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A b s t r a c t - - A  Runge-Kut ta  method is developed for the numerical solution of initial-value problems 
with oscillating solution. Based on the Ftunge-Kutta Fehlberg 2(3) method,  a Runge-Kut ta  method 
with phase-lag of order infinity is developed. Based on these methods  we produce a new embedded 
Runge-Kut ta  Fehlberg 2(3) method with phase-lag of order infinity. This method is called as Runge- 
Ku t t a  Feldberg Phase Fi t ted  method (RKFPF) .  The numerical results indicate tha t  this new method  
is much more efficient, compared with other  well-known l:tunge-Kutta methods,  for the numerical 
solution of differential equations with oscillating solution, using variable step size. 

1. INTRODUCTION 

We consider the numerical solution of systems of ODEs of the form 

y' (1.1) 

with oscillating solution. 
We note that, over the last few years, Runge-Kutta methods [1-4] have been developed for 

the numerical solution of (1.1), characterized by the phase-lag property introduced by Brusa and 
Nigro [5]. To these methods should be also added muitistep with minimal phase-lag methods, 
dealing with the numerical integration of the initial value problem: 

y" = f(z ,y) .  (1.2) 

We are referred to the works [5-8], as well as to the works [9-16]. All these papers deal with 
methods of various orders and recently works have been published [12,14,16] dealing with the 
treatment of the same problem but of orders up to infinity. 

In the present paper, a Runge-Kutta Fehlberg 2(3) method with phase-lag of order infinity 
is developed. So, a new embedded Runge-Kutta Fehlberg method 2(3) is obtained. It must be 
noted that for the new method, we must know the frequency of a problem or an approximation 
of this. 

2. THE NEW METHODS 

2.1. Formulation of the Method 

Conventional Runge-Kutta methods use small step size for the integration of equations de- 
scribing free oscillations, in order to obtain accurate approximations along the intervals used. In 
our ease, the proposed method is suitable for a long interval integration step, not only when the 
oscillating equation is subject to free oscillations of high frequency, but also in the case of forced 
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oscillations of low frequency. In general, these methods are much more accurate, compared with 
other classical ones, used in problems with oscillating solution. 

To develop the new method we use the test equation, 

dy 
dx - i v y, v real. (2.1) 

Due to the reasons described in [1], we shall confine our considerations to homogeneous phase- 
lag, and based on its definition given by van der Houwen and Sommeijer [1], we shall use a test 
equation with an exact solution of the form e i~=. However, as it is shown by the numerical results 
of Section 6, inhomogeneous problems can be successfully dealt with by increasing the order of 
homogeneous phase-lag. By comparing the exact and the numerical solution for this equation, 
and by requiring that  these solutions are in phase with maximal order in the step-size h, we 
derive the so-called dispersion relation. 

For first-order equations we write the m-stage explicit Runge-Kutta method in the matrix 
form: 

0 

a l  

a 2  

a m  

0 
blo 
b2o 

bmo 

b21 

b r n l  • • • b r u i n -  1 

CO C l • . .  Cm- -  2 

CCo c e l  . . . . . .  C C r n -  1 

(2.2) 

Application of (2.2) to (2.1) yields the numerical solution: 

y = a 2 y  and a. = A m ( H  2 ) + i g B m ( H 2 ) ,  H = v h ,  (2.3) 

where Am and Bm are polynomials in H 2, completely defined by the Runge-Kutta  parameters 
ai, bij, and ci, i = 1 , . . . , 3 ,  j = 1 , . . . , i  - 1. The amplification factor is a .  = a.(H),  and Yn 
denotes the approximation to y(xn). 

A comparison of (2.3) with the solution of (2.1), i.e., y(xn) = Yo exp(inH), leads to the 
definition of the dispersion or phase error or phase-lag, and amplification error [1]. 

t (H)  : H - arg[a.(H)], a(H) = 1 - l a . ( H ) l .  (2.4) 

If t (H)  = O(H r+l) and a(H) = O(H '+I ) ,  then the method is said to be phase-lag order r and 
dissipative order s. 

From (2.4), it follows that  

a(H) = 1 - ~/[A,,~2(H 2) + H 2 Bm2(H2)] (2.5) 

and, hence, 

cH r+l. (2.6) tan(H)  - H LA.,(H2) j = 

It is obvious that  to have phase-lag of order infinity it must be: 

tan(H) (2.7) 
H [ A , - , , ( H 2 ) J  " 

DEFINITION 1. The interval in which [a,[ < 1 /s called the interval of imaginary stability. 
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3. D E R I V A T I O N  O F  T H E  A P P R O X I M A T I N G  S C H E M E S  

Noting that  in Fehlberg's method [17], the assumptions for the coefficients of (2.2) are ha0 - co, 
hal = Cl, baa - ca, aa = 1, we derive the coefficients ai and bq as it can be seen in the Appendix. 

If  we apply the method (2.2) with coefficients, ai, blj, and ci, i - 0, 1,2 and j = 0,1, given in 
the Appendix to the test equation (2.1), we have (2.3) with m = 2, where 

H a As(H a) = 1 - -~-  and Ba(H a) = 1 - [as (3a~ - 4)] H a 
12 (al - 2aa) (3.1) 

From (2.7), we have that  to have phase-lag of order infinity it must be: 

8aa [H (H a + 3) cos(H) - 3 sin(H)] 
3 {H[aa H a - 2 (H a + 2)] cos(H) + 4sin(H)}" (3.2) a 1 _~-- 

From (2.5), it follows that:  

a(H) = 3at(2aa - 1 ) - 2 a a  
12(al - 2a2) H4+O(H6)" (3.3) 

Also, from Definition 1, it follows that  the interval of imaginary stability is 

(0,oo) - {0.514480549119086}. 

So, we have the next theorem. 

THEOREM 1. The method (2.2), with the coefficients given in the Appendix, is second order 
algebraic, has phase-lag of  order infinity for the al given in (3.2), is dissipative order four, and 
has an interval of  imaginary stability equal to (0, c~) - {0.514480549119086}. 

If we apply the method (2.2), with the coefficients ai, bij, and cci, i = 0,1,2,3 and j = 
0, 1 , . . . ,  i - 1, given in the Appendix, to the test equation (2.1), we have (2.3) with m = 3 where 

H a as (3aa - 2 )  ( 3 a l  - 4 )  H 4 H a 
Aa(H 2 ) = 1 - - ~ - +  72 (a, - 2aa) (as - 1 )  and Ba(H a ) = l - - ~ -  (3.4) 

From (2.7), we have that  to have phase-lag of order infinity it must be: 

4aa {H [3aa WI(H) - 4Wa(H)] cos(H) - 36 (as - I) sin(H)} 
al - - - -  - -  3 {H [3aa a H'  - 2aa W3(H) -{- 4W4(H)] cos(H) + 24 (a2 - I) sin(H)}' 

where (3.5) 

WI(H) = H 4 + 4 H  2 + 12, 

Wa(H) = H 4 + 3H a + 9, 

W3(H) = 3H 4 + 4H 2 + 12, 

W4(H) = H 4 + 2H 2 + 6. 

From (2.5), it follows that:  

a(H) = 3al (3a2 a - 3 a a  + 1) - 2 a a ( 3 a a  - 1) 
36 (al - 2a2) (as - I) H4 + O(H6)" (3.6) 

Also from Definition 1, it follows that  the interval of imaginary stability is 

(0,oo) - {1.26962171393343}. 

So, we have the next theorem. 

THEOREM 2. The method (2.2) with the coefficients given in the Appendix is third order alge- 
braic, has phase-lag of  order infinity for the al given in (3.6), is dissipative order four and has an 
interval of  imaginary stability equal to (0, oo) - {1.26962171393343}. 
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4. N U M E R I C A L  I L L U S T R A T I O N S - - D I S C U S S I O N  

There are a lot of problems in applied sciences and engineering which are expressed by differ- 
ential equations with oscillating solutions. 

The method described in this paper is used for the solution of the problem (1.1), for problems 
of higher order which can be analyzed on a set of first order equations, and for inhomogeneous 
problems. 

The new method can be used for cases where we want to use a variable step procedure. So, we 
consider the second scheme with order three to estimate the local truncation error of the scheme 
with order two. The calculations in the n th step are following a truncation error estimate, TEC, 
given by TEC = lyn 3rd - yn2nd I where 3rd or 2nd is the order of the scheme, respectively, and 
our variable step procedure is the following 

If TEC _< TOL, then h,, = 2hn_ 1, 

I f T O L  < TEC < 10 TOL, then h ,  = ha, 
1 

I f T E C  > 10 TOL, then ha = ~ hn-1. 

4.1. A Model Problem 

Consider the equation 

with initial condition y(0) = (1, 0) T. The exact solution is given by 

[ cos( z) ] 
y = L_s in(~z  ) . (4.2) 

In Table 1, we present the maximum absolute errors in y(1), in units of 10 -6, for the integration 
interval [0, Xend], where Xend ---- 100, for ta = 5 and for various TOL's and stepsizes h, using our 
new modified Fehlberg method 2(3), the Fehlberg method 2(3), and the Fehlberg 4(5). 

Table 1. Max imum absolute  error  in the range [0,100] for Prob lem (4.1) in uni ts  
of 10 -6  . h0 = initial stepsize = 0.001. 

T O L  Max i m um  stepsize 

R u n g e - K u t t a  m e t hod  

New Fehlberg Fehlberg 

2(3) 4(5) 

10 -2  0.512 0.128 0.256 

10 -3  0.512 0.128 0.256 

10 -4 0.256 0.064 0.128 

10 -5  0.128 0.032 0.064 

10 -6  0.128 0.032 0.064 

New 

Maximum absolute  error 

Runge -Ku t t a  m e t h o d  

Fehlberg Fehlberg 

2(3) 4(5) 

90651 100215 83123 

7624 18123 6921 

3352 10105 3153 

153 1120 148 

6 124 6 

4.2. Inhomogeneous Equation 

Consider the equation 

with exact solution, 

y .  = _to2 y + (~p2 _ 1) s in(t) ,  t _> 0 (4.3) 

y(x) = cos(~x) + sin(~x) + sin(x), ~ )> 1. (4.4) 

The exact solution of this problem consists of a rapidly and a slowly oscillating function; 
the slowly varying function is due to the inhomogeneous term. The high-order phase-lag takes 
care of the rapidly oscillating function, and the algebraic order takes care of the slowly varying 
component. In Table 2, we present the values of the maximum absolute errors in y, in 10 -4, for 
various TOL's  and stepsizes, using the same methods as in Problem (4.1). We call Xend the end 
point of integration. 
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Table  2. M a x i m u m  abso lu t e  e r ror  in  t h e  r a n g e  [0,100] for  P r o b l e m  (4.3) in  u n i t s  
of  10 - ° .  h0 = ini t ia l  s teps ize  ---- 0.001. 
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T O L  M a x i m u m  stepsize  

R u n g e - K u t t a  m e t h o d  

New Fehlberg  Feh lberg  

2(3) 4(5) 

10 - 2  0.512 0.128 0.256 

10 - 3  0.256 0.064 0.128 

10 - 4  0.256 0.064 0.128 

10 - 5  0.128 0.032 0.064 

10 - 0  0.128 0.032 0.064 

M a x i m u m  abso lu t e  er ror  

R u n g e - K u t t a m e t h o d  

New Feidberg  Fehlberg  

2(3) 4(5) 

120324 130123 100815 

6421 12218 5913 

2231 8423 1921 

208 1015 190 

20 108 18 

4.3. A Nonlinear Problem 

We consider the non-linear problem: 

y" + 100y = sin y, y(0) = 0, y'(0) = 1. (4.5) 

We solved Problem (4.5) using the same methods as in Problems (4.1) and (4.3). In Table 3, 
we present the values of the maximum absolute errors in y(41r) = -0.059137849898, in 10 -4, for 
various TOL's  and stepsizes, using the same methods as in Problems (4.1) and (4.3). 

Table  3. M a x i m u m  abso lu t e  e r ror  in the  r ange  [0, 41r] for P r o b l e m  (4.5) in un i t s  
of  10 - 4  . h0 -- ini t ia l  s teps ize  = 0.001. 

T O L  M a x i m u m  stepsize  

R u n g e - K u t  ta  m e t h o d  

New Fehlberg  Feh lberg  

2(3) 4(5) 

M a x i m u m  abso lu t e  er ror  

R u n g e - K u t t a  m e t h o d  

10 - 2  2.048 0.512 1.024 

10 - 3  2.048 0.256 0.512 

10 - 4  1.024 0.128 0.512 

10 - 5  1.024 0.128 0.256 

10 - e  0.512 0.128 0.256 

10 - ?  0.512 0.128 0.256 

10 - s  0.512 0.128 0.256 

New Feldberg  Fe ldberg  

2(3) 4(5) 

180324 220123 175437 

70567 100125 65789 

15459 45237 10567 

1356 5678 1134 

231 1167 209 

3 94 3 

0 156 0 

4.4. Hyperbolic Equation 

~u ~u 
Ot - az  O < x < l ,  t > O ,  (4.6) 

u(t,x) = O, u(O,z) = sin(~r2z2). 

Discretization of ~ by symmetric differences at internal grid points, and one-sided differences 
at the boundary point x = 1 yields the system 

"0 - 1  
1 0 

dy 1 . .  -~- = p a x  

- 1  

o o " ° .  "o .  

1 0 
- 1  4 

y -  

- 1  
- 3  

(4.?) 
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In order to test the capability of the various methods mentioned above and to stay in phase 
with the exact solution, we have concentrated on approximating the zeros of the solution y. By 
choosing AS = 1/50, we found that the 20 th component of the exact solution vector y reaches 
its 500 th zero at the point 

$500 = 33.509996948 . . . .  (4.8) 

Its numerical approximation, us00, was obtained by integrating with fixed step size and by 
applying a cubic spline interpolation based on 10 neighboring step points tn = to + n h, where h 
is the step size in the experiment under consideration. The accuracy of this approximation, 
relative to the distribution of the successive zeros on the t-axis, was measured by the value: 

RELERR= S501 Ss0o ' 

where Sum denotes the 501 st zero of the solution y(20). 
In Table 4, we present the RELERR values by the same methods of the previous examples. 

In this example, we use fixed step size. The step sizes shown in the second column were chosen 
such that all methods require the same number of right-hand side evaluations. Because all the 
methods are embedded, for this example, we use the high order method of the embedded scheme 
(for example, we use the Fehlberg third order formula for the scheme Fehlberg 2(3)). 

Table 4. Relative errors for Problem (4.6). 

New 

Runge-Kut ta  method 

Fehlberg Fehlberg 

2(3) 4(5) 

1/90 5.06 x 10 -4 5.0 X 10 -1 

1/60 4.7 x 10 -2 

1/180 6.1 X I0 -6 4.1 X 10 -2 

1/120 8.5 X 10 -4 

1/360 5.3 x I0 - s  3.5 :x: 10 -3 

1/240 9.3 X 10 -6  

5. CONCLUSION 

A modified embedded Runge-Kutta Fehlberg 2(3) method is developed in this paper. These 
methods have Mgebraic order two and three, respectively, but phase-lag of order infinity, in 
contrast with classical Runge-Kutta Fehlberg 2(3) methods, which have phase-lag order two and 
four, respectively. From the numerical results presented in Section 4, it can be seen that the 
new embedded method is much more efficient than the classical Fehlberg 2(3) method and the 
classical Fehlberg 4(5) method. 

All computations were carried out on a PC 386, with a 387 numeric coprocessor in double 
precision arithmetic with 14 digits accuracy. 
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A P P E N D I X  

T H E  C O E F F I C I E N T S  O F  T H E  E M B E D D E D  M E T H O D  

i a i  

1 

i = 1  

i = 2  

i = 3  

j = 0  

j = O  

j = l  

j = o  

j = l  

j = 2  

$3 (H) for second order method and 

Ss(H) for third order method 

Arbitrary constant 

"1 

- " 2 ( a 2 -  2al)  2al 

CO 

c1 

C2 

The coefficients ci and cci are given below. 

i ci 

0 S1 
6o.1 a2 $2 

2-3.9 / 
1 3-~7s2 

2 6a I 52 

{ c c  i 

0 3a3--I  
6a2 

1 o 

I 
2 8-2 0 - : ' ~  

3 

H e i r ,  

SI = 3a i  2 (2a2 - 1) - 4al (3a2 2 - 1) 4- 2a2 (3a2 - 2), 

$2 = al - 2 a 2 ,  

8a2 [H(H 2 "I-3)cosiH ) - 3 s i n i H ) ]  
SziH) = - 3 { a  [a2 m - 2 ( ~  + 2)1 cos(H) + 4 s in(H)} '  

Ss(H) = S6(H) ST(H)' where 

& ( H )  = 4.2 { H [3a2 (H ~ + 4H 2 + 12) - 4 IH ~ + 3H 2 + 9)] cosiH) - 36 ("~ - 1) s m i H ) }  

ST(H) = 3 { H  [3a22 H 4 - 2a2 ( 3 H  4 + 4 H  2 + 12) + 4 ( H  4 + 2 H  2 + 6)] c o s ( H )  + 2 4 ( a 2  - 1) s i n ( H ) } .  

C ~  2S:6-H 


