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Abstract

Using best interpolation function based on a given function information, we present a best quadrature rule of function on Sobolev
class KWr [−1, 1] with Chebyshev weight. The given function information means that the values of a function f ∈ KWr [−1, 1]
and its derivatives up to r − 1 order at a set of nodes x are given. Error bounds are obtained, and the method is illustrated by some
examples.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the integral

I�(f ) =
∫ 1

−1
�(t)f (t) dt .

To approximate I�(f ), Gauss quadrature formula is often preferred. Let �1, . . . , �n be zeros of the nth orthogonal
polynomial with respect to the weight function �(t) (Gaussian nodes for brevity), then there exist weights �1, . . . , �n

such that the numerical quadrature of the type

∫ 1

−1
�(t)f (t) dt =

n∑
i=1

�if (�i ) + Rn(f )

is exact for f ∈ P2n−1 (PN is the set of polynomials of degree at most N ), i.e., the remainder term Rn(f ) = 0 for all
f ∈ P2n−1.
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Furthermore, besides the values of function f, its derivative values are known. The quadrature formula of the following
form

∫ 1

−1
�(t)f (t) dt�

n∑
i=1

2s∑
j=0

�ij f
(j)(�i ) (1.1)

is more suitable, which is called Gauss–Turán quadrature formula and is exact for all f ∈ P2(s+1)n−1. Especially when
s = 0, the corresponding Gauss–Turán quadrature formula is the classical Gauss quadrature formula.

It was more than 100 years after Gauss published his famous method of approximate integration that there appeared
the idea of numerical quadrature rules involving multiple nodes. Gauss–Turán formulas, or quadrature formulas with
the highest degree of algebraic precision with multiple nodes, have extensively been studied in the last decades from
both an algebraic and numerical point of view. Numerically stable methods for constructing nodes �i and coefficients
�ij can be found in [7,12]. For more details on Gauss–Turán quadratures and corresponding orthogonal polynomials,
see the book [3]. Some interesting results concerning L1 and L∞-error bounds of formula (1.1) with generalized
Chebyshev weight functions, and for analytic integrands, have been given recently in [5,6,8].

Let �(t) = (1 − t2)−1/2, then �1, . . . , �n are the zeros of the nth-degree Chebyshev polynomial of the first kind
Tn(t), i.e., �i = cos((2i − 1)�/2n), i = 1, . . . , n. The explicit formula for �ij attracts many scholars to investigate. For
related work, see [1,4,11,22] and references cited therein. Moreover, there is no quadrature using a linear combination
of values of f and its derivatives such that (1.1) holds for all polynomials of degree 2(s + 1)n.

Now, suppose we only know the values of f and its derivatives at a set of nodes x = (x1, x2, . . . , xn) ∈ Rn,
not all values are needed. These available values are usually obtained from scientific and engineering computing
terminal and are thus expensively priced, therefore, any disuse of them is not economic or judicious. That is to
say, we may not have freedom to choose the quadrature nodes and it is difficult to obtain the values of f at any
other nodes except x. Gauss–Turán quadrature formula seems to be not suitable for such problems, since the nodes
x1, . . . , xn do not always coincide with Gaussian nodes �1, . . . , �n. In this paper, we obtain a method to solve such
problems.

In order to state our results, here and henceforth we assume that x be a fixed set of nodes in [−1, 1]:
−1 = x0 �x1 < x2 < · · · < xn �xn+1 = 1.

For any natural number r and any positive number K, denote by KWr [−1, 1] the Sobolev class consisting of every
function whose (r − 1)st derivative f (r−1) is absolutely continuous on the interval [−1, 1] and its rth derivative f (r)

satisfies

|f (r)(t)|�K a.e. t ∈ [−1, 1].
For any f ∈ KWr [−1, 1], the following r × n matrix

Hr
x(f ) := (f (j)(xi))r×n, i = 1, 2, . . . , n, j = 0, 1, . . . , r − 1

defines a Lagrange–Hermite (Hermite for brevity) information operator Hr
x: KWr [−1, 1] → Rr×n at x and H1

x is
just the Lagrange information operator. If there is a single node, i.e., x = (�), we shall write Hr

� instead of Hr
(�).

Suppose that the given Hermite information Hx(f ) of a function f ∈ KWr [−1, 1] at x is obtained expensively. It
is also difficult to obtain the information of f at any other nodes. In view of this, the classical best quadrature formula in
the sense of Sard [10] and of Nikolskii [9] seems to be not very suitable. To solve such problem, Wang and Mi [14] first
proposed a definition for the best quadrature based on the given information. Some relations for these three quadrature
formulae have been addressed in [2].

Any quadrature formula Q for approximating the integration I�(f ), f ∈ KWr [−1, 1], can be viewed as a functional
(not necessarily linear) acting on Hx(KWr [−1, 1]). Its error bound is defined by

E(Hr
x(f ); Q) := max

f̄ ∈KWr [a,b]
Hr

x(f̄ )=Hr
x(f )

|I�(f̄ ) − Q(Hr
x(f ))|.
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Definition 1.1. Of all quadrature formulae based on the informationHr
x(f ) ∈ Hr

x(KWr [−1, 1]), the one Q∗(Hr
x(f ))

which minimizes the error bound

E(Hr
x(f ); Q∗) = min

Q
E(Hr

x(f ); Q) =: R(Hr
x(f ))

is said to be the best quadrature formula (if it exists) based on the given information Hr
x(f ) for the integration I�(f ).

Correspondingly, the error bound R(Hr
x(f )) is called the radius of the Hermite information Hr

x(f ) for the integration
I�(f ).

Wang and Mi [14] recently proposed a best quadrature formula based on the given Hermite information H2
x(f )

on KW 2[a, b]. In [16], Wang and Yang extend the approaches of [14] to rth Sobolev class KWr [a, b] based on the
information Hr

x(f ). We followed the thoughts of [14] and [16,18–20] to present a best quadrature formula with a
piecewise weight function on KWr [a, b], see [21]. For related materials, see also [13]. Best quadrature formulas given
by [13,14,16,21] are shown to be realized by a nonlinear functional for r �2, while in the best quadrature formula of
Sard and Nikolskii or Gauss rule is linear.

In this paper, we develop a best quadrature formula based on the given information Hr
x(f ) with the Chebyshev

weight functions of the first kind and the second kind on Sobolev class KWr [−1, 1]. Section 2 contains some auxiliary
lemmas. We give the method to obtain the best quadrature formula and the error bound in Section 3. In Section 4, some
numerical experiments which compared our method with Gauss–Turán quadrature are presented.

2. Auxiliary lemmas

In this paper, we suppose e = ±1, Wr := 1Wr [0, 1].
First, it can be straightforwardly shown [16] that the following two lemmas are concerned with the perfect spline

interpolation problem and the extremal properties of the perfect spline interpolation by an elementary analysis and zero
counting argument.

Lemma 2.1. For any � ∈ [0, 1], suppose that Hr
�(�) ∈ Hr

�(W
r) is given. Setting

Pe,r (t) := Pe,r (t; �, �) =
r−1∑
j=0

�(j)(�)

j ! (t − �)j + e

r! |t − �|r , (2.1)

we have

Hr
�(Pe,r ) = Hr

�(�), i.e., P
(j)
e,r (�) = �(j)(�), j = 0, 1, . . . , r − 1,

and

P−,r (t)��(t)�P+,r (t), t ∈ [0, 1]. (2.2)

Lemma 2.2. Suppose that the information Hr
(0,1)(�) ∈ Hr

(0,1)(W
r) is given. Let the perfect spline of degree r defined

by

Se,r (t; �) =
r−1∑
j=0

�(j)(1)

j ! (t − 1)j + e

r!

{
(1 − t)r − 2

r∑
i=1

(−1)i(t − �e,i )
r−

}
(2.3)

satisfy

0��e,1 ��e,2 � · · · ��e,r �1,

S
(j)
e,r (0) = �(j)(0), j = 0, 1, . . . , r − 1.
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Then we have

r∑
i=1

(−1)r−i�j
e,i = pe,j , j = 1, . . . , r , (2.4)

and

S−,r (t)��(t)�S+,r (t), t ∈ [0, 1], (2.5)

where

pe,j = 1
2 (1 − e(−1)rj !�(r−j)[0, 1j ]). (2.6)

Here, as usual, we have put

ur− =
{

0 if u�0,

ur if u < 0,

and �[0, 1j ] denotes the divided differences of the function � at the points 0, 1, where 1 is repeated j times. �(r−j) is
the (r − j)th derivative of � and �[0, 1j ] is equivalent to

�[0, 1j ] = (−1)j

⎛
⎝�(0) −

j−1∑
l=0

(−1)l
�(l)(1)

l!

⎞
⎠ .

Therefore, we can construct the best interpolation formula from the perfect spline, which are defined in the form
of (2.1) and (2.3). However, this needs to solve the nonlinear equations (2.4) (if r �2). For r > 4, it involves solv-
ing two algebraic equations, one of which is of degree at least three, therefore, explicit solutions are not avail-
able for r > 4. For details, see [15–17,19]. Here, we list the solutions of (2.4) when r �4 in the following three
lemmas.

Lemma 2.3. Let the Hermite information H2
(0,1)(�) ∈ H2

(0,1)(W
2), and pe,j be defined by (2.6). Then we have

�e,1 = 1

2

(
pe,2

pe,1
− pe,1

)
, �e,2 = 1

2

(
pe,2

pe,1
+ pe,1

)
. (2.7)

Lemma 2.4. Let Hermite information H3
(0,1)(�) ∈ H3

(0,1)(W
3) and pe,j be defined by (2.6). Then we have

�e,1 = 1
2 (pe,1 + ae,3 −

√
(pe,1 − ae,3)

2 + 2(pe,2 − p2
e,1)),

�e,2 = ae,3,

�e,3 = 1
2 (pe,1 + ae,3 +

√
(pe,1 − ae,3)

2 + 2(pe,2 − p2
e,1)),

where

ae,3 := p3
e,1 − 3pe,1pe,2 + 2pe,3

3(pe,2 − p2
e,1)

. (2.8)
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Lemma 2.5. Let Hermite information H4
(0,1)(�) ∈ H4

(0,1)(W
4) and pe,j be defined by (2.6). Then we have

�e,1 = 1
2 (ae,4 −

√
a2
e,4 − 4ae,4),

�e,2 = 1
2 (pe,1 + ae,4 −

√
(pe,1 − ae,4)

2 − 2(p2
e,1 − pe,2 + 2ae,4)),

�e,3 = 1
2 (ae,4 +

√
a2
e,4 − 4ae,4),

�e,4 = 1
2 (pe,1 + ae,4 +

√
(pe,1 − ae,4)

2 − 2(p2
e,1 − pe,2 + 2ae,4)),

where

ae,4 := 1

2(p4
e,1 + 3p2

e,2 − 4pe,1pe,3)
(−p5

e,1 + 2p3
e,1pe,2 + 4p2

e,1pe,3 + 4pe,2pe,3 − 3pe,1(p
2
e,2 + 2pe,4)),

ae,4 := 1

12(p4
e,1 + 3p2

e,2 − 4pe,1pe,3)
(p6

e,1 − 3p4
e,1pe,2 + 9p3

e,2 − 8p3
e,1pe,3

− 24pe,1pe,2pe,3 + 16p2
e,3 − 18pe,2pe,4 + 9p2

e,1(p
2
e,2 + 2pe,4)).

Remark 2.1. If pe,1 = 1
2 (1 − e�′[0, 1]) = 0 in Lemma 2.3, then

∫ 1

0
(e − �′′(t)) dt = e − �′[0, 1] = 0,

implying �′′(t)=e a.e. since e−�′′(t) keeps constant sign a.e. over [0, 1], thus leading to a degenerate case, and in this
case, �(t) is indeed a polynomial of degree two. For the case of statement, we tacitly assume without loss of generality
that �′[0, 1] �= e so that the solution in (2.7) is unambiguous. Similarly, in (2.8) pe,2 − p2

e,1 = 0 is equivalent to

�e,1 =�e,2 =�e,3 =pe,1 and it also leads to a degenerate case. Therefore, the assumption pe,2 −p2
e,1 �= 0 is reasonable,

and the same applies to p4
e,1 + 3p2

e,2 − 4pe,1pe,3 �= 0.

3. Quadrature rule

In this section, we deal with the best quadrature formula following from the best interpolation formula. From Lemmas
2.1 and 2.2, we easily have the following theorem (see [16,18,20]). For r = 2, it can be found in [14].

Theorem 3.1. For the given Hermite information Hr
x(f ) ∈ Hx(KWr [−1, 1]), there exists �e,r ∈ KWr [−1, 1] such

that

Hr
x(�−,r ) = Hr

x(�+,r ) = Hr
x(f )

and

�−,r (t)�f (t)��+,r (t), ∀t ∈ [−1, 1]. (3.1)
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Here

�e,r (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r−1∑
j=0

f (j)(x1)

j ! (t − x1)
j + Ke

r! (x1 − t)r , −1� t �x1,

r−1∑
j=0

f (j)(xi+1)

j ! (t − xi+1)
j + Ke

r!(
(xi+1 − t)r − 2

r∑
	=1

(−1)	(t − xi − �xi�e,i,	)
r−
)

, xi � t �xi+1,

i = 1, 2, . . . , n − 1,

r−1∑
j=0

f (j)(xn)

j ! (t − xn)
j + Ke

r! (t − xn)
r , xn � t �1,

and �e,i,	 satisfies

r∑
	=1

(−1)r−	�j
e,i,	 = pe,i,j , j = 1, 2, . . . , r , (3.2)

where �xi = xi+1 − xi , and

pe,i,j = 1

2

(
1 − e(−1)rj !f

(r−j)[xi, x
j
i+1]

K

)
.

Proof. First, we divide the interval [−1, 1] into n+1 subintervals [xi, xi+1] (i =0, 1, . . . , n). Then we transform each
subinterval into [0, 1] and use the perfect spline by Lemmas 2.1 and 2.2.

Setting

�i (t) = 1

K �xr
i

f (xi + �xit), i = 0, 1, . . . , n, (3.3)

we have �i ∈ Wr and Hr
(xi ,xi+1)

(f ) =Hr
(0,1)(�i ). To construct the expression of �e,r in the subintervals [x0, x1] and

[xn, xn+1], we replace � by 1 and 0 in Lemma 2.1, respectively.
Furthermore, for any 1� i�n − 1, let �e,i,1, �e,i,2, . . . , �e,i,r satisfy (2.4) with respect to �i and pe,i,j , i.e., they

satisfy

r∑
	=1

(−1)(r−	)�j
e,i,	 = pe,i,j = 1

2 (1 − e(−1)rj !�(r−j)
i [0, 1j ]),

i = 1, 2, . . . , n − 1, j = 1, 2, . . . , r . (3.4)

The following two equalities are easy to check:

�(r−j)
i [0, 1j ] = (−1)j

⎛
⎝�(r−j)

i (0) −
j−1∑
l=0

(−1)l
�(r−j+l)

i (1)

l!

⎞
⎠ ,

f (r−j)[xi, x
j
i+1] = (−�xi)

−j

⎛
⎝f (r−j)(xi) −

j−1∑
l=0

(−�xi)
l f

(r−j+l)(xi+1)

l!

⎞
⎠ .

These together with (3.3) and (3.4) successively give (3.2). The expression of �e,r in the subintervals [xi, xi+1] (i =
1, 2, . . . , n − 1) follows from Lemmas 2.2 and (3.3) directly. The proof is completed. �
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Actually, Theorem 3.1 provides the best interpolation formula at a point t ∈ [−1, 1] based on the given information
Hr

x(f ), and it is unique. Indeed, we have (see [15,16,18,20]):

Theorem 3.2. If Hr
x(f ) ∈ Hr

x(KWr [−1, 1]), then

i∗t (Hr
x(f )) := �+,r (t) + �−,r (t)

2

is the unique best interpolation formula which makes the error bound

e(Hr
x(f ); it ) := max

f̄ ∈KWr [−1,1]
Hr

x(f̄ )=Hr
x(f )

|f̄ (t) − it (H
r
x(f ))|,

attains its minimum

e(Hr
x(f ); i∗t ) = �+,r (t) − �−,r (t)

2
= min

it
e(Hr

x(f ); it ) := rt (H
r
x(f )).

The error bound rt (H
r
x(f )) is called the radius of information Hr

x(f ) for interpolation at t.

From (3.1) and Theorem 3.2, we obtain the following two theorems.

Theorem 3.3. Let �(t) = (1 − t2)−1/2, then the best quadrature formula based on the given Hermite information
Hr

x(f ) ∈ Hr
x(KWr [−1, 1]) for I�(f ) is

Q∗
�(Hr

x(f )) =
r−1∑
j=0

1

j !

(
n−1∑
i=0

f (j)(xi+1)Tj (xi+1, xi, xi+1) + f (j)(xn)Tj (xn, xn, 1)

)

− K

r!
n−1∑
i=1

r∑
	=1

(−1)	(Tr(xi + �xi�+,i,	, xi, xi + �xi�+,i,	)

− Tr(xi + �xi�−,i,	, xi, xi + �xi�−,i,	)), (3.5)

and its radius of the Hermite information is

R�(Hr
x(f )) = K

r!

(
(−1)r

n−1∑
i=0

Tr(xi+1, xi, xi+1) + Tr(xn, xn, 1)

)

− K

r!
n−1∑
i=1

r∑
	=1

(−1)	(Tr(xi + �xi�+,i,	, xi, xi + �xi�+,i,	)

+ Tr(xi + �xi�−,i,	, xi, xi + �xi�−,i,	)), (3.6)

where

Tj (
, a, b) =
∫ b

a

(1 − t2)−1/2(t − 
)j dt ,

and �e,i,	, i = 1, . . . , n − 1, 	 = 1, . . . , r , satisfy (3.2).

Proof. From (3.1) and for any t ∈ [−1, 1], we have

(1 − t2)−1/2�−,r (t)�(1 − t2)−1/2f (t)�(1 − t2)−1/2�+,r (t), (3.7)
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since �(t)= (1 − t2)−1/2 is a positive weight function on (−1, 1). The following best quadrature formula based on the
given information Hr

x(f ) for the integration I�(f ) follows from (3.7) and Theorem 3.2:

Q∗
�(Hr

x(f )) = I�(i∗t ) = I�

(
�+,r + �−,r

2

)
, (3.8)

and its radius is

R�(Hr
x(f )) = I�(rt ) = I�

(
�+,r − �−,r

2

)
. (3.9)

Combining (3.8) and �e,r gives

Q∗
�(Hr

x(f )) =
r−1∑
j=0

(
n−1∑
i=0

f (j)(xi+1)

j !
∫ xi+1

xi

(1 − t2)−1/2(t − xi+1)
j dt

+f (j)(xn)

j !
∫ 1

xn

(1 − t2)−1/2(t − xn)
j dt

)
− K

r!
n−1∑
i=1

r∑
	=1

(−1)	

×
(∫ xi+�xi�+,i,	

xi

(1 − t2)−1/2(t − xi − �xi�+,i,	)
r dt

−
∫ xi+�xi�−,i,	

xi

(1 − t2)−1/2(t − xi − �xi�−,i,	)
r dt

)
.

Let

∫ b

a

(1 − t2)−1/2(t − 
)j dt := Tj (
, a, b), (3.10)

we can immediately derive the conclusion as desired in (3.5). Applying (3.9), together with (3.10) and �e,r in Theorem
3.1, we prove the remainder of the theorem. �

The value of Tj (
, a, b) can be calculated by a recurrence formula. Using the following integral relation

∫
(1 − t2)−1/2(t − 
)j dt = −


∫
(1 − t2)−1/2(t − 
)j−1 dt −

∫
(t − 
)j−1 d

√
1 − t2,

and integrating by parts for the last one on its right-hand side, yields the recurrence relations

T0(
, a, b) = arcsin b − arcsin a,

T1(
, a, b) =
√

1 − a2 −
√

1 − b2 − 
T0(
, a, b),

Tj (
, a, b) = 1

j

(√
1 − a2(a − 
)j−1 −

√
1 − b2(b − 
)j−1

)

− 2j − 1

j

Tj−1(
, a, b) + j − 1

j
(1 − 
2)Tj−2(
, a, b), j �2.
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Theorem 3.4. Let �(t)=√
1 − t2, then the best quadrature formula based on the given Hermite informationHr

x(f ) ∈
Hr

x(KWr [−1, 1]) for I�(f ) is

Q∗
�(Hr

x(f )) =
r−1∑
j=0

1

j !

(
n−1∑
i=0

f (j)(xi+1)Sj (xi+1, xi, xi+1) + f (j)(xn)Sj (xn, xn, 1)

)

− K

r!
n−1∑
i=1

r∑
	=1

(−1)	(Sr(xi + �xi�+,i,	, xi, xi + �xi�+,i,	)

− Sr(xi + �xi�−,i,	, xi, xi + �xi�−,i,	)),

and its radius of the Hermite information is

R�(Hr
x(f )) = K

r!

(
(−1)r

n−1∑
i=0

Sr(xi+1, xi, xi+1) + Sr(xn, xn, 1)

)

− K

r!
n−1∑
i=1

r∑
	=1

(−1)	(Sr(xi + �xi�+,i,	, xi, xi + �xi�+,i,	)

+ Sr(xi + �xi�−,i,	, xi, xi + �xi�−,i,	)),

where

Sj (
, a, b) =
∫ b

a

√
1 − t2(t − 
)j dt ,

and �e,i,	, i = 1, . . . , n − 1, 	 = 1, . . . , r , satisfy (3.2).

Proof. The proof is similar to Theorem 3.3. We omit the trivial details. �

For Sj (
, a, b), we give the recurrence relations

S0(
, a, b) = 1
2 (b

√
1 − b2 − a

√
1 − a2 + arcsin b − arcsin a),

S1(
, a, b) = 1
3 ((1 − a2)3/2 − (1 − b2)3/2) − 
S0(
, a, b),

Sj (
, a, b) = 1

j + 2
((1 − a2)3/2(a − 
)j−1 − (1 − b2)3/2(b − 
)j−1)

− 2j + 1

j + 2

Sj−1(
, a, b) + j − 1

j + 2
(1 − 
2)Sj−2(
, a, b), j �2.

4. Numerical results

In this section, we compare the best quadrature proposed in Section 3 with the Gauss–Turán quadrature formula
using stochastic experiments. Suppose �(t) = (1 − t2)−1/2 is the Chebyshev weight function of the first kind and the
function class is on KW 4[−1, 1]. The corresponding Gauss–Turán quadrature formula (s =1) is in the following form:

∫ 1

−1

f (t)√
1 − t2

dt = �

n

(
n∑

i=1

f (�i ) + 1

4n
f ′[�2

1, . . . , �
2
n]
)

,
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Table 1
Stochastic experiment results for the best quadrature and Gauss–Turán quadrature

k N n ErrorGT Error∗ R�(H4
x(f ))

1 12 5 2.31 × 10−6 2.48 × 10−6 1.87 × 10−5

2 18 7 3.80 × 10−7 2.29 × 10−7 5.23 × 10−6

3 22 8 2.30 × 10−7 1.46 × 10−7 1.66 × 10−6

4 25 10 5.80 × 10−8 7.68 × 10−8 1.30 × 10−6

5 30 12 2.36 × 10−8 3.89 × 10−8 5.23 × 10−7

6 38 16 3.41 × 10−9 3.58 × 10−9 2.27 × 10−7

7 45 19 2.82 × 10−9 1.85 × 10−9 8.63 × 10−8

8 50 20 3.61 × 10−10 8.06 × 10−10 7.16 × 10−8

0 20 40 60 80

10
−10

10
−9

10
−8

10
−7

10
−6

k

a
c
tu

a
l 
e
rr

o
r

Fig. 1. The case N = 30 and n = 12, ErrorGT(circles) and Error∗(dots) from 80 stochastic experiments.

which is equivalent to

∫ 1

−1

f (t)√
1 − t2

dt = �

n

n∑
i=1

⎛
⎜⎝f (�i ) − 1 − �2

i

2n2

n∑
k=1
k �=i

1

�i − �k

f ′(�i ) + 1 − �2
i

4n2 f ′′(�i )

⎞
⎟⎠ , (4.1)

or [4] ∫ 1

−1

f (t)√
1 − t2

dt = �

n

n∑
i=1

(
f (�i ) − �i

4n2 f ′(�i ) + 1 − �2
i

4n2 f ′′(�i )

)
.

Function fk (k is the serial number) used in stochastic experiments is randomly chosen from the function class
1W 4[−1, 1] (K = 1) and given in the following:

fk(t) =
4∑

i=1

Ait
i−1 + 1

24
A5(t1 − t)4− +

N∑
i=2

Ai+4 − Ai+3

24
(ti − t)4−,

where Ai (i=1, 2, . . . , N+4) are independent random numbers uniformly distributed on [−1, 1] and t1 � t2 � · · · � tN
are reset of random numbers uniformly distributed on [−1, 1]. The number of quadrature points n is chosen from N/3
to N/2.
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Table 2
Stochastic experiment results for the best quadrature and Gauss–Turán quadrature

k N n ErrorGT Error∗ R�(H4
x(f ))

1 12 5 8.76 × 10−3 1.77 × 10−4 1.41 × 10−3

2 18 7 7.15 × 10−4 3.60 × 10−5 2.53 × 10−4

3 22 8 4.82 × 10−4 3.59 × 10−5 2.10 × 10−4

4 25 10 1.19 × 10−4 1.01 × 10−5 6.66 × 10−5

5 30 12 6.72 × 10−5 7.54 × 10−6 4.08 × 10−5

6 38 16 1.60 × 10−5 6.97 × 10−7 2.65 × 10−6

7 45 19 8.06 × 10−6 1.87 × 10−7 2.74 × 10−6

8 50 20 1.89 × 10−6 9.80 × 10−8 9.47 × 10−7
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Fig. 2. The case N = 30 and n = 12, ErrorGT(circles) and Error∗(dots) from 80 stochastic experiments.

As mentioned in Section 1, the given information H4
x(f ) may be obtained from scientific and engineering com-

puting practices and are thus expensively priced. In that case, it is difficult to obtain the information of f at any other
nodes except x. Especially when the quadrature nodes x1, . . . , xn do not coincide with Gaussian nodes �1, . . . , �n,
(4.1) is not applicable directly. Therefore, the nodes x1, . . . , xn in our numerical experiments are chosen in the fol-
lowing two ways, which are discussed in Examples 4.1 and 4.2. Note that in the tables, ErrorGT and Error∗ denote
the actual error (|Approximation value − Exact value|) of the Gauss–Turán quadrature and the best quadrature, re-
spectively. R�(H4

x(f )) is the theoretic error or the worst error of the best quadrature based on the given information
H4

x(f ).

Example 4.1. In this example, we suppose that x1, x2, . . . , xn are chosen as the reset of �1, �2, . . . , �n, i.e., xi =
cos(�− ((2i −1)/2n)�), i =1, 2, . . . , n. In this way, the approximation value of the Gauss–Turán quadrature formula
is obtained from (4.1) directly, since the information of f at the set of Gaussian nodes is given. We list some of the
results in Table 1. Fig. 1 shows the values of ErrorGT and Error∗ from 80 stochastic experiments in the case of N = 30
and n = 12.

Example 4.2. In this example, we suppose that the nodes x1, x2, . . . , xn of the quadrature formula are chosen as the
reset of random numbers uniformly distributed on [−1, 1]. On the assumption that we only know the information of f
at x1, x2, . . . , xn, whereas using the Gauss–Turán quadrature we need its information at Gaussian nodes �i =cos((2i −
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1)�/2n), i = 1, . . . , n. We may choose in several ways to obtain its information. Here, we use piecewise cubic spline
interpolation which interpolates the function f at the points x1, x2, . . . , xn. We give some results in Table 2 and Fig. 2
shows the values of ErrorGT and Error∗ from 80 stochastic experiments in the case of N = 30 and n = 12.

Our stochastic experiments show that for a single functionf the best quadrature is always the same as the Gauss–Turán
quadrature, when we choose the nodes x1, x2, . . . , xn as the Gaussian nodes, see Table 1 and Fig. 1. However, when
choosing the nodes x1, x2, . . . , xn of the quadrature formula as the random numbers uniformly distributed on [−1, 1],
the best quadrature always performs better than the Gauss–Turán quadrature, see Table 2 and Fig. 2.

All computations have been performed using a 16-digit arithmetic.
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