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K. F. Roth (Acta Arith. 9 (1964), 257-260) considered the distribution of 
a sequence JV of distinct positive integers not exceeding N among the residue 
classes for each modulus not exceeding Q. He showed that a certain variance 
was > ~(1 - p) QzN, where p was the density of the sequence, implying that J 
is not too evenly distributed among the residue classes in all subintervals of 
[l, N] unless p is almost 0 or 1. In this paper we consider a sifted sequence, 
one which is forbidden to enter certain residue classes, and enquire how evenly 
the sequence falls into the remaining residue classes for each modulus. Our 
main result shows that another variance lies between bounded multiples of 
~(1 - p) Q2N/A, where N/A is the Selberg upper bound for the number of 
members of JV in [l, N] and pN/A is the actual number. The lower bound implies 
Roth’s result in the unsifted case. 

1. INTRODUCTION 

In 1964 K. F. Roth [3] considered the distribution of an arbitrary 
sequence of integers among the residue classes to each modulus ~7 not 
exceeding some bound Q, and showed that no sequence can be very well 
distributed unless either it or its complement is sparse. More precisely, 
he showed that a certain variance involving the integers of the sequence JV 
not exceeding N was 

> ~(1 - P) NQ2, 

where p is the density of JV in [l, N]. In this paper we consider a sifted 
sequence A’-, that is, one which for each prime p never meets any of a 
set H(p) of f(p) residue classes. The upper bound sieve tells us that 
(to within an error) term JV can have at most Nkl members in any 
interval of length N, where A will be defined below as a function of Q 
and the numbers f(p) for p < Q. The number of integers of JV in [l, N] 
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is now pNkl, where p is bounded, and in Theorem 2 we show that a 
variance generalizing Roth’s is 

> PU - PI NQ”A-‘, (1) 

provided that the numbers f(p) do not increase too rapidly with p 
(a sufficient condition for this is f(p) <p’ for each E > 0), and if 
Q = o(N1/z(log N)-‘). In these inequalities the double inequality sign 
indicates an inequality with a suppressed absolute constant. The condition 
on Q was unnecessary in Roth’s case. Theorem 2 is deduced from 
Theorem 1 in which we determine the asymptotic order of magnitude of a 
different variance. A simplified form of this variance occurs in Theorem 3, 
which takes only the distribution of JV among residue classes into account, 
not that among subintervals of [l, N]. The variance of Theorem 1 has 
as asymptotic size the expression in (l), and that of Theorem 3 is 
bounded above by the same quantity diminished by Q2. 

To state the theorems we require the following notation. Lower case 
Roman letters denote integers; of these p will always denote a prime. 
Let 

K(n) = 1 if l<n,<N and neN, 

K(n) = 0 otherwise, 

so that K(n) is the characteristic function of JV. Let q be a positive integer. 
By the Chinese Remainder Theorem there is a set H(q) of f(q) residue 
classes mod q, where 

f(4) = 4 I-IS(PYP? 
Plq 

with the property (h - n, q) = 1 whenever n E JV and h E H(q), and a 
set K(q) of g(q) residue classes, where 

g(q) = 4 2 (1 - f(P)/P)Y 

which cover the sequence JV. We set 

(2) 

and put 

4% 4 b, d = 2 K(m) _ P@ - 4 W, d 

4?(q) ’ 
(3) 

m--A+1 
m -b(mod 9) 
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where 6(b, q) = 1 if b E K(q), 0 otherwise. We let 

A,(u) = max(O, u - qX - l), (4) 

B(u) = min(N, u - l), (5) 

where X = [&Q]. For real c1 we use the exponential sum notation 
e(a) = exp 2+, e,(a) = exp 2+x/q. We can now state the results. 

THEOREM 1. Ler 

Then 

lies between bounded multiples of 

~(1 - p + 41)) NQ2A-l, 

provided that 

(8) 

Q = o(W2(log J/)-l) (9) 

and the f(p) grow slowly enough for 

c P2(4)f(4) 4 = 
g(q) 

otQ4. 
9<Q 

P-9 

(7) 

(10) 

THEOREM 2. Let 

~rhf, B) = i I E(A, B); b, q 12. 
b=l 

(11) 

Then if (9) and (10) hold we have 

,& ; IT ~,MM, B(u)) 2 ~--~p(l - p + 41)) NQ2A-l, (12) 

and the same lower bound holds for 

Q c ~qtO, W + 4 ? 1 ~,(O, 4/q. (13) 
60 n-1 60 

From H. L. Montgomery’s form [2] of the upper bound sieve we deduce 
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THEOREM 3. We have unconditionally 

and 

V,(O, N) < p(1 - p + O(Q2iV1)) N/l-l. 

To interpret these results, we note that Z&&(u), B(u)) and V,&(u), B(u)) 
are sums over all arithmetic progresssions of X terms ending near U. 
Thus Theorem 2 assures us that there is a u for which the average square 
of the difference E@,(u), B(u); b, q) between the expected number pXA-l 
and the actual number of members of JV in the progression, taken over 
all these progressions, is of the same order as the expected number 
pX& itself, unless p is close to 1. 

The failure of our method at p = 1 is intrinsic: if the Selberg upper 
bound could be attained, a number of arguments show that the sequence JV 
must be extremely regular. In our notation below, S(a) would be very 
close to A-W(a), an exponential sum whose coefficients we shall show 
to be distributed evenly among residue classes. Our method is too closely 
tied to Selberg’s to cast much light on the question as to whether the 
Selberg upper bound can be attained. It has been shown that it cannot be 
attained in certain cases when the interval is [l, N] and the set H(p) is 
defined in a way essentially independent of the prime p. Thus if H(p) 
contains only the zero class for each prime p, Jlr must be a subsequence 
of the primes, and by the prime number theorem p < 9 + o(1). 

The restriction (9) arises from a clumsy estimate of V(CY) in Lemma 2. 
If f(q) = 0 when q > 1, which is Roth’s unsifted case, then V(a) = 0, 
and the condition (9) is unnecessary. On the other hand, we would be 
content with the condition Q <N 1 l 2. Condition (10) is fascinating; 
it arises both in Roth’s original argument (as adapted to our problem) 
and in our variation of it. (10) may be there to protect the existence of 
the perfect squares, for which f(p) = $(p - 1) and p is positive if we 
allow Q > N1i2, but for which V,(O, N) is at most g(q). 

2. THE SELBERC COEFFICIENTS 

Let 

S(a) = 5 K(n) e(m). 
n=1 

(1) 
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We write 

1”(q) KM, 4) = kEzq, $$ = - g(q) &*) ea(ah)* 
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(2) 

It is easily verified that 

I K(a, 4 I G cL2(d f(d/dd (3) 

and 

i 1 K(a, q)12 = p2$)q(q) . 
(ad=1 

(4) 

If the integers of JV divide equally between the residue classes of the 
set K(q) we should expect that for small real /3 

(5) 

where 

M = S(0) = c fc(n) (6) 
T%<N 

and for any real /I and positive integer U we write 

Since 

(7) 

where II/3 11 denotes the distance of the real number /I from the nearest 
integer, the sum 

will have the approximation property (5) near rational points a/q with 
q < Q. We shall use u/q to mean a rational point with q < Q, 1 < a < q 
and (a, q) = 1, that is, a member of the Farey sequence of order Q. 
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In order to work out the coefficient of e(nc~) in (9) we consider for square 
free q the sum 

Ii1 kE& e&k - 4 = c 
kaK(d 

c dP ($j 
(ad)=1 dlq 

Lk--n(modd) 

= Ad g(q) l-J (1 - +$j> 
neK(s) 

which it is convenient to invert as 

The coefficient of e(nol) in (9) is now 

the familiar Selberg upper sifting function. This method of constructing 
upper sifting functions will generalize to the situation where the I are 
weights not necessarily 0 or 1, but we do not need this generality here. 
We recover Selberg’s upper bound sieve from Cauchy’s inequality: 

MA = j’ S(a) U(-a) da 
0 

G (j: I S(ol)l” da)“’ (j: I U(a)12 daj”‘, 

(11) 

The first integral on the right is M, and we shall show in the next section 
that for small Q the second is 

N41 + Q(l)), 

so that 

A4 < Ml-l(1 + o(l)), (12) 
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and when we write 

M = pivk1 

then p is bounded. 
After our construction of the coefficient A(A+z) we expect that for any 

subinterval [A, B] of [ 1, N] when we write 

m-A+1 
(13) 

m=b(mod+) 

where S(b, r) = 0 unless b E K(r), when it is 1, then L(A, B; b, r) is of 
smaller order. In fact, we have 

LEMMA 1. Zfr < Q then (13) holds with 

where u(q) is the sum of the divisors of q. 

Proof. We have 

,i+l X(m) = F $$f C “fiq(4) i 1. 
q=GQ m=A+l 

m-btmodr) e-O(d) TWHfd) 
m-btmodt) 

We take first the sum over m. Over each complete system of residues 
mod[d, r] it is zero unless b E H((d, r)) when it is 

fOfl(d, r)). 

We can now write the sum required as 
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where the sum is taken over those d for which b E ZZ((d, r)). If q has any 
prime factor which does not divide I, the sum over din the main term is 0. 
The coefficient of (B - A)/r is then 

which is 0 unless b E K(r), when it is r/g(r). 

3. AN INTEGRAL INVOLVING U(CY) 

Our object is to prove 

LEMMA 2. We have 

P(m) = N&l + o(1)) 
l<m<N 

provided that 

Q = o(Nl/Z/log N). (2) 

Proof. We use the Hardy-Littlewood circle method. We divide the 
unit interval [0, l] into arcs Z(a, , qJ corresponding to fractions UT/q, of 
the Farey sequence of order Q by 

with appropriate modifications at the ends of the interval [0, I]. If 
E E Z(a, q) and b/r is any fraction of the Farey sequence of order Q we have 

II 01 - b/r II 3 S II a/q - b/r II, (4) 

the sign II p 1) denoting the distance of the real number p from the nearest 
integer. The required sum in (1) is 

I 
’ I U(a)12 dor. (5) 
0 

For cx E Z(a, q) we write 

UC4 = K(a, q) f’W, cy. - a/q) + UOL), (6) 
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where 

V(a) = C K(b, r) F(N, a - b/r), 
blr 

(7) 

the sum being over all Farey fractions b/r with r < Q other than u/q itself. 
We shall treat V(a) as an error term. 

Our main term is 

c I w, 4Y J”,,, *) I WV, 01 - u/q)12 da = c I K(u, q)12 (N + O(Q")) 
ah aiq 

= W + O(Q”)) 4 (8) 

where we have used (2.4). 
As for the error term, we need only consider 

since if this is o(Ncl) then, by Cauchy’s inequality, so is the integral 
arising from the cross product term when (6) is squared. By (7) and (4) 
if 01 E I(u, q) we have 

the sum being over points b/r of the Farey sequence of order Q. Thus, 

+ 5T I W, 0 c I KG, 0 
cJs#b/r 

’ a,;b/r ’ 

da 

r(a,q) II a/q - b/r It II 49 - 43 II . 
aiq#cls 

The integrals on the right come, respectively, to < Qr and to 
<< log Q/II b/r - c/s II, so that 

I ’ ’ V(CY)‘~ da 
0 

< z Qr I W, r>l” + g log Q I W, r>l” c,8& (Ii b/r - c/~lI>-~ 

< Q2 log2 Q g I K(b, r>l” Q Q2A log2 Q, (11) 



446 HUXLEY 

where we have used (2.3). Hence the integral (5) is equal to the right-hand 
side of (1) provided only that (2) holds. 

We could also obtain (1) by using the series definition (2.5) of X(m); 
this gives 

this would give in place of (2) the condition 

El = o((NA)l/2), (13) 

which is weaker than (2) only when&) is usually less than 4. 

4. THE ANAL~GUE OF ROTH’S ARGUMENT 

Roth’s argument is based on the inequality 

& I w, r412 3 4X2h2 

(where X = [*Q]) valid for all 01 E [0, I]. To simplify the estimations 
in the next section we use instead 

For each 01 in [0, l] there is a point u/q of the Farey sequence of order Q 
with 01 = a/q + p, where I] /3 11 < (Qq)-‘. By (2.8) we have 

since 1 rrqXfi I < &r. Hence 

G(a) > 4X2/.rr2, (2) 

but unlike Roth’s function, which can be as large as &Q3, we have an 
inequality in the opposite direction for G(a). Suppose LY. lies between 
b/r and c/s in the Farey sequence of order Q. For the terms in (1) in 
b/r and c/s we use the upper bound X2. Otherwise, if 

at--ca/q<m+h (modulo l), 
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we have by (2.8) 
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/ F(qX, a - a/4)1” < cosec2 +2/q - c/s) 

< 1 q2s2 
4 (as - cq)2 * 

Now for each integer m the number of q between 1 and Q for which 

as - cq = m 

is at most Q/S + 1, and arguing similarly if a/q < (Y we have 

G(a) < 2X2 + t fig1 $ (+ + 1) + ; il $ (+ + 1) 

< (; + $) Q2 < 2Q2. (3) 

This is the property of G(ol) that makes the estimations in the next section 
very much easier. 

Let 
T(a) = S(a) - pn-‘U(a) 

= jl (fc(n) - p~-14a (4) 

Then in the notation of Theorem 1 

where 

N+nX B(u) 

= z2 44 sl=A~u)+l (dm) - p~-‘@4) eQ(Qm - 4 

P 

N+QX 

= z2 eQ(-au) e&d sl J(Au(U), B(U); by 4) %(a@, 

Hence 

JM B; 6, d = m$,+l (44 - d-%4). (5) 
m=btmodcz, 

Jl G(a) 1 T(oL)12 da = .gQ $ i Nfx 1 2 J(AQ(u), B(u); b, q) e,(ab)12. 
(;z==~ u=2 b=l 

(6) 
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The left-hand side of (6) can be estimated: apart from the scaling 
factor pd-l, T(c) differs from U(a) in that p in M terms has been replaced 
by p - 1 (since h(n) = (1 if m E ,V). By Lemma 2 we have 

I’ 1 T(a)12 da = p/l-2 I1 1 U(&!)l” da - M(p2 - (p - 1)2) 
0 0 

= p(l - p + o(1)) Ml-r, (7) 

provided that (3.2) holds. We have unconditionally 

and so 

s 
’ 1 T(c# da > ~(1 - p)” Ml-l, 
0 

but we shall need to assume (3.2) later in the argument. If (3.2) holds, 
the expression in (6) lies between bounded multiples of 

~(1 - p + o( 1)) NQ2k1. (8) 

To obtain Theorem 1 we must replace J(A, B; 6, r) in (6) by E(A, B; b, r). 

5. PROOF OF THEOREM 1 

We shall find an upper estimate for the integral 

with an error term 

s 
’ G(a) 1 U(a)\” da 
0 

(1) 

o(NQVl). (2) 

We divide [0, l] into arcs &a, q) given by (3.3) and use (3.6) to distinguish 
between a main term and an error term V(a) in the expansion of U(a). 
A major arc term in (1) is 

< r2 I K@, cd2 j-’ I F(qx, PI” I FW, PII” 4% 
0 
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and the integral from 0 to 1 is 

G (N + qX) q2x2. 

Using (2.4) to sum over arcs a/q we see that the major arcs contribute 

< (N + Q2) X2/l. (3) 

A minor arc term is 

I a& 4)12 r2 J-,, *) I F(N, 01 - a/q)l” I F(rX, 01 - b/r)/2 dor 

with r # q or b/r # a/q. By (3.4) we may take out the second factor in 
the integrand at its maximum 

ar - bq 
‘II qr II 

--2 

so that the whole integral is 

< I K(u, q)12 r-2 11 ar L bq 11m2 N. 

Now the number of pairs (b, r) with r < Q for which ur - bq t&es a 
given value is < Q/q, so that when we sum (4) over points b/r other 
than a/q we have 

< I W, d12 NqQ, 

which sums over Farey points u/q to 

where 

E2 = c P2(df(4) 4 
PC0 g(q) (5) 

and the minor arcs term satisfies (2) provided that 

E, = o(QA). (6) 

As in the proof of Lemma 2 it suffices to show that the term in I V(ol)12 
satisfies (2) for the cross-product term to do so also. But now from (3.11) 
and (4.3) it is immediate that 

I 
’ G(a) I V(a)12 da < Q4A log2 Q, (7) 
0 
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and so (2) is satisfied if (3.2) holds. Under the assumption of (3.2) and (6) 
we have now 

s ’ G(a) 1 V(a)12 dar < NX2A(1 + o(l)). 
0 (8) 

The integral (1) can be evaluated by the method of Section 4 also; we have 

N+qX B(u) 

C 44 e,@m - a4 
m=A,(u)+l 

= Nzx e(ucx) f t44 - B(4) wb 4) 
u=2 b=l g(q) 

+ ~@,th BW; b, r)! e,W, 

where A,(u), B(u) are as before and L(A, B; b, q) was defined in (2.13). 
The term in F(qX, 01 - a/q) therefore contributes to the integral (1) 

N+qX 

r2 c VW - 444)2 I @A q)12 
t&=2 

N+qX 

+ 2 Re 1 q-2tB(4 - A,(u)) K(G d i UA,tu), BW; b, d e,(--a@ 
b=l 

We estimate the middle term by Lemma 1 and partial summation over u. 
It is 

< T2 I m a2 f 
b-l 

where we have used (2.3). Using 
we have 

qQE1 < p2tdf(d QJ% 
g(q) ' 

(1.2) to sum over all Farey points a/q 

s 
’ Gt4 I U(a)l” dcz = (A’ + O(Q”)) PA 
0 
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Comparing (10) with (8), we see that 

provided (3.2) and (6) hold. 
When we substitute 

J(A, B; b, q) = E(A, B; b, q) - pA-lL(A, B; b, q) 

into (4.6) the term in I L(A, B; b, q)j2 will be 

o(p2NQ2k1) 

provided (3.2) holds, and so the cross-product term will be 

o(pNQ2k1). 

Hence we have proved Theorem 1. 

6. A QUADRATIC FORM 

For fixed square free q we consider the positive semidefinite quadratic 
form gq in g(q) variables indexed by the classes k of K(q) 

(1) 

By factorizing the appropriate determinant we see that the eigenvalues 
of this form are the numbers qd-if(d) for d dividing q, each occurring 

l-I (g(P) - 1) 
elq/d 

times. The eigenvector corresponding to the eigenvalue f(q) is therefore 
unique and can be found by inspection: under a suitable normalization 
it has xk = 1 for each k. The other eigenvectors therefore lie in the 
subspace 

1 xk = 0. (2) 

6411415-4 
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We have now 

(3) 

and if (2) is satisfied then we can replace f(q) in this inequality by the 
second smallest eigenvalue. 

Now 
ZAA, B) = T(x) (4) 

with 

so that we have 

xk = W, B; k, q), (5) 

Zk4 B) d q 1 xk2 = q~&4 B), 65) 
keK(q) 

and so Theorem 1 implies Theorem 2. 

7. AN UPPER BOUND 

So far we have used Selberg’s form of the upper bound sieve. 
H. L. Montgomery’s form [l] is easily adapted to give an upper bound 
for a variance. We sketch Montgomery’s result. Let q be square free. 
Since if n E .N then (h - n, q) = 1 for each h in H(q), we have 

i 
a=1 

S (f) e,(--a@ = il 4) il eqh - 4, 
(c%d=l (a&7)=1 

= E"(4) &f* 

Hence 

and Cauchy’s inequality gives 

Pwf2(q) M2 G ( il 1 s @I’)( .il I& eq(-@12). 
(a,n)=l (lLq)=l 

By (2.2) and (2.3) we have 
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so that 

(1) 

and if we sum over q, we have 

The best upper bounds for this sum known to the author are (from [l], 
except (2) which is folklore) 

(N + Q 1/2 Q2 + 3) M if N > Q2, (2) 

(Q” + 27N3Q-*) M if Q2> N, (3) 

2 max(N, Q2) M in any case, (4) 

so that 

M < W + O(Q2)) A-l, (5) 

which we may compare with (2.1 l), valid provided (3.2) holds. What 
interests us here is that the difference of the two sides of (1) is a positive 
semidefinite form in the g(q) variables 

xlc = -W, N; k 4) (6) 

corresponding to the classes k of K(q). 
In fact, it is the form P*(x) of the last section, and we have the further 

condition 

c xk = 0, 
keK(q) 

so that 

Hence we have 

which gives Theorem 3. 

d pNA-l(l + O(Q2N-l)) - p2NA-l, 
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