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Abstract

We provide a detailed description for power-law scaling Friedmann–Robertson–Walker cosmological scenarios dominated by two interacting
perfect fluid components during the expansion. As a consequence of the mutual interaction between the two fluids, neither component is con-
served separately and the energy densities are proportional to 1/t2. It is shown that in flat FRW cosmological models there can exist interacting
superpositions of two perfect fluids (each of them having a positive energy density) which accelerate the expansion of the universe. In this family
there also exist flat power-law cosmological scenarios where one of the fluids may have a “cosmological constant” or “vacuum energy” equation
of state (p = −ρ) interacting with the other component; this scenario exactly mimics the behavior of the standard flat Friedmann solution for
a single fluid with a barotropic equation of state. These possibilities of combining interacting perfect fluids do not exist for the non-interacting
mixtures of two perfect cosmic fluids, where the general solution for the scale factor is not described by power-law expressions and has a more
complicated behavior. In this study is considered also the associated single fluid model interpretation for the interaction between two fluids.
© 2008 Elsevier B.V.
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1. Introduction

Recent observational data give a strong motivation to study
general properties of Friedmann–Robertson–Walker (FRW)
cosmological models containing more than one fluid. The stan-
dard modern cosmology considers the total energy density of
the Universe dominated today by the densities of two com-
ponents: the dark matter (which has an attractive gravitational
effect like usual matter), and the dark energy (a kind of vacuum
energy with a negative pressure) [1].

Usually the universe is modeled with perfect fluids and with
mixtures of non-interacting perfect fluids [2]. This means that it
is assumed that there is no conversion (energy transfer) among
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the components and that each of them evolves separately ac-
cording to standard conservation laws. However, there are no
observational data confirming that this be the only possible sce-
nario. This means that we can consider plausible cosmological
models containing fluids which interact with each other. In this
case the transfers of energy among these fluids play an impor-
tant role. Thanks to these energy exchanges, in some cosmo-
logical models it is possible, for example, to give a reasonable
explanation for the observed late acceleration of the universe [3]
and for the coincidence problem [4,5], since some mechanisms
could exist for converting one fluid into another. There are many
other cosmological situations where this exchange of energy
was considered. For example, the interaction between dust-like
matter and radiation was first considered by Tolman [6] and
Davidson [7]. It is interesting to note that Davidson considered
only positive pressures since at that time there was no observa-
tional evidence for negative stresses in intergalactic space. Also
were considered cosmological models with decay of massive
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particles into radiation, or with matter creation [8]. For more
examples see Barrow and Clifton [9], and the cites contained
therein.

On the other hand, for a long time cosmologists have used
the most simple solutions of the Einstein field equations, apply-
ing them to cosmology, and developing the so-called standard
model. In this sense, the main aim of this Letter is to consider
the most simple non-trivial cosmological scenarios for an in-
teracting mixture of two cosmic fluids described by power-law
scale factors, i.e., the expansion (contraction) as a power-law
in time. In a general context the power-law cosmologies are
defined by their growth of the cosmological scale factor as
a(t) ∝ tα . The observed expanding stage of the universe is de-
scribed by α > 0; for α < 0 we have a contracting universe
(t > 0). The behavior of the universe in power-law cosmolo-
gies is completely described by the Hubble parameter H = ȧ/a

and the deceleration parameter q(t) = −äa/ȧ2. For a(t) = tα

it takes the form q0 = −(α − 1)/α implying that the universe
expands with a constant velocity for α = 1 and with an acceler-
ated expansion for α > 1 since, if the expansion is speeding up,
the deceleration parameter must be negative.

The interest in power-law FRW cosmologies is not new. The
motivation for studying this kind of cosmological scenarios
comes for example from the following aspects. There is good
evidence for such a power-law expansion during the radiation
and matter dominated epochs, for which α = 1/2 and α = 2/3,
respectively, so in both cases we have α < 1, implying that these
epochs had a decelerated expansion.

One may also consider a simple inflationary model charac-
terized by a period in which the scale factor is a power-law
in time with α > 1, which is called power-law inflation [10].
This occurs when the state parameter ω in the barotropic equa-
tion of state p = ωρ is constant and ω < −1/3. Power-law
inflationary models allow us to solve the horizon and flatness
problems, among others; however the main theoretical problem
which arises from these models is that inflation never comes to
an end because its slow-roll parameter is proportional to 1/α

and then is constant [11]. Nevertheless its advantage lies in the
possibility of analytically computing the solutions of the per-
turbation equations and the corresponding power spectra [12].

On the other hand, it is interesting to note that there exist
a class of cosmological models, that attempt to dynamically
solve the Cosmological constant problem, in which the scale
factor grows as a power law in time, regardless of the matter
content or cosmological epochs [13]. Such power-law cosmolo-
gies, with α ≈ 1, satisfy the observational constraints on the
present age of the Universe, the magnitude-redshift relation of
the type Ia supernova and the angular size for a large sample
of millisecond compact radio sources; however there are some
inconsistencies with the requirement that primordial nucleosyn-
thesis produces light elements in abundances consistent with
those inferred from observational data [14].

Lastly, although there is no clear evidence for a pure power-
law expansion today, maybe the Universe has entered an epoch
of accelerated power-law expansion, or perhaps in the future
it could enter such an expansion, and this could imply that
the Universe will expand forever and never will exit from this
stage. In this case only cosmological scenarios with α > 1 may
present a physical interest to us.

Another remarkable property of a power-law scale factor is
that in our study the mutual exchange of energy between two
perfect fluids can be described by energy densities which are
proportional to 1/t2 and the interaction term proportional to
1/t3. The advantage of considering this kind of interacting flu-
ids is that the energy densities evolve at the same rate, so their
ratio is a constant quantity, thus satisfying the so-called cosmo-
logical coincidence problem, namely: Why the matter and dark
energy densities are of the same order today?

2. Field equations for two interacting fluids

For an open, closed or flat FRW universe filled with two flu-
ids ρ1 and ρ2, the Friedmann equation is given by

(1)3H 2 + 3k

a2
= κ(ρ1 + ρ2),

where k = −1,0,1 (from now on we shall set κ = 8πG = 1).
We postulate that the two components ρ1 and ρ2 interact
through the interaction term Q according to

(2)ρ̇1 + 3H(ρ1 + p1) = Q,

(3)ρ̇2 + 3H(ρ2 + p2) = −Q.

Note that if Q > 0 we have that there exists a transfer of energy
from the fluid ρ2 to the fluid ρ1. The nature of the Q term is
not clear at all. It may arise in principle from some microscopic
mechanisms [5]. For solving these equations different forms for
the interaction term Q have been considered.

If Q = 0 we have two non-interacting fluids, and then each
fluid satisfies the standard conservation equation separately.
Let us consider the flat case, i.e., k = 0. Putting Q = 0 into
Eqs. (2) and (3) we have for each conserved component that
ρ1 = C1a(t)−3(1+ω1), ρ2 = C2a(t)−3(1+ω2). Since we are inter-
ested in power law scenarios, the above energy densities take
the following form: ρ1 = ρ10t

−3α(1+ω1), ρ2 = ρ20t
−3α(1+ω2),

and from Friedmann equation (1) we obtain that ω1 = ω2. This
implies that always both fluids have the same equation of state
and then the non-interacting superposition of two fluids is re-
ally a trivial case in power-law cosmologies. However, as we
shall see, the description of a superposition of two interacting
fluids is not at all trivial.

2.1. Closed and open power-law interacting cosmologies

Let us now consider FRW cosmologies with k = −1,1 filled
with interacting matter sources which satisfy a barotropic equa-
tion of state, i.e.,

(4)p1 = ω1ρ1, p2 = ω2ρ2,

where ω1, ω2 are constant state parameters. We shall define the
scale factor as a(t) = tα , where α is a constant parameter. This
implies that H = α/t and, taking into account the curvature
term 3k/a2 of Eq. (1), we conclude that α = 1, in order to ob-
tain energy density scales in the same manner as the curvature
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term. Since a = t we have no acceleration and the universe will
either expand with constant velocity or collapse with constant
velocity.

This strictly linear evolution of the scale factor has been con-
sidered before in the literature. For example in Ref. [15] it is
shown that an open FRW cosmology with a linear evolution of
the scale factor is consistent with the latest SNe Ia observations
and constraints arising from age of old quasars.

Now, from Eq. (1) and the resultant equation from the addi-
tion of Eqs. (2) and (3), we obtain that

(5)ρk1(t) = (1 + k)(1 + 3ω2)

(ω2 − ω1)t2
,

(6)ρk2(t) = − (1 + k)(1 + 3ω1)

(ω2 − ω1)t2
,

and then the interacting term is given by

(7)Q(t) = (3 + k)(1 + 3ω1)(1 + 3ω2)

3(ω2 − ω1)t3
.

This term may be rewritten as

(8)Q(t) = (1 + 3ω1)Hρk1 = −(1 + 3ω2)Hρk2,

which implies that the interacting term is proportional to the
expansion rate of the universe and to one of the individual den-
sities, so Q ∼ t−3.

2.2. Flat power-law interacting cosmologies

Let us now consider interacting matter sources in flat FRW
universes satisfying the barotropic equations of state (4). This
means that we must put k = 0 and a(t) = tα into Eqs. (1)–(3).
Taking into account the Friedmann equation (1) and the resul-
tant equation from the addition of Eqs. (2) and (3) we conclude
that the general solution is given by

(9)ρ1(t) = ρ10

t2
= α(−2 + 3α(1 + ω2))

(ω2 − ω1)t2
,

and

(10)ρ2(t) = ρ20

t2
= α(2 − 3α(1 + ω1))

(ω2 − ω1)t2
,

where the Q-term takes the form

(11)Q = α(3α(1 + ω1) − 2)(3α(1 + ω2) − 2)

(ω2 − ω1)t3
.

This implies that the interaction term may be rewritten as

(12)Q = (3α(1 + ω1) − 2)

α
Hρ1 = − (3α(1 + ω2) − 2)

α
Hρ2.

From this equation we conclude that, as before, the Q-term is
proportional to one of the individual densities and to the expan-
sion rate of the universe, so Q ∼ t−3.

3. Specific two-fluid interactions

Since we are primarily interested in a characterization of a
cosmological interaction between two fluids, we shall mainly
consider special assumptions in order to have some classifica-
tion schemes and detailed relationships between the power-law
scale factor and equations of state of the interacting cosmic
fluids. In this sense we shall consider that the weak energy
condition (WEC) holds and then we shall require the simultane-
ous fulfillment of the conditions ρ1 � 0, ρ2 � 0, which implies
that ρeff = ρ1 + ρ2 � 0. These conditions will imply some con-
straints on the state parameters ω1 and ω2.

3.1. Open and closed FRW universes

In this section we first consider the case k �= 0. It is clear
from Eqs. (5) and (6) that for k = −1 the energy densities ρk1
and ρk2 vanish so, in this case of an open FRW, it is not possi-
ble to have a cosmological evolution with two interacting fluids.
This kind of evolution is possible only for a closed FRW Uni-
verse. Putting k = 1 into Eqs. (5) and (6) and requiring the
fulfillment of the conditions ρ1 � 0, ρ2 � 0, we obtain the fol-
lowing constraints on the state parameters:

(13)ω1 � −1/3, ω2 � −1/3,

for ω2 > ω1 or, equivalently ω2 � −1/3, ω1 � −1/3, for
ω1 > ω2. From these expressions we conclude that always one
of the interacting fluids must be either a dark or a phantom
fluid. The constraints (13) on the state parameters imply that
Q < 0 (see Eq. (8)), so the energy is transferred from a dark
(−1 � ω1 � −1/3) or a phantom (ω1 < −1) fluid to the other
matter component whose state parameter ω2 > −1/3.

Another aspect to be considered is the behavior of the con-
stant ratio of energies r1 = ρ12/ρ11 = − 1+3ω1

1+3ω2
as a function

of the model parameters ω1 and ω2. For cosmological scenar-
ios which satisfy the requirement ω1 + ω2 < −2/3, the matter
component whose state parameter ω2 > −1/3 dominates over
the dark or phantom fluid (ω2 > ω1).

As here we have always a constant ratio for energy densities
since they are proportional to 1/t2, we shall use hereafter the
word “dominate” in the sense of “the largest matter component
of the universe is”. Note that this same “dominant = predom-
inant” component will always continue to be the larger one
throughout the cosmic evolution of the cosmological model.

As examples of the behavior of energy densities in some
interacting closed FRW cosmologies, Fig. 1 is plotted. The in-
teraction of dust with dark or with phantom fluid is considered.
We see that both energy densities are positive for ω1 < −1/3
and the dark fluid dominates over dust for −2/3 < ω1 < −1/3.
For −1 < ω1 < −2/3 and for ω1 < −1 the dust distribution
dominates over the dark and the phantom fluids respectively.
On the other hand, also is considered the interaction of radiation
with dark or with phantom fluid. The energy densities are posi-
tive for ω1 < −1/3. The dark fluid dominates over radiation for
−1 < ω1 < −1/3 and, for ω1 < −1 the radiation distribution
dominates over the phantom fluid.

3.2. Two-fluid interactions in flat FRW universes

Now we shall study interacting fluids in flat FRW cosmolo-
gies, i.e., k = 0. In order to make the characterization of the
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Fig. 1. The behaviors of energy densities ρk1t2 and ρk2t2 from Eqs. (5) and (6)
are plotted, for closed (k = 1) interacting FRW models, as functions of ω1.
In one case (solid lines) we have taken ω2 = 0 so that one of interacting flu-
ids is a dust distribution. There are dust dominated cosmological scenarios for
ω1 < −2/3. Note that both energy densities are positive for ω1 < −1/3. In an-
other case (dashed lines) we have taken ω2 = 1/3 so that one of interacting
fluids is a radiation distribution. There are radiation dominated cosmological
scenarios for ω1 < −1. Note that both energy densities are positive also for
ω1 < −1/3.

interaction between the two fluids we first consider the parame-
ter α to be a free one in Eqs. (9) and (10). This means that we
shall seek all possible cosmic expansion rates for cosmological
scenarios with fixed equations of state for the two interacting
fluids. Note that ρ1 = 0 if α = 0 and if α = 2/(3(1 + ω2));
ρ2 = 0 if α = 0 and if α = 2/(3(1 + ω1)). So if we require
simultaneously ρ10 � 0 and ρ20 � 0, we obtain the following
possible combinations. For ω2 > ω1:

(14)
2

3(1 + ω2)
< α <

2

3(1 + ω1)
(ω2 > ω1 > −1),

−∞ < α <
2

3(1 + ω1)
,

2

3(1 + ω2)
< α < +∞

(15)(ω1 < −1 < ω2),

(16)
2

3(1 + ω2)
< α <

2

3(1 + ω1)
(ω1 < ω2 < −1).

For ω2 < ω1:

(17)
2

3(1 + ω1)
< α <

2

3(1 + ω2)
(−1 < ω2 < ω1),

−∞ < α <
2

3(1 + ω2)
,

2

3(1 + ω1)
< α < +∞

(18)(ω2 < −1 < ω1),

(19)
2

3(1 + ω1)
< α <

2

3(1 + ω2)
(ω2 < ω1 < −1).

Notice that Eqs. (14) and (17) are valid for configurations which
include two interacting fluids obeying the dominant energy con-
dition (DEC), Eqs. (15) and (18) are valid for configurations
where one interacting fluid obeys DEC and the other is a phan-
tom fluid, and Eqs. (16) and (19) are valid for the description of
two interacting phantom fluids.
Now we shall consider specific two-fluid interactions. It
must be noted that the relations (14)–(19) are valid for ω1 �= −1
(or ω2 �= −1). At the end of this section we will study configu-
rations for which ω1 = −1 (or ω2 = −1).

3.2.1. Dust–perfect fluid interaction (ω1 = 0, ω2 �= 0)
We shall begin with the consideration of the interaction of

dust with any other perfect fluid configuration. This means that
we must put ω1 = 0 into Eqs. (9) and (10), while ω2 is still a
free parameter. Thus we have for a dust (d) and a perfect fluid
(pf) interacting configurations

(20)ρd = α(−2 + 3α(1 + ω2))

ω2t2
,

and

(21)ρpf = α(2 − 3α)

ω2t2
,

with the equations of state pd = 0, ppf = ω2ρpf. For the require-
ment of simultaneous fulfillment of the conditions ρ1 � 0 and
ρ2 � 0 we obtain from Eqs. (14)–(19) that the following con-
straints must be satisfied:

(22)
2

3(ω2 + 1)
< α <

2

3
(ω2 > 0),

(23)
2

3
< α <

2

3(ω2 + 1)
(−1 < ω2 < 0),

2

3
< α < +∞, −∞ < α <

2

3(ω2 + 1)

(24)(−∞ < ω2 < −1).

Note that, for the above constraints, the specified values of ω2
imply that really 0 < α < 2/3 (for ω2 > 0), 2/3 < α < ∞ (for
−1 < ω2 < 0), and 2/3 < α < ∞ or −∞ < α < 0 (for −∞ <

ω2 < −1).
As a specific example we shall now consider in some detail

the dust-radiation interaction (ω1 = 0, ω2 = 1/3). In this case
we have

ρ1 = ρ10

t2
= 6α(2α − 1)

t2
, p1 = 0,

(25)ρ2 = ρ20

t2
= 3α(2 − 3α)

t2
, p2 = 1

3
ρ2.

In order to have simultaneously positive energy densities we
must require that 1/2 < α < 2/3. The interaction term is given
by Q = 3α(3α−2)(4α−2)

t3 . For the interval 1/2 < α < 2/3 the Q-
term is positive and this means that we have a transfer of energy
from radiation to the dust. In this scenario, for the value 1/2 <

α = 7/11 < 2/3, both densities are equal during all evolution.
For the interval 1/2 < α < 7/11 we have a radiation dominated
universe, and for 7/11 < α < 2/3 we have a dust dominated
universe (see Fig. 2). In other words there exist dust-radiation
interacting cosmological scenarios dominated by radiation or
dust throughout all their evolution.

We want to remark that, in the case of non-interacting dust
and radiation, the expansion rate speeds up from a(t) = t1/2

to the a(t) = t2/3 law. For the interacting dust-radiation case
we have a single expansion rate given by the a(t) = tα law,
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Fig. 2. The behaviors of interacting dust distribution (ρ1t2 = ρ10) and radiation
distribution (ρ2t2 = ρ20) are plotted as functions of α. Both densities are pos-
itives in the interval 1

2 < α < 2
3 , and are equal at α = 7

11 . In the dust-radiation
interacting case all possible scenarios have a decelerated expansion and the
whole evolution is dominated by radiation if 1

2 < α < 7
11 , and is dominated by

dust if 7
11 < α < 2

3 .

where 1/2 < α < 2/3. Thus in both cases the expansion of the
universe is decelerated.

3.2.2. Phantom fluid–perfect fluid interaction (ω1 = −4/3,
ω2 �= 0)

On the other hand we shall now consider the interaction of
a phantom fluid with any other perfect fluid configuration. We
choose as a representative cosmic fluid of phantom matter the
perfect fluid given by the equation of state p = −4/3ρ. This
kind of perfect fluid was considered for example by the authors
of Ref. [16]. This means that we must put ω1 = −4/3 into the
Eqs. (9) and (10), while ω2 is still a free parameter. Thus we
have for a phantom fluid (ph) and a perfect fluid (pf) interacting
configurations

(26)ρph = 3α(−2 + 3α(1 + ω2))

(3ω2 + 4)t2
,

(27)ρpf = 3α(2 + α)

(3ω2 + 4)t2
,

with the equations of state pph = −4/3ρph, ppf = ω2ρpf. In or-
der to have ρph � 0 and ρpf � 0 we obtain from Eqs. (14)–(19)
that the following constraints must be satisfied:

(28)−∞ < α < −2,
2

3(ω2 + 1)
< α < ∞ (ω2 > −1),

(29)
2

3(ω2 + 1)
< α < −2 (−4/3 < ω2 < −1),

(30)−2 < α <
2

3(ω2 + 2)
(ω2 < −4/3).

Note that, for the above constraints, the specified values of ω2
imply that really −∞ < α < −2 or 0 < α < ∞ (for ω2 > −1),
Fig. 3. The behaviors of interacting dust distribution (ρ1t2 = ρ10) and phan-
tom matter distribution (ρ2t2 = ρ20) are plotted as functions of α. In this
case the interaction is consistent with an expanding universe, and we have
a non-accelerated expansion for 2/3 < α < 1, and an accelerated one for
1 < α < ∞. For α = 2 we have ρ10 = ρ20, so if 2/3 < α < 2 the universe
is dominated by dust, and for 2 < α < ∞ the universe is dominated by the
phantom matter component.

−∞ < α < −2 (for −4/3 < ω2 < −1), and −2 < α < 0 (ω2 <

−4/3).
So for this cosmological scenario with a phantom fluid

(given by the state parameter ω1 = −4/3) interacting with
a perfect fluid (ppf = ω2ρpf) the universe expands only if
ω2 > −1. In this case we can have accelerated and non-
accelerated expanding cosmologies.

As a specific example we shall consider the interaction of
this kind of phantom matter with a dust distribution. In this
case we have that ω1 = −4/3, ω2 = 0 and then ρ1 = ρ10

t2 =
3α(3α−2)

4t2 , p1 = − 4
3ρ1, ρ2 = ρ20

t2 = 3α(α+2)

4t2 , p2 = 0. In order
to have simultaneously positive energy densities, we must re-
quire that α < −2 or α > 2/3. The interaction term is given by
Q = 3α(α+2)(2−3α)

4t3 . For an interacting expansion, i.e., α > 2/3,
the Q-term is positive and this means that we have a trans-
fer of energy from dust to the phantom matter. The interaction
is consistent with an expanding universe, and we have a non-
accelerated expansion for 2/3 < α < 1, and an accelerated one
for 1 < α < ∞. It is interesting to note that, in this scenario,
for α = 2 both densities are equal and this implies that for
2/3 < α < 2 we have scenarios where the universe is dominated
by dust and, for 2 < α < ∞ we have cosmologies dominated
by the phantom matter component (see Fig. 3). In other words
there exist dust–phantom matter interacting cosmological sce-
narios dominated by dust or by the phantom matter component
throughout all their evolution.

In conclusion, for the interacting dust–phantom matter case
we have a single expansion rate given by the a(t) = tα law,
where α < −2 or α > 2/3, and the expansion of the universe
may be decelerated or accelerated. Notice that this result im-
plies that we can have scenarios with α � 1 where the universe
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has an accelerated expansion but dust is dominating over phan-
tom matter.

3.3. Interaction between effective “vacuum energy” and
a perfect fluid

As we stated above, Eqs. (14)–(19) are valid for ω1 �= −1
and ω2 �= −1. This means that these equations cannot be ap-
plied to interacting fluids with an equation of state of the form
p1 = −ρ1 and p2 = −ρ2. However it is easy to see from
Eqs. (9) and (10) that the state parameters ω1 and ω2 may take,
although not simultaneously, the value minus one.

Consider from now on in this section, that ω1 = −1. Putting
this value into Eqs. (9) and (10) we obtain

(31)ρv = ρ0v

t2
= α(−2 + 3α(1 + ω2))

(1 + ω2)t2
,

and

(32)ρpf = ρ0pf

t2
= 2α

(1 + ω2)t2
,

where the first fluid has a “cosmological constant” or “vacuum
energy” equation of state pv = −ρv and the second one is a
standard perfect fluid with an equation of state ppf = ω2ρpf.
The requirements that ρv � 0 and ρpf � 0 imply that

(33)α >
2

3(1 + ω2)
> 0 (ω2 > −1),

(34)α <
2

3(1 + ω2)
< 0 (ω2 < −1).

It is interesting to note that the interaction of a perfect fluid
with a fluid with a “cosmological constant” or “vacuum energy”
equation of state exactly mimics the behavior of the standard
Friedmann solution for a single fluid with a barotropic equation
of state since for −1 < ω2 < −1/3 the expansion is accelerated
(α > 1), for ω2 > −1/3 we have decelerated expansion (α < 1),
and for ω2 < −1 we have that −∞ < α < 0.

In this case the interacting term is given by

(35)Q = 2α(2 − 3α(1 + ω2))

(1 + ω2)t3
,

and we conclude that the interacting term is positive for

(36)0 < α <
2

3(1 + ω2)
(ω2 > −1),

(37)
2

3(1 + ω2)
< α < 0 (ω2 < −1).

From Eqs. (33) and (36) we obtain for fluids which satisfy the
DEC (i.e., ω2 > −1) that the interacting term Q < 0, so that in
the here considered interacting cosmological scenarios always
the energy is transferred from the effective “vacuum energy” to
the perfect fluid obeying the DEC.

Another aspect to be considered is the behavior of the con-
stant ratio of energies r = ρpf/ρv = 2

3α(1+ω2)−2 as function
of the model parameters ω2 and α. It is easy to see that
r(α,ω2) > 1 if

(38)
2

< α <
4

.

3(1 + ω2) 3(1 + ω2)
Fig. 4. In the figure is shown the behavior of the energy densities of the inter-
acting effective “vacuum energy” ρvt2 and perfect fluid ρpft

2 for the extreme
cases ω2 = −1/3 (solid lines) and ω2 = 1/3 (dashed lines), see Eq. (38). In
the case of interaction between effective “vacuum energy” and radiation we
see that the radiation dominates only at stages with decelerated expansion
(1/2 < α < 1). At α = 1 we have that ρv = ρpf. For the case ω2 = −1/3 we
have that the perfect fluid dominates over the effective “vacuum energy” at the
range 1 < α < 2 so we have accelerating expansion. For α > 2 the effective
“vacuum energy” dominates over the perfect fluid.

So the perfect fluid dominates over the effective “vacuum ener-
gy” if, for a given ω2, the dimensionless parameter α varies
in the specified above range. From Eq. (38) we see that, if
−1/3 < ω2 < 1/3, there are cosmological scenarios where the
universe has accelerated and non-accelerated expansions and
is dominated by the perfect fluid. For −1 < ω2 < −1/3 the
Eq. (38) implies that we have only accelerated scenarios where
the dark component dominates over the effective “vacuum en-
ergy” (see Figs. 4 and 5). Note that for 1/3 < ω2 < 1 we can
have decelerated expansion where the effective “vacuum ener-
gy” dominates over the perfect fluid component.

4. The effective fluid interpretation

The main idea of this section is to study the conditions un-
der which these two interacting sources are equivalent to an
effective fluid filling the universe. In other words we want to
associate an effective fluid interpretation with the interaction of
the two-fluid mixture. This can be made by associating with the
sum of pressures p1 and p2 an effective pressure p, i.e.,

(39)p1 + p2 = ω1ρ1 + ω2ρ2 = p,

which has an equation of state given by

(40)p = γρ = γ (ρ1 + ρ2),

where γ is a constant effective state parameter. Note that the
equation of state of the associated effective fluid is not produced
by physical particles and their interaction [17].

In this sense for example, in the above discussed case of
closed FRW interacting cosmologies this single interpretation
implies that the effective fluid has an equation of state given by
p = −1/3ρ, and for the interaction between dust and radiation
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Fig. 5. In the figure is shown the behavior of the energy densities of the in-
teracting effective “vacuum energy” ρvt2 and perfect fluid ρpft

2 for the cases
ω2 = −1/2 (dashed lines) and ω2 = 0 (solid lines). In the case of dust-effective
“vacuum energy” interaction we see that dust dominates only in the range
2/3 < α < 4/3. It is clear that for 1 < α < 4/3 there is an accelerated ex-
pansion dominated by dust. For the case ω2 = −1/2 we have that the perfect
fluid dominates over the effective “vacuum energy” at the range 4/3 < α < 8/3
so we have accelerating expansion. For α > 8/3 the effective “vacuum energy”
dominates over the perfect fluid.

(see Eqs. (25)) this single fluid interpretation implies that the
effective fluid has an equation of state given by p = γρ, where
0 < γ < 1/3. This means that the dust-radiation interacting uni-
verse behaves as a FRW universe filled with a single fluid with
a state parameter varying in the range 0 < γ < 1/3, preserving
DEC.

Making some algebraic manipulations with Eqs. (39) and
(40) we find that the effective state parameter γ is related to
the parameter α by

(41)γ = 2 − 3α

3α
.

From this expression we see that the effective state parameter γ

behaves as γ → −1 for α → ±∞. For α < 0 we have the phan-
tom sector, since γ < −1.

Now we shall explore in more detail the effective interpreta-
tion of the interacting two perfect fluids.

4.1. Effective radiation and effective dust

As we mentioned above we can associate a single fluid
model with the interaction between two perfect fluids. In this
section we want to find all possible interacting superpositions
for a given α-parameter. In order to do this we shall consider α

to be a given parameter, and ω1 and ω2 to be as free ones. This
means that, for a fixed scale factor (or Hubble parameter H ),
we shall find all possible state equation configurations for each
of the two interacting fluids. From Eqs. (9) and (10) we shall
obtain the constraints on the free parameters ω1 and ω2.

If we now require that ρ1 � 0 and ρ2 � 0 simultaneously, we
obtain that

ω1 <
2 − 3α

< ω2 (α > 0, ω2 > ω1),

3α
(42)ω1 <
−2 − 3|α|

3|α| < ω2 (α < 0, ω2 > ω1),

or equivalently ω2 < 2−3α
3α

< ω1 (α > 0) and ω2 <
−2−3|α|

3|α| <

ω1 (α < 0); for ω2 < ω1.
Here we have excluded the value ω1 = 2/3α − 1 (or ω2 =

2/3α−1) since this case gives a FRW universe filled with a sin-
gle fluid. From the above equations we see that, for a physically
plausible two-fluid interacting model associated with a single
effective model with equation of state p = γρ (see Eq. (41)) the
whole ranges of validity of the parameters ω1 and ω2 do not in-
tersect each other. If we want to have interacting perfect fluids
which obey the DEC, we constrain the parameters to the in-
equalities −1 � ω1 � 1 and −1 � ω2 � 1. In this case one com-
ponent (or both) may be a dark perfect fluid (−1 � ωi � −1/3,
i = 1,2). For the single effective model the state parameter γ

also may obey the DEC −1 � γ � 1. But we can consider
more general situations. There are interacting configurations
where one fluid obeys DEC and the other component does not
(phantom fluid), but its interaction behaves like a perfect fluid
which obeys DEC. Note that this picture completely excludes
the possibility of having two interacting phantom perfect fluids
behaving like a fluid which obeys DEC.

As explicit examples we shall consider two interacting per-
fect fluids which behave like either radiation, or dust or a kind
of phantom matter.

4.1.1. Effective radiation fluid
If the effective fluid behaves like radiation (α = 1/2, γ =

1/3), then the free parameters (ω2 > ω1) vary in the ranges
−∞ < ω1 < 1/3 and 1/3 < ω2 < ∞. If we require that the
second fluid satisfies the DEC (i.e. 1/3 < ω2 � 1), then we can
consider its interaction with a standard perfect fluid (−1/3 <

ω1 < 1/3), or with a dark fluid (−1 � ω1 < −1/3), or with a
phantom fluid (−∞ < ω1 < −1). This model has a decelerated
expansion.

4.1.2. Effective dust
If the effective fluid behaves like dust (α = 2/3, γ = 0), then

the free parameters (ω2 > ω1) vary in the ranges −∞ < ω1 < 0
and 0 < ω2 < ∞. If we require that the second fluid satisfies
the DEC (i.e., 0 < ω2 � 1), then we can consider its interaction
with a standard perfect fluid (−1/3 < ω1 < 0), or with a dark
fluid (−1 � ω1 < −1/3), or with a phantom fluid (−∞ < ω1 <

−1). This model has a decelerated expansion.

4.1.3. An effective phantom fluid
If the effective fluid behaves like a phantom one with

state parameter γ = −4/3 (α = −2), then the free parameters
(ω2 > ω1) vary according to the ranges −∞ < ω1 < −4/3
and −4/3 < ω2 < ∞. In this case clearly we have the possi-
bility of having an interacting superposition of two phantom
fluids. If we require that the second fluid satisfies the DEC (i.e.,
−1 < ω2 � 1), then we can consider its interaction with only
a phantom fluid with state parameter −∞ < ω1 < −4/3. In this
case we always have a contracting universe.
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5. Discussion

In this Letter we have provided a detailed description for
power-law scaling cosmological models in the case of a FRW
universe dominated by two interacting perfect fluid compo-
nents during the expansion. We have shown that in this math-
ematical description it is possible for each fluid component to
require that the conditions ρ1 � 0 and ρ2 � 0 may be simul-
taneously fulfilled in order to have reasonable physical val-
ues of state parameters ω1 and ω2 (we mean either DEC, i.e.,
−1 � ω1,ω2 � 1; or else ω1,ω2 < −1). So from the required
conditions we may gain some insights for understanding es-
sential features of two-fluid interactions in power-law FRW
cosmologies. For example, in the case of flat FRW universes,
if we have a dust universe (i.e., a = t2/3) or a radiation uni-
verse (a = t1/2), the interacting fluids cannot both be dark (or
phantom) fluids. In other words, “dust” or “radiation” effective
universes cannot be filled with two interacting dark (or phan-
tom) fluids.

On the other hand, we may apply our results to flat infla-
tionary cosmological models involving power-law evolution for
the scale factor. This means that the parameter α must be con-
strained to the range α > 1, thus implying that any power-law
inflationary model can be filled by two interacting fluids with
state parameters given by ω1 < −1/3 < ω2, so always one of
the interacting fluids must be either a dark fluid or a phantom
one.

One consequence of our results is that one may consider
accelerated cosmological models where one of the fluids is de-
scribed with the help of a minimally coupled scalar field which
interacts with a perfect fluid. Specifically, an exponential po-
tential may be used for the dark energy interacting component
which has a constant state parameter constrained to the range
−1 < ω1 < −1/3 provided that α > 1 [18]. In this case the
scalar field evolves as Φ ∝ ln t and the perfect fluid has an equa-
tion of state of the form p = ω2ρ. Another possibility to be
considered is that the interacting dark energy component also
may be modelled as a rolling tachyon field. In general a rolling
tachyon condensate may be described by an effective fluid with

energy density and pressure given by ρ = V (T )/
√

1 − Ṫ 2 and

by p = −V (T )
√

1 − Ṫ 2, where T is the tachyon field and
V (T ) is the tachyon potential [19,20]. It is possible to obtain
power-law inflationary cosmological models by assuming that
the potential is an inverse square in terms of the tachyon field,
i.e., V (T ) = βT −2, where β > 0 [20]. The same fields may
be considered for describing the present accelerating stage of
the universe. Notice that in this case it is also possible to con-
sider the interaction of a perfect fluid with phantom energy
(ω1 < −1) in the form of an imaginary tachyon field [21],
which may be obtained by simply Wick rotating the tachyon
field [22]. A detailed analysis of the here discussed ideas is in
progress and will be published elsewhere.

The here described variety of possibilities for combining in-
teracting perfect fluids with energy densities ∝ t−2 does not
exist for the non-interacting mixtures of two perfect cosmic
fluids, where the general solution for the scale factor is not de-
scribed by power-law expressions and has a more complicated
behavior.

Note that the considered power-law cosmologies may de-
scribe satisfactorily the interaction of dark matter (which is
generally assumed to be collisionless, i.e., described by a pres-
sureless fluid [23]) with any other perfect fluid configuration.
So the relations obtained in Section 3 for dust-perfect fluid in-
teraction may be applied to interacting dark matter.

It is interesting to observe that the here considered variety
of flat power-law scaling cosmological models is related to the
study made by Barrow and Clifton for cosmological models
with a mutual exchange of energy between two fluids at rates
which are proportional to a linear combination of their individ-
ual densities and to the expansion rate of the universe [9]. An
advantage of considering this type of interacting fluids is that
the energy densities at late times evolve at the same rate, so
their ratio is a constant quantity in agreement with the so-called
cosmological coincidence problem.

Specifically, for the kind of interaction studied by Barrow
and Clifton, the power-law solutions behave at late times as at-
tractors of the general solution for the field equations (1)–(3) of
Ref. [9]. In particular, those authors provided a simple mathe-
matical description of the two interacting fluids in an expand-
ing flat FRW universe and showed that the evolution can be
reduced to a single nonlinear master differential equation for
the Hubble parameter H of the form Ḧ + AHḢ + BH 3 = 0,
where A and B are constants. This equation can be solved in
physically relevant cases and the authors provide an analysis
of all possible evolutions. Particular power-law solutions exist
for the expansion scale factor and are attractors at late times
under particular conditions. Note that the power-law scale fac-
tors are solutions (self-similar solutions) for the master equation
Ḧ + AHḢ + BH 3 = 0 with the parameters A and B con-
strained.

For the interacting flat cosmological scenarios discussed in
our Letter, we see that Eq. (12) implies that the here consid-
ered power-law cosmologies are the attractors for the partic-
ular solution with αBC = (3α(1+ω1)−2)

α
, βBC = 0 (or αBC = 0,

βBC = (3α(1+ω2)−2)
α

) of the above mentioned general Barrow–
Clifton solution, so all relations discussed in this work may be
applied to the late time behavior of this particular solution and
could help us clarify which kind of specific interacting matter
configurations are physically plausible today.

Lastly, today the observational data of Type Ia supernovae
are suggesting that our universe is undergoing accelerated ex-
pansion [3], so accelerated interacting superpositions may play
an important role in the study of two interacting fluids at rates
that are proportional to a linear combination of their individ-
ual densities and to the expansion rate of the universe. On the
other hand, although there is no clear evidence for a pure power-
law expansion today, maybe the Universe has entered an epoch
of accelerated power-law expansion, or perhaps in the future
it could enter such an expansion, and this could imply that
the Universe will expand forever and never will exit from this
stage. From this point of view all found parameter constraints
may shed light on the possible cosmological scenarios to be
considered. So in this sense all interacting configurations with
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0 < α < 1 could not represent interest today due to observa-
tional data.
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