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Abstract Coronalon, a synthetic 6-ethyl indanoyl isoleucine
conjugate, has been designed as a highly active mimic of octa-
decanoid phytohormones that are involved in insect and disease
resistance. The spectrum of biological activities that is affected
by coronalon was investigated in nine different plant systems
specifically responding to jasmonates and/or 12-oxo-phytodi-
enoic acid. In all bioassays analyzed, coronalon demonstrated
a general strong activity at low micromolar concentrations. The
results obtained showed the induction of (i) defense-related sec-
ondary metabolite accumulation in both cell cultures and plant
tissues, (ii) specific abiotic and biotic stress-related gene expres-
sion, and (iii) root growth retardation. The general activity of
coronalon in the induction of plant stress responses together
with its simple and efficient synthesis suggests that this com-
pound might serve as a valuable tool in the examination of
various aspects in plant stress physiology. Moreover, coronalon
might become employed in agriculture to elicit plant resistance
against various aggressors.

© 2004 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.

Key words: Coronalon; Indanoyl isoleucine conjugate;
Octadecanoid; Plant stress response

1. Introduction

Lipid-derived signal molecules, such as 12-oxo-phytodienoic
acid (OPDA) (Fig. 1, 1) and jasmonic acid (JA) (Fig. 1, 2), are
ubiquitously distributed in higher plants. These phytohor-
mones are mainly involved in plant development as well as
stress physiology including defense reactions which provide
resistance against herbivore or pathogen attack [1,2]. The bio-
synthesis of these octadecanoids, starting from the fatty acid
o-linolenic acid, was elucidated by Vick and Zimmermann [3].
Meanwhile, nearly all enzymes involved in this pathway have
been cloned [4]. The phytotoxin coronatine (Fig. 1, 3), an
amide of the polyketide coronafacic acid with the rare cyclo-
propyl amino acid coronamic acid [5], to a certain extent
mimics the biological activities of OPDA and/or JA. The re-
sponses elicited by these compounds include: tendril coiling,
biosynthesis of terpenoids and other volatiles, expression of

*Corresponding author. Fax: (49)-3641-571202.
E-mail address: boland@ice.mpg.de (W. Boland).

genes in tomato or barley (e.g. jasmonate-induced proteins,
JIPs), fruit drop, and accumulation of phytoalexins [6-10].
However, some differences between the effects of coronatine,
OPDA, and JA have been well documented in these studies.
Coronatine was isolated for the first time from a fermentation
broth of the phytopathogenic bacterium Pseudomonas syrin-
gae var. atropurpurea [5,11] but is also produced by several
other pathovars of P. syringae, e.g. tomato and glycinea. In
addition to the conjugation with coronamic acid, other amino
acids have also been found to generate bioactive amides with
coronafacic acid, for example norcoronamic acid, L-isoleucine,
and vr-valine [12].

In comparison to jasmonates, which in some bioassays must
be applied in comparatively — for phytohormones — high con-
centrations (>200 uM), coronatine proved to be much more
active [7,10,13]. Due to the scientific and economic interest in
coronatine’s ability to modulate secondary metabolism and
elicit plant defense, many groups have attempted to discover
an efficient and high-yielding synthetic route to coronatine or
structurally related, highly effective compounds. However, the
complex stereochemistry of coronatine required labor-inten-
sive and lengthy syntheses. Among the more than 15 synthetic
routes that have been published to date, none is short and
high-yielding [11].

In previous work, the synthesis of a 6-ethyl indanoyl iso-
leucine conjugate (2-[(6-ethyl-1-oxo-indane-4-carbonyl)-ami-
nol-3-methyl-pentanoic acid methyl ester) (coronalon: Fig.
1, 4), which was designed as a structural mimic of coronatine,
has been established [14]. This new coronatine mimic is more
effective in various biological assays compared to its simpler
indanoyl isoleucine conjugate precursor described earlier [13].
While that precursor also stimulates plant secondary metabo-
lism, its spectrum of biological effects resembles more those
responses elicited by JA rather than those elicited by other
octadecanoids, resulting in a less broad range of biological
responses for the indanoyl isoleucine conjugate than observed
for the 6-ethyl-derivative coronalon [8]. As a consequence of
this observation, other 6-alkyl indanoyl isoleucine conjugates
have been synthesized in addition to coronalon as potential
inducers of plant secondary metabolism [8,14,15]. However,
coronalon appeared to be the most effective elicitor of certain
plant responses, such as volatile biosynthesis in Lima bean,
the promotion of fruit and leaf drop in citrus trees, and phy-
toalexin synthesis and accumulation in soybean [7,8,14].

In the present work, we analyzed the impact of coronalon
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Fig. 1. Structures of octadecanoid-related signaling compounds.
(1) OPDA; (2) JA; (3) coronatine; (4) coronalon; (5) phytoprostane
B,; (6) anigorufone.

on seven additional species, including agronomically impor-
tant plants such as tobacco, tomato, barley, and soybean. We
examined a suite of inducible plant responses, which are well
known to be important in the stress physiology of higher
plants. The high biological activity in the low micromolar
range and the general usefulness reveal coronalon to be a
valuable and versatile elicitor of secondary metabolism of
plants and other responses.

2. Materials and methods

2.1. Salicylate (SA) analysis in Phaseolus lunatus

Experiments were carried out using Lima bean, P. lunatus (‘Ferry
Morse’ var. Jackson Wonder Bush). Individual plants were grown
from seeds in a plastic pot (diameter 5.5 cm) with sterilized potting
soil at 23°C and 60% humidity using daylight fluorescent tubes at ca.
270 uE/m?/s with a photo phase of 16 h. Experiments were conducted
with 12-16-day-old seedlings showing two fully developed primary
leaves. These plantlets were cut and placed into a 100 uM coronalon
solution. Samples were taken after 0, 7, and 10 h in triplicate. The
quantification of endogenous SA by gas chromatography/mass spec-
trometry was adapted from the protocol of McCloud and Baldwin
[16] originally developed for determination of endogenous JA, and
performed as described recently [17] using 1 g of treated leaves. The
amounts of endogenous SA were calculated from the peak areas of
SA methyl ester in comparison to the standard using calibration
curves determined independently.

2.2. Benzo[cJphenanthridine alkaloid analysis in Eschscholzia
californica
Plant cell suspension cultures of E. californica were routinely grown
in Linsmaier—Skoog medium over 7 days at 23°C on a gyratory shak-
er (100 rpm) in diffuse light (750 lux) [18]. For induction experiments,
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each well of a 24-well plate was inoculated under sterile conditions
with 1 ml of a 3-4-day-old E. californica cell suspension culture grown
under the conditions described above. Each well was treated with 1 pl
of coronalon solutions achieving end concentrations ranging from 0.1
to 100 uM. Each dose dependence experiment contained negative
controls that comprised cells treated only with the appropriate
amount of solvent (EtOH) as used to dissolve the test substance.
The multiwell plates were then sealed with parafilm and incubated
for 4 days under growth conditions. For the extraction of alkaloids
from E. californica, the cell suspension culture contained in each well
was transferred to a 1.5-ml conical plastic tube. The cells were col-
lected by centrifugation at 14000X g for 10 min at room temperature.
After removing the aqueous supernatant, 1 ml of an 80% ethanol
solution containing 0.1% HCI was added to the pellet. This suspension
was incubated for 2 h at 60°C. Insoluble material was removed by
centrifugation for 10 min at room temperature and 14000X g. The
clear supernatant was used for spectrophotometric quantitation of
benzo[c]phenanthridine alkaloids at 490 nm on a Microplate Reader
(MR600, Dynatech).

2.3. Flavonoid analysis in soybean cell cultures

Cell suspension cultures of soybean (Glycine max L. cv. Harosoy
63) were grown at 26°C in the dark on a rotary shaker at 110 rpm and
were sub-cultured in fresh medium every 7 days [7]. Induction experi-
ments, harvesting, flavonoid extraction, and sample preparation was
performed as described [7]. The sample was finally dissolved in 200 pl
EtOH and analyzed by high performance liquid chromatography
(HPLC) (LiChrosorb RP-18, 4250 mm; flow rate 1 ml/min; two-
step gradient, from 40% to 75% MeOH in 3 min and from 75% to
100% MeOH in 14 min). Compounds were identified and quantified
by using reference substances.

2.4. Nicotine analysis in tobacco

Nicotiana attenuata seeds were germinated in soil and grown indi-
vidually in hydroponic chambers [19]. Plants were treated with 0.6 uM
coronalon for 125 h. For nicotine analyses, 30 mg of the ground dry
material was extracted in 1.5 ml 40% MeOH, 0.5% acetic acid with
shaking (Vortex) for 2 h and subsequently centrifuged for 12 min.
Samples were analyzed by HPLC (Inertsil 3 um, 4.6 X 150 mm; flow
rate 1 ml/min; three-step gradient from 0.25% H3;PO4 to 12% MeCN
in 6 min, then to 18% MeCN in 4 min, and finally to 58% MeCN in
20 min).

2.5. Phenylphenalenone analysis in Wachendorfia thyrsiflora

Sterile root cultures of W. thyrsiflora were grown as described [20]
and treated with 0.8 mM coronalon. After 4 days, roots were har-
vested, ground in liquid nitrogen and extracted twice with acetone at
room temperature for 1 h each. After removing the solvent the sam-
ples were dissolved in acetone and analyzed by HPLC (LiChrospher
RP-18, 4250 mm; flow rate 0.5 ml/min; gradient from 30% MeCN
to 65% MeCN in 30 min and from 65% to 90% MeCN in 5 min).
Compounds were identified and quantified by using authentic refer-
ence substances.

2.6. Northern blot analyses in barley and tomato

Tomato plants (Lycopersicon esculentum cv. Moneymaker) were
grown for 8 weeks, mid-sized leaves harvested and treated at 22°C
in coronalon solutions according to [9]. After incubation leaves were
washed twice with distilled water and frozen in liquid nitrogen until
use. RNA extraction (0.5 g fresh weight), electrophoresis (10 ug total
RNA per lane), blotting, and hybridization with a 3?P-labelled 800-bp
fragment of a cDNA encoding proteinase inhibitor 2 of tomato (pin2)
were conducted as described [21].

Primary leaves of 6-day-old seedlings of barley (Hordeum vulgare
cv. Salome) were used to detect the transcripts of the jasmonate-in-
ducible protein of 23 kDa (JIP23), in response to coronalon (0, 5, 10,
21, 50 uM). Incubation was carried out for 24 h in the dark. Growth
of seedlings, RNA extraction and Northern blot analysis were per-
formed as described [22]. 10 pg total RNA of leaf segments was
loaded per lane.

2.7. Root length assay in Arabidopsis thaliana

Sterilized A. thaliana seeds (wild-type Columbia and jin/ mutants
[23]) were sown on square agar plates of MS medium supplemented
with 1% sucrose, 0.5 g/l MES, and 0.8% Phytagel containing 1 or
10 uM coronalon or 10 uM methyl jasmonate (MeJA). They were
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incubated at 4°C for 2 days and placed vertically in a growth chamber
at 21°C in continuous light for 10 days.

3. Results

3.1. Coronalon effects on secondary metabolites

3.1.1. Methyl salicylate induction in Lima bean. The treat-
ment of P. lunatus with coronalon results in a strong emission
of a volatile blend containing methyl salicylate (MeSA) as a
very prominent compound [14]. MeSA and its precursor, SA,
represent important signal molecules in plant defense reac-
tions, in particular in mediating systemic acquired resistance
that is turned on by pathogen attack [24]. Here, the endoge-
nous level of MeSA was determined after 7 h and 10 h upon
treatment with a 100 uM solution of coronalon in Lima bean
(Fig. 2A). A nine-fold increase of MeSA within 10 h was
observed.

3.1.2. Benzo[c]phenanthridine induction in E. californica.
Cell suspension cultures of E. californica are known to pro-
duce brightly red-colored benzo[c]phenanthridine alkaloids
when challenged with coronatine or MeJA [10]. A 4-day treat-
ment with various concentrations of coronalon (0.1-100 uM)
showed the strong induction of these alkaloids in a concen-
tration-dependent manner in E. californica (Fig. 2B).

3.1.3. 7,4-Dihydroxyflavone ( DHF) induction in soybean.
JA, OPDA, and coronatine have been described to cause the
synthesis of various flavonoids in soybean cell suspension cul-
tures although the blend of flavonoids is not identical [7,18].
Moreover, the addition of both OPDA and coronalon led to
the accumulation of the soybean phytoalexins (glyceollins)
which are also elicited by pathogen attack or elicitor treat-
ment [7,25]. Besides glyceollins, a novel flavonoid, DHF, was
observed to be induced in a concentration-dependent manner
during coronalon treatment for 48 h (Fig. 2C).

3.1.4. Nicotine induction in tobacco. In N. attenuata leaves,
the level of the toxic alkaloid nicotine increases upon wound-
ing or treatment with jasmonates [26]. Coronalon (100 pM)
was used to analyze its nicotine-inducing activity compared
with a water control. The nicotine concentrations in the whole
plants were determined to be 1.7£0.7 pug/mg dry mass in the
control and 11.3%£1.5 pg/mg dry mass in the coronalon-
treated plants.

3.1.5. Phenylphenalenone accumulation in W. thyrsiflora.
Phenylphenalenones are secondary metabolites often used for
plant taxonomy. Recently, in banana species these compounds
have been observed as phytoalexins accumulating upon nem-
atode attack [27]. In this study, coronalon (0.8 mM) treatment
elicited the accumulation of the phenylphenalenone, methoxy-
anigorufone, in W. thyrsiflora cultured roots from 1.9 pg/g
fresh weight in the untreated control up to 16.3 pg/g fresh
weight.

3.2. Induction of gene expression in barley and tomato

In order to assess the impact of coronalon on gene expres-
sion, two different stress-related genes were analyzed by
Northern blot analysis in this study. Upon hyperosmotic
stress, wounding or challenge with JA, barley synthesizes cer-
tain proteins referred to as JIPs [28]. JIP23 is a typical,
strongly JA-induced protein of still unknown function.
To investigate the coronalon activity on inducing JIP23
gene expression in barley seedlings, segments of primary
leaves of 6-day-old seedlings of barley were floated on aque-
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Fig. 2. Induction of secondary metabolite accumulation in various
plants upon treatment with coronalon. A: Time-dependent induc-
tion of salicylic acid in Lima bean leaves. Samples were taken at
the beginning (0 h), 7 h and 10 h after elicitation with coronalon
(100 uM). The salicylate level at =0 represents the resting level.
B: Coronalon concentration-dependent induction of benzo[c]phenan-
thridine alkaloids in E. californica cell suspension cultures. Sangui-
narin is shown as a representative of the family of benzo[c]phenan-
thridine alkaloids. C: Coronalon concentration-dependent induction
of 7.,4'-dihydroxyflavone in soybean cell suspension cultures. The re-
sults are the mean=S.D. (n=3).
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Fig. 3. Northern analyses of two jasmonate-inducible genes.
A: Concentration-dependent effect of coronalon on the transcript
level of JIP23 in barley leaves. B: Concentration- and time-depen-
dent effects of coronalon on the mRNA expression level of Pin2 in
tomato leaves. 10 ug total RNA was added per lane.
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10 uM

20 uM

ous solutions containing 5-50 uM coronalon and analyzed
after 24 h of incubation. As demonstrated in Fig. 3A, JIP23
gene expression was clearly up-regulated and the correspond-
ing mRNA accumulated even at the lowest coronalon concen-
tration applied.

In tomato plants, pin2 mRNA accumulation was identified
as a well-known wound response marker [29]. Leaves were cut
at the petioles and floated on aqueous solutions containing 2,
10, or 20 uM coronalon. Samples were taken after several
time intervals ranging from 0 to 48 h for Northern blot anal-
ysis. A strong, fast, and transient induction of pin2 transcripts
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Fig. 4. Effects of coronalon and MeJA on the root growth of A.
thaliana seedlings. Wild-type seeds (WTC) and jin/ mutant seeds
which were less sensitive to JA were treated with coronalon or
MeJA for 2 days. After 10 additional days of incubation the root
lengths of the particular seedlings were determined.

was observed at all concentrations tested (Fig. 3B). Interest-
ingly, the induction pattern obtained with 10 uM coronalon
was both longer-lasting and stronger compared with the in-
duction obtained with 20 uM or 2 uM inductor. This result
suggests an optimum in the dose-response relationship.

3.3. Root growth retardant activity in A. thaliana

The presence of JA and MeJA has a strong impact on the
root growth in A. thaliana seedlings, i.e. JA-treated seedlings
have shorter and more branched roots [23]. This effect has
been used to isolate mutants with lower sensitivity to MeJA.
One of these JA-insensitive mutants, jinl, and the correspond-
ing wild-type were used to compare the influence of coronalon
with that of MeJA. As expected, a difference in root length
was observed in the wild-type versus the jin/ mutant when
treated with 10 uM MeJA (Fig. 4). Treatment with 1 uM
coronalon showed an effect comparable with that obtained
by MeJA application in both plants. However, using 10 uM
coronalon the root growth in wild-type was almost completely
inhibited and also the jin/ mutant showed a strongly reduced
root growth (Fig. 4).

Table 1
Survey of coronalon-induced reactions in various plant species
Species Induction Physiological relevance Reference
Phaseolus lunatus Volatiles Herbivore attack [14]
Medicago truncatula Volatiles Herbivore attack Unpublished result
Glycine max* Glyceollins Pathogen challenge [7]

DHF Flower color This work
Bryonia dioica Tendril coiling Touching [8,14]
Citrus sinensis Fruit, leaf drop Senescence [8]
Nicotiana attenuata Nicotine Herbivore attack This work
Eschscholzia californica® Benzo[c]phenanthridines Elicitation This work
Wachendorfia thyrsiflora® Phenylphenalenones Nematode infection This work
Lycopersicon esculentum Proteinase inhibitor-2 Herbivore attack This work
Hordeum vulgare JIP23 Osmotic stress This work
Arabidopsis thaliana Root growth inhibition Root development This work

2Cell suspension culture.
PRoot culture.
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4. Discussion

Linolenic acid-derived octadecanoids such as OPDA and
JA are widely distributed phytohormones in higher plants
with a broad spectrum of biological effects in plant develop-
ment, insect and disease resistance, and stress physiology [1,2].
Exogenous application of octadecanoids induces specific
stress-responsive genes as well as the synthesis and accumu-
lation of various secondary metabolites, including defense-re-
lated compounds. Many of these plant responses can also be
elicited by the bacterial phytotoxin coronatine [8,10]. Based
on the structure of coronatine, 6-substituted indanoyl isoleu-
cine conjugates have been synthesized in order to develop
synthetically produced compounds with similar or even iden-
tical biological activities compared to coronatine and the oc-
tadecanoids [13-15,30]. As outlined recently by Lauchli and
Boland [8], one advantage of these compounds over other
signaling molecules lies in the chemistry of the indanoyl ami-
no acid conjugates which allow an easy synthesis of related
compounds that can be tuned for particular requirements and
biological activities. The 6-ethyl indanoyl isoleucine conju-
gate, coronalon, proved to fulfill the expected standards
when applied to induce tendril coiling on Bryonia dioica or
the induction of secondary metabolite accumulation [7,13-15].
These results encouraged us to further investigate the spec-
trum of possible physiological activities of coronalon with a
focus on typical octadecanoid-inducible responses. In addition
to their ability to elicit a broad range of inducible biological
responses, jasmonates and OPDA revealed some diversity in
their particular activity patterns suggesting that these signal-
ing molecules are involved in different physiological signaling
processes [31,32]. Coronalon, however, seems to combine the
activity profiles of the two groups of octadecanoids. For ex-
ample, the synthesis of DHF (Fig. 2C) and glyceollin in soy-
bean is mainly induced by the early octadecanoid OPDA
[7,33], while, in contrast, nicotine synthesis and JIP23 gene
expression (Fig. 3A) are typically jasmonate-triggered reac-
tions [26,28].

In the present study, we chose economically important
crops such as tobacco, tomato, soybean, barley, and Lima
bean to investigate the responsiveness of these plants to coro-
nalon treatment as a prerequisite for any possible applications
in field studies or as elicitors of phytoalexin biosynthesis in
cell cultures. The activity of coronalon in all these plant spe-
cies belonging to various plant families as well as in differ-
entiated tissue and cell cultures (soybean, E. californica, W.
thyrsiflora) indicates an extremely high impact of this com-
pound on higher plants (Table 1) that is at least comparable
with the octadecanoid phytohormones but probably more
general. As suggested by some preliminary results (data not
shown), coronalon even mimics further oxygenated derivatives
of polyunsaturated fatty acids present in a complex mixture of
signaling compounds referred to as oxylipins [34], including
the recently discovered phytoprostanes (e.g. Fig. 1, 5) [35].
The latter share with the indanoyl isoleucine conjugates the
planar structure of the central ring system. Because oxylipins
are believed to be involved in host responses to hostile in-
vaders and herbivores and coronalon indeed efficiently in-
duced accumulation of phytoalexins and defense-related com-
pounds in various plants (Figs. 2 and 3A), it might be
employed to prepare and strengthen plants for aggressors.

Although the role of octadecanoids is often regarded as
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mainly defense-related, these chemical signals certainly fulfill
a broader range of functions in plant stress physiology and
development [1,2]. Thus, the effects of coronalon were inves-
tigated on the root growth of A. thaliana seedlings and os-
motic stress response in barley. This latter abiotic stress — as
well as jasmonates — induces the expression of a specific gene,
JIP23 [28]. As shown in Fig. 3B, coronalon was efficient in the
induction of JTP23 mRNA accumulation also, substituting the
stress factor. Furthermore, on wild-type A. thaliana plants,
coronalon at a concentration of 1 uM had the same inhibitory
effect on root growth as MeJA (10 uM) (Fig. 4) confirming its
high activity. Moreover, on A4. thaliana mutants (jinl) that are
less sensitive to jasmonates [4], coronalon again resembled
MelJA activity (Fig. 4) suggesting that both signaling com-
pounds initiate the same signaling pathway.

The extreme potency of coronalon (Table 1) and its deriv-
atives may enhance their value as agrochemicals; they need
only to be applied in very small doses to elicit an effect, a trait
of both economic and environmental advantage. However, the
specificity of these compounds is not yet entirely understood
and side effects, both desirable and undesirable, have to be
expected. A complete understanding of their physiological ef-
fects is of prime importance and might aid in the design of
substances with specificity, potency and persistence tailored to
particular needs.
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