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Circadian clocks are endogenous timing systems orchestrating the daily regulation of a huge variety
of physiological, metabolic and behavioral processes. These clocks are important for health – in
mammals, their disruption leads to a diverse number of pathologies. While genetic and biochemical
approaches largely uncovered the molecular bases of circadian rhythm generation, chemical biology
strategies targeting the circadian oscillator by small chemical compounds are increasingly
developed. Here, we review the recent progress in the identification of small molecules modulating
circadian rhythms. We focus on high-throughput screening approaches using circadian biolumines-
cence reporter cell lines as well as describe alternative mechanistic screens. Furthermore, we
discuss the potential for chemical optimization of small molecule ligands with regard to the recent
progress in structural chronobiology.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Circadian clocks are endogenous oscillators that drive daily
rhythms in physiology, metabolic functions and behavior in a vari-
ety of species. In mammals, the master clock is located in the
suprachiasmatic nucleus (SCN) of the anterior hypothalamus
orchestrating subsidiary clocks in peripheral organs. At the molec-
ular level circadian oscillators are composed of interconnected
transcriptional translational negative and positive feedback loops
generating an about 24 h (circadian) periodicity. Within this
gene-regulatory network, a precise timing of gene expression, pro-
tein–protein interactions as well as post-transcriptional and
post-translational events is essential for sustaining normal circa-
dian dynamics [1–3].

In the last decade systems biology approaches have been useful
in creating a more comprehensive view of processes necessary for
generating circadian rhythms. Transcriptome and proteome analy-
ses helped to characterize circadian parameters of a huge number
of genes in different organisms and tissues [4–10]. Furthermore,
large scale forward and reverse genetic screens have identified
new components and modulators relevant for the robustness and
fine tuning of circadian timing as well as linking the circadian clock
to a variety of other biological processes [11–13].

The importance of a robust circadian timing for health is increas-
ingly recognized; therefore the identification of small molecules
capable of modulating circadian clocks became an emerging topic.
Misalignment of the circadian oscillator with the natural light dark
cycle as a result of modern lifestyle (shift-work, (social) jetlag, as
well as irregular food intake) is associated with various pathologies
such as cancer, metabolic syndrome or depression [14–16]. In addi-
tion, animal models such as Bmal1 knockout mice (premature age-
ing), Clock (obesity and metabolic syndrome) and Per2 (cancer)
mutants strongly support these findings [17–19]. In humans,
Familial Advanced Sleep Phase Syndrome (FASPS) and Delayed
Sleep Phase Syndrome (DSPS) are directly linked to mutations in
Per (Per2 or Per3) and CKI (e and d) genes, respectively [19–23].

Small molecule chemical compounds represent tools of great
potential to not only better understand the molecular clockwork
but also to serve as lead structures for the development of drugs
targeting these clock-associated diseases. While genetic
approaches mostly involve irreversible changes of the DNA
sequence, small molecules have been successfully used in a rever-
sible, dose- and time-dependent manner [24–26]. Complementary
to ‘‘manipulating time’’ by targeting the molecular oscillator per se
with small molecules, more classical chronotherapy ‘‘exploits
time’’ by considering time-of-day dependent variations in pharma-
cokinetics and pharmacodynamics of many drugs [27].

In this review we will provide a comprehensive view on the
strategies that led to the identification of small molecules modu-
lating the circadian clock (Fig. 1). We put the focus on
high-throughput screening approaches for compounds that alter
circadian parameters such as period or amplitude in mammalian
cell culture models. Furthermore, we discuss the potential for
chemical optimization of small molecule ligands with regard to
the recent progress in structural chronobiology.
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Fig. 1. Steps toward circadian drug development highlighting different identification strategies.
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2. The mammalian molecular clockwork

Circadian rhythms in mammals are cell-autonomously gener-
ated with a delayed negative feedback loop in gene regulation as
a central mechanism. The transcription factors CLOCK (Circadian
Locomotor Output Cycles Kaput) and BMAL1 (or ARNTL) (Brain
and Muscle Aryl hydrocarbon Receptor Nuclear Translocator
(ARNT)-Like 1) as a heterodimer activate the transcription of
Period (Per) and Cryptochrome (Cry) genes via E-box enhancer ele-
ments in their promoters. PER and CRY proteins form large com-
plexes that inhibit their own synthesis by binding directly to the
CLOCK/BMAL1 complex at the end of a circadian cycle. In addition
to the negative feedback mechanism an interconnected loop
composed of the nuclear receptors RORs (RAR-related Orphan
Receptors) and REV-ERBs (NR1D1/2) regulates Bmal1 and Clock
expression anti-phasic to Per and Cry genes [1–3]. The delay in
negative feedback is necessary to generate self-sustained �24 h
oscillations and is achieved by various post-transcriptional and
post-translational events [28]. This core clock machinery also
drives rhythmic output of so called ‘‘clock controlled genes’’ in
almost every tissue. About 5–10% of all expressed transcripts and
up to 20% of the proteins display a circadian expression pattern
in a given tissue [4,7–10].

Phosphorylation of clock proteins has been demonstrated to
have a huge impact on circadian dynamics probably because it reg-
ulates many essential events such as complex formation, subcellu-
lar localization, stability or transcriptional activity [28]. Kinases
such as casein kinase I (CKI) isoforms (a/e/d), casein kinase II
(CKII) as well as glycogen synthase kinase 3-beta (GSK3-b) were
shown to modify PER, CRY and REV-ERB proteins as well as the
CLOCK/BMAL1 heterodimer [29], whereas AMP-activated kinase
(AMPK) seems to target specifically CRYs for proteasomal degrada-
tion [30]. Upon phosphorylation of PER proteins, the F-box proteins
b-TRCP1 and b-TRCP2 initiate their time-of-day dependent degra-
dation via the ubiquitin–proteasome pathway [31] while the
F-box proteins FBXL3 and FBXL21 predominately regulate the sta-
bility of CRY proteins [32–35]. Interestingly, it was long believed
that phosphorylation-supported degradation of negative elements
at the end of the circadian cycle is a prerequisite for the next cycle
to start, but recent findings in Neurospora crassa challenge this
view [36,37].

It is widely accepted that kinase activities control clock speed,
however much less is known about the role of de-phosphorylating
enzymes [29]. Protein phosphatase 1 (PPP1) was shown to regu-
late the abundance of mammalian BMAL1 as well as nuclear local-
ization and stability of PER2 [38–40], while protein phosphatase 5
(PPP5) acts indirectly on PER phosphorylation via the activation of
CKIe [41]. Despite the fact that many kinase inhibitors can affect
circadian period in oscillating cells, selective inhibition of phos-
phatases via pharmacology still remains a promising yet challeng-
ing strategy to regulate circadian dynamics. In addition to the
kinase-phosphatase balance also the chromatin state, i.e. the
accessibility of promoter regions, is regulated in a circadian fash-
ion [42–44]. For example, CLOCK has a histone acetyltransferase
(HAT) property that is enhanced by BMAL1 [45]. Also, clock pro-
teins such as PER2 and BMAL1 can be acetylated – counterbal-
anced by the nutrition sensing NAD+-dependent de-acetylase
Sirtuin1 (SIRT1) [46,47]. Thus, the regulation of acetyl- or
methyl-transferases or their counterparts using chemical com-
pounds might also be a possible strategy to manipulate the
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molecular clockwork. Moreover, the adenosine 30,50-monophosph
ate (cAMP) signaling pathway is regulated in a time-of-day depen-
dent manner within the SCN and peripheral tissues feeding back
to the molecular clockwork. Via this mechanism clock controlled
fluctuations in cellular cAMP levels contribute to the robustness
of circadian rhythm generation of circadian output at the tran-
script level [48].

The more we learn about the molecular and structural mecha-
nisms within the circadian oscillator, the more potential targets
for pharmacological intervention may be considered. The crucial
questions for successful chemical chronobiology are therefore: (i)
which of these targets are accessible to small molecule com-
pounds; (ii) which targets allow a specific manipulation of the cir-
cadian oscillator without affecting other cellular mechanisms (or
cellular health); and (iii) which molecular events are so important
for the clock that chemical manipulations elicit a sufficiently large
response.

3. Identification of chemical circadian modulators

3.1. Target-based rational design

3.1.1. Protein kinases
Protein kinases are global regulatory enzymes in cells that affect

many physiological processes including circadian rhythms. In
mammals, Ck1 mutant alleles were among the first to be described
with altered circadian rhythmicity [49]. In addition, the Familial
Advanced Sleep Phase Syndrome (FASPS) in humans, where
affected individuals show a 4–6 h advance in e.g. sleep behavior,
is associated with single point mutations in the Per2 or Ck1d genes
[19,20,23]. Both mutations affect the phosphorylation status of PER
proteins leading to altered circadian periods and phases of entrain-
ment. In addition, the importance of GSK3-b and CKII for circadian
period underlines the essential role of post-translational modifica-
tions for the circadian oscillator [12,50]. Thus, it is not a surprise
that pharmacological attempts to manipulate circadian rhythms
have been focusing on kinases as targets.

Inhibiting CKI with small molecules (such as CKI-7 or others) led
to long circadian periods in reporter cells [51]. However, these inhi-
bitors were not specific for a particular casein kinase isoform. To
discriminate between the contributions of CKIe or CKId within the
circadian oscillator, a specific CKIe inhibitor (PF-4800567) was
developed that surprisingly affected circadian period only moder-
ately. In contrast, a specific CKId inhibitor (PF-670462) drastically
slowed down circadian rhythms in oscillating cells supporting
genetic data for this kinase isoform [52]. In addition, specific inhibi-
tors of CKII (such as DMAT) helped to characterize the role of this
kinase for circadian dynamics and PER2 stability [12,53]. Based on
results with lithium treatment, it was long believed that GSK3-b
inhibition causes long circadian periods. More recently, however,
the application of selective GSK3-b small molecule inhibitors was
reported to cause a period shortening in line with genetic data [50].

Analyzing the impact of kinases on circadian rhythm generation
more systematically, Yagita et al. performed a mini-screen applying
84 known or assumed kinase inhibitors to oscillating rat cells stably
expressing an mPer2 promoter luciferase reporter [54] (Fig. 1). They
identified inhibitors of CKIe/d (IC261), CKII (DMAT), PI3K
(LY294002) and c-Jun N-terminal kinase (JNK) (SP600125), which
all lengthen the circadian period suggesting a role for these kinases
within the molecular oscillator. Mechanistic studies by Yoshitane
and colleagues underpinned the role of JNK for circadian rhythm
generation by identifying BMAL1 as its molecular target [55].

Such examples vindicate the use of specific pharmacological
inhibitors of known or assumed circadian regulatory enzymes to
elucidate the underlying molecular mechanisms of circadian clock
function.
3.1.2. Nuclear receptors
RORs (retinoic acid receptor-related receptors) and REV-ERBs

are nuclear receptors involved in the transcriptional regulation of
many cellular processes, such as inflammation, cell proliferation,
metabolism and circadian rhythmicity. Therefore, their pharmaco-
logical modulation with e.g. derivatives of their natural ligands is
of high interest for a variety of diseases such as diabetes, cancer
and circadian dysfunction [56,57].

The roles of these receptors for circadian rhythm generation has
been extensively studied with genetic approaches in cell culture
and in vivo [58–61]. Within the molecular oscillator both types
of receptors are part of the gene-regulatory oscillator network
and primarily regulate Bmal1 and Clock expression. Transcription
of Bmal1 and Clock is either activated by RORs or repressed by
REV-ERBs via competition at ROR response elements (RREs) in their
promoters [59,62]. The activity of RORs and REV-ERBs is regulated
by specific ligands that lead to conformational changes modulating
e.g. the binding to co-activators or co-repressors such as the
nuclear receptor co-repressor 1 (NCOR1) [63]. In the last decade,
heme and various sterols have been identified as bona fide ligands
of REV-ERBs and RORs, respectively [56]. The determination of the
three-dimensional structures of REV-ERBb and RORa in their
ligand-free and heme- or cholesterol-bound states, respectively,
provided insights how synthetic molecules might occupy the
ligand binding domains and consequently modulate their tran-
scriptional function [64–66].

The first synthetic REV-ERB agonist (GSK4112) was identified
from a medium-throughput compound screen that was focused
on a library of pre-selected potential nuclear receptor ligands.
The principle of this screen was based on the fact that REV-ERBa
binding to its co-repressor NCOR1 is enhanced by its ligand heme.
Thus, small molecule compounds were tested for their ability to
modulate the binding affinity of REV-ERBa to an NCOR1-derived
peptide using a FRET (fluorescence resonance energy transfer)
reporter assay [67]. Identified compounds (GSK4112 and – after
further optimization – also SR9009 and SR9011) indeed specifically
supported the association of REV-ERBs to the NCOR1 fragment and
enhanced REV-ERB’s repressor function toward Bmal1 transcrip-
tion [68] (Fig. 1). The effect of these REV-ERB agonists on circadian
dynamics and output was then demonstrated by a battery of
experiments: (i) SR9011 reversibly reduced the circadian ampli-
tude in SCN slices from Per2::Luciferase mice without affecting cir-
cadian period; (ii) SR9009 and SR9011 altered clock gene
expression and disrupted circadian behavior when injected into
mice at the circadian phase when REV-ERB expression is peaking;
(iii) SR9011 increased energy expenditure and weight loss in vivo
and reduced fat mass in diet-induced obese mice – accompanied
by altered circadian gene expression in metabolic tissues such as
liver and skeletal muscle [69].

Although for ROR agonists and antagonists there have been suc-
cessful screening efforts [56], little is known about the ability of
the identified compounds to modulate circadian rhythmicity.
However, it is conceivable that such compounds also have effects
on circadian dynamics given their effects on e.g. transcriptional
regulation of ROR target genes such as G6PC (glucose
6-phosphatase, alpha) and FGF21 (fibroblast growth factor 21),
[70]. Future studies will tell.

4. High-throughput chemical library screens

4.1. Mechanism-based screens

Circadian oscillations are generated by daytime-dependent
CLOCK/BMAL1 transactivation activity at E-box elements in the
promoter regions of Per and Cry genes, whose protein products
subsequently form complexes to inhibit their own transcription
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[71,72]. This mechanism guided the development of
reporter-based functional assays for chemical interference.
CLOCK/BMAL1 transactivation in cell culture was monitored using
E-box-luciferase reporters and tested for modulation by chemical
compounds.

Up to now, two screening studies reported the identification of
chemical compounds affecting CLOCK/BMAL1 transactivation
[73,74] (Fig. 1). In the first study Hu et al. aimed to identify enhan-
cers of CLOCK/BMAL1 transactivation activity since high
CLOCK/BMAL1 activity has been associated with reduced
side-effects during chemotherapy [75]. CLOCK/BMAL1 transactiva-
tion of a Per1-luciferase reporter was analyzed in murine fibrosa-
croma cells in the presence of LOPAC library compounds (Library
of Pharmacologically Active Compounds; 1280 compounds).
Fourteen inhibitors and 17 activators of Per1 promoter activity
were identified including known circadian clock modifiers such
as forskolin, glucocorticoids etc. Interestingly, an organic form of
selenium, L-methyl-selenocysteine, was among the activators, in
line with previously known chemopreventive effects of various
forms of selenium. Mechanistically, L-methyl-selenocysteine inter-
feres with TIEG1-mediated repression of Bmal1 transcription thus
upregulating BMAL1 protein levels. In wild-type but not in
Bmal1�/� mice, L-methyl-selenocysteine treatment protects from
cyclophosphamide-induced mortality indicating that the
well-known chemopreventive function of selenium forms [76]
are at least in part mediated by their effects on CLOCK/BMAL1 tran-
scriptional activity. It would be interesting to test whether this
compound also has an impact on circadian dynamics.

A second study by Chun et al. reported the identification of a
chemical substance that also acts positively on CLOCK/BMAL1
mediated transcription yet via a different mechanism [74]. Here,
the authors screened about 1000 drug-like compounds in NIH3T3
fibroblasts stably expressing CLOCK/BMAL1 and an artificial
E-box luciferase reporter. About 70 compounds that either
enhanced or reduced the bioluminescence signals were identified.
The specificity of the compound effects toward CLOCK/BMAL1
transactivation was tested in a secondary screen using wild-type
or Bmal1-deficient mouse embryonic fibroblasts harboring the
same reporter. A biotinylated version of the most potent substance
(derivate of 2-ethoxypropanoic acid) allowed the identification of
CRYs as predominant targets in pull-down assays suggesting that
the normal repressor function of CRYs toward CLOCK/BMAL1 is
attenuated by this substance. As a result, this compound reduced
the circadian amplitude dose-dependently in oscillating murine
fibroblasts. As CRYs have been reported to regulate the expression
of tumor suppressor genes, the authors speculated that chemical
modulators of CRY function could also have positive implications
for cancer treatment [77–79].

Such mechanistic screening approaches increase the likelihood
that active compounds indeed target the circadian core oscillator
directly rather than acting on cellular pathways that only indi-
rectly affect circadian rhythms. Therefore, further screens address-
ing other important steps such as protein–protein interactions or
subcellular localization of circadian clock proteins should be
considered.

4.2. Circadian phenotype-based screens

Circadian rhythms can be monitored in cell-based assays by the
use of reporters that are driven by the endogenous clockwork.
Especially, Bmal1 and Per1/2 promoters fused to luciferase were
successfully used as a readout for circadian function in a variety
of cell lines with robust circadian rhythmicity [12,13,80]. In addi-
tion, tissues and cells derived from Per2::Luciferase knock-in mice
in which a PER2-LUCIFERASE fusion protein is expressed from
the endogenous Per2 promoter allow the tracing of the circadian
clock function at the protein level [81,82]. Tissue explants from
these mice permit the analysis of compound effects on the more
rigid oscillator network in the SCN and clocks located in the
periphery [83]. In general, reporter cells or tissues are synchro-
nized with dexamethasone, forskolin or serum shock and biolumi-
nescence rhythms are monitored over several days. With
appropriate time series analysis tools circadian parameters such
as period, amplitude, phase and damping are extracted.

To date, six chemical biology studies with circadian dynamics as
readout have been described [50,84–88] (Fig. 1 and Table 1). All
studies screened chemical compound libraries with human
osteosarcoma U-2 OS or murine fibroblasts (NIH3T3 or primary
cells) as reporter cells.

Hirota and colleagues [50] have pioneered chemical biology
approaches to analyze circadian dynamics in U-2 OS cells carrying
the Bmal1-promoter luciferase construct. They initially screened
the LOPAC (1280) library and were primarily interested in circa-
dian period phenotypes. Eleven of the 13 primary compound hits
showed a dose-dependent shortening or lengthening of the circa-
dian period. Most of the identified active compounds have been
described to affect the activity of kinases such as cyclin dependent
kinase (CDK) and glycogen synthase kinase 3 (GSK3), the latter
being a putative clock regulating enzyme. Other identified com-
pounds are known to induce DNA damage or inhibit cellular Ca2+

entry or microtubule assembly. To investigate whether the period
shortening phenotype of the GSK3 inhibiting compounds was
specifically due to its effect on GSK3 (and not on CDK) the authors
(i) tested further GSK3 inhibitors and (ii) silenced GSK3-b using
RNA interference. Both, GSK3 (but not CDK) pharmacological inhi-
bition as well as siRNA targeting GSK3-b mRNA resulted in short
circadian periods indicating that indeed GSK3 is essential for nor-
mal circadian rhythms in mammalian cells potentially by regulat-
ing CRY2 and REV-ERBa abundance [50].

In 2009, Isojima et al. have been using the same library with
both murine NIH3T3 fibroblasts and U-2 OS Per2-promoter lucifer-
ase reporter cells. The ten most potent compounds with effects in
both cell lines lengthened the circadian period (also in primary
cells and SCN slice cultures) and again were associated with the
inhibition of kinase activity. TG003 and SP600125 reduced CKIe/d
activity dramatically and SP600125 (likely therefore) also
increased PER2 protein stability [84]. These results are in line with
previous reports describing the critical role of CKIe/d-mediated PER
phosphorylation in setting clock speed [89]. Although Isojima et al.
[84] and Hirota et al. [50] both screened the identical LOPAC
library, the overlap of their identified compounds was small – only
the kinase inhibitors roscovitine (inhibits CDK), SB 202190 (inhi-
bits p38 MAPK) and DRB (inhibits CKII) caused circadian pheno-
types in both screens. This is typical for screening endeavors [90]
and probably has multiple causes including different cell lines, dif-
ferent reporters and different cutoffs in hit definition.

The first truly large-scale screen for chemical circadian modula-
tors was reported again by Hirota et al. [85]. They screened about
120000 uncharacterized chemicals in human U-2 OS cells with a
Bmal1-promoter luciferase reporter. Among several identified
compounds affecting circadian period, the authors focused on a
purine derivate that drastically lengthened the circadian period
in a dose-dependent manner. A structure–activity relationship
(SAR) analysis revealed a three times more potent compound,
which they named longdaysin. To identify the molecular target of
longdaysin, the compound was conjugated to agarose beads and
binding proteins from cell lysates were analyzed using affinity
purification followed by mass spectrometry. This resulted in the
identification of several kinases as longdaysin binding partners, of
which CKId, CKIa and ERK2 can be inhibited by longdaysin. The
effect of longdaysin on circadian dynamics is likely due to a com-
bined influence on these kinases, since knocking them down with



Table 1
Circadian phenotype-based high-throughput chemical biology screens.

Library Cell line(s) Circadian phenotype(s) Targets Most active
compound(s)

Mechanism References

LOPAC (1280
compounds)

U-2 OS Bmal1-luc Short period (6 hits)
Long period (5 hits)

Kinases Indirubin-30-
oxime
Kenpaulone
SB216763
Chir99021

Inhibition of GSK3-b [50]

LOPAC (1260
compounds)

Primary screen:
NIH3T3 Per2-luc
U-2 OS Per2-luc
Follow-ups:
PER2Luc SCN and MEFs

Long period (10 hits) Kinases SP600125
TG003

Inhibition of CKIe/d
Stabilization of PER2

[84]

120000
uncharacterized
compounds

Primary screen:
U-2 OS Bmal1-luc
Follow-ups:
PER2Luc cells and tissues

Long period (1 hit selected) Kinases Longdaysin Inhibition of CKId, CKIa, ERK2
Stabilization of PER1 via
inhibition of CKId and CKIa

[85]

�500000 drug-like
compounds

U-2 OS Bmal1-luc Long period (1 hit selected) Kinases LH846 Inhibition of CKId
Stabilization of PER1

[86]

�200000
compounds

Primary screen:
PER2lucSV fibroblasts
Follow-ups:
U-2 OS Bmal1-luc
PER2Luc SCN/peripheral tissues
ClockD19/+ reporter cells

Long period (4 hits)
Reporter induction (2 hits)
Short period (5 hits), four of them
also enhanced amplitude

Kinases
Unknown
Unknown

Compounds
1–3
Compounds 5
and 6
Compounds
7–11

Inhibition of CKIe
Induction of cAMP
Unknown

[87]

�60,000 compounds Primary screen:
U-2 OS Bmal1-luc
Follow-ups:
U-2 OS Per2-luc
NIH3T3 Bmal1-luc/Per2-luc
PER2Luc SCN/lung

Long period/reduced amplitude
(1 hit selected)

CRY1/2 KL001 Inhibition of CRY1-FBXL3
binding
Stabilization of CRYs

[88]
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siRNA individually had only subtle effects on circadian period,
while a combined knockdown – similar to longdaysin – drastically
lengthened the circadian period. To search for targets of CKIa and
ERK2 within the core circadian oscillator (for CKId, PER proteins as
targets were already known) the authors performed
co-immunoprecipitation experiments and also found PER proteins
as predominant binding partners. Similar to the effect of inhibiting
CKId, also CKIa (but not ERK2) inhibition by longdaysin prevented
PER1 from proteasomal degradation – a likely molecular cause
for the period lengthening effect. Remarkably, the effects of long-
daysin on circadian dynamics have also been tested in vivo: repor-
ter zebrafish larvae show dose-dependent period lengthening
when treated with longdaysin [85].

In 2011, the same group (Lee et al.) reported yet another chem-
ical biology screen applying over 500000 drug-like compounds
again in U-2 OS expressing the Bmal1-promoter luciferase reporter.
Here, the benzothiazole derivate LH846 was shown to lengthen the
circadian period by over ten hours without affecting the amplitude.
Affinity purification of cellular targets of LH846 as described above
identified CKId as the primary target. LH846 inhibited kinase activ-
ity and had a stabilizing effect on PER1 protein. As in the case of
longdaysin the modulation of PER stability by LH846 might explain
the substantially longer period [91].

In 2012, Chen and colleagues published a library screen with
about 200000 synthetic compounds using murine fibroblasts from
Per2::lucSV reporter mice, where a PER2-luciferase fusion protein is
expressed from the endogenous Per2 locus. Out of the 530 primary
hits that affected period and/or increased amplitude, the authors
focused on those eleven compounds, whose effects were (i)
dose-dependent and (ii) similar in U-2 OS Bmal1-luciferase repor-
ter cells. Three of the four compounds found to lengthen the circa-
dian period (in SCN and peripheral tissues) also inhibited CKIe
activity. Two compounds that initially strongly induced reporter
signals were shown to enhance intracellular cAMP levels
dose-dependently. Five compounds shortening the period were
more effective in peripheral tissues than in SCN slices (none of
them are structurally related to GSK3 b inhibitors). The authors
called four of these compounds ‘‘clock enhancing molecules’’ since
they also increased the circadian amplitude to different degrees. In
fact, one even ‘‘rescued’’ the low amplitude of SCN explants derived
from ClockD19/+ reporter mice. Thus, the authors reasoned that
such compounds might be valuable for the treatment of
clock-associated (e.g. metabolic) diseases [87].

Finally, in 2012 Hirota et al. screened about 60000 compounds
in Bmal1-luciferase U-2 OS cells and found one that specifically tar-
gets a core clock protein [88]. The carbazole derivate KL001 length-
ened the circadian period dose-dependently and reduced
amplitude (also in different cell lines) but was less effective on
the SCN clock. An SAR analysis allowed the generation of an agarose
conjugate of KL001 that was successfully used to identify CRY pro-
teins as binding partners for KL001. Interestingly, the co-factor FAD
(flavin adenine dinucleotide) pocket of CRY1 seems to be the bind-
ing site for KL001: application of FAD as a competitor as well as
mutations in the FAD binding site of CRY1 resulted in reduced affin-
ity of KL001 to CRY1. In addition, the application of KL001 led to the
stabilization of CRY proteins probably via interfering with their
FBXL3-mediated proteasomal degradation, which is likely the cause
of the long circadian periods. Indeed, recent X-ray structural analy-
ses of CRY2 in complex with FBXL3 or KL001 could explain the
mechanistic basis of KL001 activity (for details see below) [92,93].
To explore a potential therapeutic function of KL001 beyond its
effect on the circadian core oscillator, Hirota et al. studied the effect
of KL001 on gluconeogenesis in hepatocytes. CRYs normally inhibit
the glucagon-induced upregulation of key gluconeogenetic
enzymes Pck1 and G6pc, an effect that is augmented when applying
KL001. As a consequence, glucagon-induced glucose production is
attenuated in KL001-treated hepatocytes. These results demon-
strate the ability of small molecules to regulate clock associated cel-
lular physiology setting the stage for the development of
therapeutic agents.

In conclusion, circadian phenotype-based chemical screens
have been successfully used to identify various compounds
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affecting circadian rhythmicity. Why did these screens mostly
reveal compounds that inhibit kinases rather than e.g. inhibitors
of CLOCK/BMAL1 transactivation activity? It is conceivable (and
to some extent even likely) that phosphorylations of clock proteins
are key events for regulating the clock speed [29] – more important
than any other step in the circadian circuit. However, it is also pos-
sible that kinase inhibition has pleiotropic effects on many differ-
ent cellular pathways that directly or indirectly affect circadian
rhythms. In addition, compounds affecting cellular health might
alter e.g. the metabolic state of the cells, which also could feed back
to the circadian oscillator. It is a difficult endeavor to vigorously
tease apart specific effects of identified compounds on clock pro-
tein kinases from indirect effects toward other cellular processes.
Therefore, it is important to identify the molecular targets of bioac-
tive compounds to analyze the mechanistic basis of their action. A
third, probably equally important aspect is that circadian
phenotype-based screens likely suffer from a selection bias toward
target proteins with binding pockets for small molecules, i.e. pro-
teins with catalytic clefts such as kinases, phosphatases or other
enzymes. Nevertheless, while most of these limitations are absent
in mechanistic screens with defined targets, circadian phenotype
screens have the potential to uncover novel clock mechanisms in
an unbiased manner.

5. Structural basis of target binding and chemical optimization

In recent years the analysis of the circadian oscillator function
at a structural level became an emerging topic. X-ray crystallogra-
phy experiments revealed high-resolution structures of circadian
clock proteins either alone or with binding partners [92,94–97] –
a prerequisite for rational design as well as structure-based chem-
ical optimization of small molecule compounds targeting clock
proteins. The first set of studies reported the structure determina-
tion of PER-ARNT-SIM (PAS, A and B) domains required for pro-
tein–protein interactions among PER proteins (Drosophila PER
and mPER2). While PAS domains of PER proteins are conserved
between mouse and Drosophila, they show differences in homod-
imeric PAS domain interactions [98,99]. In addition, structural
studies of mPER PAS-domains have also revealed diverse modes
of homodimerisation of the three PER homologes indicating speci-
fic circadian functions [100]. In 2012, Huang and colleagues
reported the crystal structure of CLOCK/BMAL1-derived fragments
each containing one bHLH (basic helix-loop-helix) and two tandem
PAS-A and PAS-B domains showing three interaction interfaces.
Interestingly, the PAS-B domain of CLOCK contains a specific bind-
ing pocket, which is occupied by tryptophan (Trp427) of the
BMAL1 PAS-B domain – a putative structural target region for
small molecules aiming to disrupt CLOCK/BMAL1 interaction
[94]. In general, PAS domains seem to be ideal for challenging cir-
cadian clocks with small molecule compounds, since (i) they are
integral constituents of many crucial protein–protein interactions
within the circadian oscillator and (ii) their evolutionary old role
as sensors of light, redox and other stimuli led to a specific PAS fold
with the capability of binding various natural small-molecule
metabolites.

The structural analysis of the mouse FBXL3 CRY2 complex [92]
and the mouse CRY1 structure indicate that the FAD co-factor
binding pocket of CRY proteins is involved in FBXL3 binding [95].
The carbazol compound (KL001) identified by Hirota et al. was
thought to prevent the binding of FBXL3 to CRY1 resulting in a
more stable CRY [88]. Indeed, a subsequent crystal structure of
CRY2 in complex with KL001 showed that one part of KL001 binds
to the FAD pocket of CRYs mimicking FAD while the other part of
KL001 is imitating the tail of FBXL3. These structural insights set
the stage for further chemical optimization of KL001. The authors
propose the introduction of additional functional groups to the car-
bazole ring of KL001 to even better imitate the pyrimidine struc-
ture of the FAD isoalloxazine, which would likely improve its
potency [93].

More recently, the crystal structure of mouse CRY1 in complex
with a C-terminal mouse PER2 fragment revealed four interaction
interfaces and may guide the rational design of small molecules
interfering with this interaction. Interestingly, the PER2 CRY1 com-
plex formation is regulated by the interplay of zinc binding and
disulfide bond formation within CRY1, which may allow the circa-
dian oscillator to sense the redox state of the cell [96]. mPER2
encloses the helical mCRY1 domain covering the binding sites of
FBXL3 and the CLOCK/BMAL1 heterodimer while the FAD binding
pocket is not engaged in PER2 binding. The PER2 CRY1 complex
structure provides further insights how alternative binding of
CRY1 to PER2, FBXL3, CLOCK/BMAL1 and/or FAD might regulate
the clock, which could be exploited for the design and chemical
optimization of small molecules specifically targeting those
interactions.

6. Future perspectives

Which are the right targets for identifying chemical compounds
with clock-modulating properties? First, the target should be drug-
gable, i.e. (i) it should be accessible to binding small-molecules that
are ideally orally bioavailable and (ii) small molecule binding
should alter the activity of the target. Second, the target should
modulate clock dynamics or influence input or output pathways.
Third, for a compound being specifically targeting the clock other
cellular pathways that might cause side effects upon inhibition
should not or only minimally be affected. While the druggability
of e.g. kinases has long been known and kinase inhibitors are fre-
quently used as drugs especially for cancer treatment, it remains
to be seen whether such inhibitors will be successful clock drugs
given their multiple roles in many cellular pathways. On the other
hand, many key players of the circadian core oscillator, whose
modulation potentially would lead to more specific clock effects,
need yet to be shown to be druggable. So far, small molecule bind-
ing to clock proteins – apart of kinases – has only been shown for
CRYs and nuclear receptors. It remains to be investigated, whether
other clock proteins show structural features (e.g. clefts or binding
grooves) necessary for binding small-molecule ligands with a rea-
sonable degree of potency.

The chemical circadian screens reported so far led to the iden-
tification of small molecules that predominantly affect circadian
period in oscillating cells. The characterization of novel inhibitors
of period-modifying regulatory enzymes such as CKI or GSK3-b
has elucidated mechanistic features of the molecular clockwork.
For example, the identification of CKIa as period-modulating and
PER stabilizing enzyme was a direct result of a high-throughput
chemical screen. Interestingly, ‘‘clock enhancing molecules’’
have restored rhythmicity in a clock mutant mouse, whereas the
CRY stabilizing effect upon KL001 treatment also affected
glucagon-induced glucose synthesis in hepatocytes. These data
highlight the potential of chemical circadian modulators to be
developed as effective remedies for a broad range of clock associ-
ates diseases.

The application of compounds on both SCN neurons and periph-
eral cells became state of the art in investigating the effects of
chemical substances on clock dynamics. In principle, a small mole-
cule drug affecting circadian dynamics could act in several ways:
(i) phase shifting agents might be useful, e.g. to treat jetlag or alle-
viate shift-work associated problems; (ii) molecules that reduce
circadian amplitude specifically in the SCN might be beneficial
for re-entrainment in jetlag-type situations since Zeitgebers have
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a larger effect on low amplitude oscillators; (iii) agents that
enhance circadian amplitude might have positive effects in situa-
tions where the circadian amplitude is reduced (elderly individuals
or certain disease states such as cancer or metabolic syndrome);
(iv) compounds that alter circadian period might be used for
treatment of genetic syndromes such as FASPS or DSPS that are
associated with altered circadian periods.

Unbiased screens with circadian dynamics as readout have iden-
tified a variety of compounds, however follow-up experiments
charcterizing the molecular targets are laborious and time-
consuming. Instead, mechanistic screens for small molecules that
perturb a specific molecular event might be the experiment of
choice in the future, as more and more crystal structures of clock
proteins become available allowing for virtual screening and hence
more focused compound libraries. To date, the best characterized
compound-clock target interaction is KL001 binding to CRYs, where
structural information is available. Other essential clock proteins
and their interactions might be equally suitable targets for
future chemical screens including PER-CRY, CLOCK-BMAL1,
CRY-CLOCK/BMAL1 with classical protein–protein interaction read-
outs. In addition, enzymes performing essential posttranslational
events such as acetylation, deacetylation or de-phosphorylation
might be putative targets, however, here specificity toward the
clock is likely difficult to achieve.

Depending on the application (see above) the development of a
tissue-specific drug targeting the clock might be desirable. For
example, for treating jetlag after travel across time zones, a drug
should phase shift the clocks while preserving the phase relation-
ship between SCN and peripheral clocks. This is probably very dif-
ficult since SCN and peripheral clocks have been shown to have
different sensitivities toward Zeitgebers; thus, it might be necessary
to develop SCN-specific clock targeting compounds. These might
include compounds affecting the coupling between SCN neurons
(e.g. VIP and its receptor), targeting SCN-specific proteins (e.g.
other G-protein coupled receptors) or second messenger pathways
(e.g. cAMP or Ca2+ signaling) that modulate circadian rhythmicity.
Novel high-throughput compatible SCN cell lines would be a very
helpful tool to achieve these goals.

A next step after identifying small molecules manipulating
circadian oscillator dynamics is to test whether they would have
beneficial effects on diseases associated with circadian clock
perturbation. Animal models for cancer, metabolic dysfunction
(diabetes, obesity) as well as mental disorders can be used to study
such effects. A first step in this direction was the application of
‘‘clock enhancing molecules’’ on SCN slices of Clock mutant mice:
Here, indeed, low circadian amplitude was ‘‘rescued’’; yet it remains
to be seen whether this would also alleviate the metabolic dysfunc-
tions observed in this mouse model. Also, synthetic REV-ERB ago-
nists that altered the circadian pattern of metabolic genes
improved the metabolic status of high-fat diet induced obese mice,
although it needs to be investigated what is cause and what is effect.

In summary, small molecules targeting the circadian oscillator
per se will not only be invaluable basic research tools – in addition
to genetic approaches – to further characterize the molecular basis
of circadian rhythm generation; they will also allow us to develop
novel treatment strategies for those types of diseases and syn-
dromes that are associated with altered or disrupted clocks.
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