) — 1, so that K(1) = oo,
a contradiction. We claim that L® = z. Otherwise, we may suppose that L% (z9) = zo. By Hurwitz theorem, there exist z;,
Zn — 2o, such that (for n sufficiently large) L,ﬁk) (zn) —ﬁn (zp) = 0. It follows that f((wn —&n)zn) = a((wn —&n)zn). Thus L(zg) =
limy—s 00 Ln (2) = 0o, which contradicts L®) (zg) = zo. This proves L® = z. But Ly (&n/(wn — &) =0 and &,/ (wn — &) — 0, so
that L(0) =0 and hence L® (0) =0, a contradiction. The contradiction shows that  is normal at 0. It then follows, exactly
as before, that F is normal at 0. This completes the proof of Theorem 1.
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