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Abstract The paper is introducing a new design method for systems’ controllers with input delay

and actuator saturations and focuses on how to force the system output to track a reference input

not necessarily saturation-compatible. We propose a new norm based on the way we quantify track-

ing performance as a function of saturation errors found using the same norm. The newly defined

norm is related to signal average power making possible to account for most common reference sig-

nals e.g. step, periodic. It is formally shown that, whatever the reference shape and amplitude, the

achievable tracking quality is determined by a well defined reference tracking mismatch error. This

latter depends on the reference rate and its compatibility with the actuator saturation constraint. In

fact, asymptotic output-reference tracking is achieved in the presence of constraint-compatible

step-like references.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Introduction

Controlling linear systems with input saturation has been much
studied especially over the last two decades, see e.g. [1] and ref-
erences list therein. The solutions proposed so far have been

developed following two main paths, called, respectively, anti-
windup compensator (AWC) synthesis and direct control design
(DCD). The first approach consists of designing a controller
that ensures satisfactory control performances in the absence

of actuator saturation case. Then, a static or dynamic compen-
sator is designed tominimize the effect of actuator saturation on
the closed-loop performances. In the DCD method, the input

constraint is taken into account at the controller design phase.
In addition to actuator saturation, physical systems are also
subject to (less or more significant) dead-times [2].

The conjunction of these two ubiquitous factors, if it is not

appropriately accounted for in the control design stage, may
cause drastic deterioration of control performances. The point
is that relatively few works have dealt with the problem of con-

trolling delayed systems with saturating actuators. In this
respect, a number of global bounded stabilization [3–7] and
asymptotic local stabilization results [8–10] have been reached

using direct control designs. Stabilization results have also
been achieved using anti-windup based designs [11,12]. For
instance, in [12] the AWC is designed to ensure L2-stability
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of the operator relating the control saturation error
~u ¼ u� satðuÞ (difference between the control input signal
generated with and without input saturation) to ~z ¼ z� �z
(error between the control system performance outputs with
and without input saturation).

This L2-stability result is certainly interesting due to its gen-

erality. But, the class of admissible inputs (references, distur-
bances) for which the condition ~u 2 L2 holds is not explicitly
defined. Furthermore, it is not clear how the constrained

closed-loop system behaves when the inputs are not
constraint-compatible so that ~u R L2.

In this note, the focus is made on global asymptotic track-
ing of arbitrary-shape reference signals for systems with con-

strained input with delay. We will show that asymptotic
reference tracking is achievable for constraint-compatible
step-like reference signals. To this end, a saturating controller

is developed within the ring of pseudo-polynomial using the
(finite-spectrum) pole-placement technique [13,14].

The point is that, in practical situations, reference compat-

ibility may be difficult to check or even lost due to model
uncertainties. Then, it is of practical interest to analyze the
tracking capability of the proposed controller facing con-

straint-incompatible reference signals of arbitrary shape. This
issue has never been investigated in the context of input-con-
strained dead-time systems. It is presently dealt with, for the
considered class of saturated controllers, making use of avail-

able input-output L2-stability tools [15]. The novelty is that the
obtained tracking performance is assessed using a new, more
suitable, norm representing signal average power (rather than

energy). The new norm induces a normed space, denoted L2a,
that contains all bounded signals (while the energy-related
L2-space does not). Then, L2a turns out to be a quite suitable

framework to address the tracking issue in the presence of
arbitrary-shape (possibly not constraint-compatible) refer-
ences. Making use of the L2a-norm, it is formally shown that

the proposed saturated controller features quite interesting
output-reference matching properties. Accordingly, the track-
ing accuracy is related to a reference tracking mismatch error,
depending on reference rate and its constraint-compatibility

error. The smaller the tracking mismatch error, the better the
average tracking quality. This holds independently of the input
shape and amplitude.

The present paper is an improved and more complete ver-
sion of the conference paper [17]. It is organized as follows:
Section 2 is devoted to formulating the control problem; the

controller is designed in Section 3 and analyzed in Section 4;
the corresponding tracking performances are illustrated by
simulation in Section 5.

2. Control problem statement

We are interested in controlling input-delayed linear systems of
the form:

AðsÞŷðsÞ ¼ BðsÞe�ssûðsÞ ð1Þ

with:

AðsÞ ¼ sn þ an�1s
n�1 þ � � � þ a1sþ a0

BðsÞ ¼ bn�1s
n�1 þ � � � þ b1sþ b0

ð2Þ

in the presence of the input constraint:
juðtÞj 6 uM ð3Þ

where ûðsÞ and ŷðsÞ are the Laplace transforms of u(t) and y(t),
the system input and output (respectively); uM denotes the max-

imal allowed amplitude of the control signal; the integer n and
the real numbers (ai, bi) are the system order and parameters,
respectively. It is supposed that A(s) is Hurwitz polynomial
and (sA(s), B(s)) are coprime. These assumptions guarantee sys-

tem controllability even in the presence of the input limitation
(3). The only assumption onB(s) is that b0 „ 0 so that the system
static gain is nonzero. That is, B(s) may be Hurwitz or not,

allowing the system (1) to be nonminimum phase [16]. The
aim of the study was to develop a controller that makes the
tracking error,

ey ¼ y� y� ð4Þ

as small as possible, whatever the initial conditions, where y*

denotes an arbitrary-shape bounded reference signal. The
point is that the system nonminimum phase nature makes per-
fect tracking (e.g. ey 2 L2) unachievable (even in the uncon-
strained case) in the presence of arbitrary-shape reference

signals. In fact, perfect tracking is only achievable (in the
unconstrained case) for reference signals generated by a model
of the form DðsÞŷ�ðsÞ ¼ 0 with D(s) is any polynomial with

simple zeros on the imaginary axis. Then, it is well known that
perfect tracking can be achieved by incorporating D(s) in the
control law, in accordance with the internal model principle

[16]. Presently, we make the common choice D(s) = s which
leads to control laws with integral action, allowing for perfect
tracking of constant references (as DðsÞŷ�ðsÞ ¼ 0 is then equiv-
alent to _y�ðtÞ ¼ 0Þ.

In turn, the input constraint (3) introduces a structural lim-
itation of the class of references that can be perfectly matched.
Specifically, perfect matching cannot be achieved if the refer-

ence y* is not constraint-compatible. In the case of constant
references, constraint-compatibility is simply characterized by
the condition Œu*(t)Œ 6 uM with:

u�ðtÞ ¼ Að0Þ
Bð0Þ y

�ðtþ sÞ ¼ a0
b0

y�ðtþ sÞ

where A(0)/B(0) is nothing other than the inverse of the system

static gain. An equivalent formulation of reference constraint-
compatibility is that u* � sat(u*)=0 where sat(Æ) denotes the
function of saturation defined by:

satðzÞ ¼ minðuM; jzjÞ sgnðzÞ; z 2 R ð5Þ

Now, the controller we seek must be able to guarantee per-
fect asymptotic tracking in the presence of constant constraint-
compatible references. Otherwise, the tracking quality must

depend on how much the reference is deviating from the ideal
shape defined by the equations _y�ðtÞ ¼ 0 and u* � sat(u*) = 0.
The instantaneous deviation is conveniently represented by the

output-reference mismatch error j _y�j þ ju� � satðu�Þj. The
smaller this error is the better must be the tracking quality.
This objective is presently formalized requiring that the perfor-
mance operator,

j _y�j þ ju� � satðu�Þj ! jeyj ð6aÞ

is L2 stable. Accordingly [e.g. 15], there exists a pair of positive

real constants (a, b) such that one has, for all bounded input y*

and any real T > 0:
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Z T

0

jeyðtÞj2dt
� �1=2

6 a
Z T

0

_y�ðtÞj j þ ðu� � satðu�Þj jð Þ2dt
� �1=2

þ b

6 a
Z T

0

_y�ðtÞj j2dt
� �1=2

þ a
Z T

0

jðu� � satðu�Þj2dt
� �1=2

þ b

ð6bÞ

where the second inequality is obtained using the Schwartz
inequality1 and xT designates the truncation of a signal x at
T.2 Each of the two statements (6a) and (6b) represents the

L2-tracking performance. In the case of ideal shape references,
one has j _y�j þ ju� � satðu�Þj 2 L2 and the L2-performance (6b)
yields (by letting T fi1) ey 2 L2. In the case of arbitrary-
shape and/or not constraint-compatible references,

j _y�j þ ju� � satðu�Þj R L2 and so (6b) cannot be expressed using
the L2-norm. In this situation one gets, dividing both sides of
(6b) by T1/2 and letting T fi1:

lim sup
T!1

1

T

Z T

0

eyðtÞ
�� ��2dt

� �1=2

6 a lim sup
T!1

1

T

Z T

0

_y�ðtÞj j2dt
� �1=2

þ a lim sup
T!1

1

T

Z T

0

ðu� � satðu�Þj j2dt
� �1=2

ð6cÞ

Note that the quantity lim supT!1
1
T

R T

0
jxðtÞj2dt

� �1=2
is

nothing other than the average power of the signal x: R+ fi
R and this power is finite if the signal is bounded. The above
observations motivate the introduction of a new and larger

normed space, denoted L2a, described in Definition 1 and
Lemma 1.

Definition 1

(1) L2a is the set of all bounded signals x: R+ fi R.
(2) iÆia2 denotes the mapping: L2a fi R, x fi ixi2a with

kxk2a ¼
def

lim supT!1
1
T

R T
0
jxðtÞj2dt

� �1=2
.

Lemma 1. L2a is a space vector over the real space R and the
mapping i.ia2 is a norm in L2a. Accordingly, any element of

O2a ¼
deffx 2 L2a : kxk2a ¼ 0g is a null vector in L2a

Remark 1

(1) The proof of Lemma 1 is straightforward; it is omitted
mainly for space limitation.

(2) In summary, the normed space L2a is the set of all

bounded signals with finite average power, in which no
distinction is made between two signals x1 and x2 such
that x1 � x2 is of null average power.
1 Tus,
R T

0 ðj _y�ðtÞjjðu� � satðu�ÞÞjÞ2dt 6
R T

0 j _y�ðtÞj
2dt

� �1=2

�
R T

0 ðu� � satðu�ÞÞ2dt
� �1=2

.

2 The truncation of x at T, designated by xT, is defined as follows:

xT(t) = x(t) for 0 6 t 6 T and xT(t) = 0 for t > T.
(3) The space L2a is much broader than the energy-related

L2 space. For instance, the former contains step-like
and periodic signals while the latter does not. On the
other hand, it is well known that any finite energy signal

is necessarily zero average power. It turns out that
L2 � O2a. The inverse is not true.For instance, the signal

xðtÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
t þ 1
p

ðt 2 RþÞ belongs to O2a but not to L2.
More generally, an asymptotically vanishing signal
(whatever its convergence rate) is necessarily zero aver-

age power but not finite energy.
(4) Compared to the normed space L1, the space L2a con-

tains the same elements (i.e. all bounded signals). How-

ever, the two spaces are deeply different by the
corresponding norms. Indeed, the null element in L1
reduces to the sole zero signal (i.e. x(t) = 0, "t) whereas

the null element in L2a refers to any signal x 2 O2a (i.e.
with null mean power). For instance, the signals

xðtÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
t þ 1
p

and x(t) = sin(t)/t (t 2 R+) are ele-
ments of O2a but are not zeros in L1.

(5) Using the L2a norm, the performance, (6c) writes simply:

keyk2a 6 aðku� � satðu�Þk2a þ k _y�k2aÞ.

The control problem at hand consists in designing, for the
system (1) operating under the constraint (3), a controller that
guarantees the L2-stability of the performance operator (6a) so

that the L2 tracking performance (6b) is ensured, with some
real a. This performance entails the two following L2/L2a

features:

keyk26aðku� �satðu�Þk2þk _y�k2Þ when j _y�jþju� �satðu�Þj2L2

ð7aÞ

keyk2a 6 a u� � satðu�Þk k2a þ k _y�k2a
� 	

when _y�j j þ u� � satðu�Þj j 2 L2a ð7bÞ
3. Controller design

The control design represents an extension to the input-con-
strained case of the finite-spectrum assignment (FSA) method

[13,14]. The FSA approach is itself an extension to time-delay
systems case of the standard pole placement design technique
[16]. Presently, this design technique is used because it enjoys
at least three appealing features. First, it applies to nonmini-

mum phase systems class while other methods (e.g. model ref-
erence) do not. Second, despite the system dead-time, the FSA
design leads to a closed-loop system with a finite number of

poles whose positions are arbitrarily chosen by the designer;
this is not necessarily the case with standard methods (Remark
2, Part 3). Finally, the FSA design will prove (see analysis of

Section 4) to be useful in perfectly facing the input limitation
caused by actuator saturation. The FSA design approach relies
on specific notions from the algebra of pseudo-polynomials. A

summary of these notions is given in Appendix A, but the
reader might consult [13,14] for an exhaustive presentation.
Just as in the standard pole assignment method, the first point
is an arbitrary choice, by the designer, of a pair of Hurwitz

polynomials of the form:

CðsÞ ¼ sn þ cn�1s
n�1 þ � � � þ c1sþ c0

KðsÞ ¼ sn þ kn�1s
n�1 þ � � � þ k1sþ k0

ð8Þ
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As sA(s) and B(s) are coprime on R[s] (ring of polynomials
with real coefficients), they are also coprime on E, the ring of
pseudo-polynomials (Appendix A, Definition A3). Then, there

exists a pair of pseudo-polynomials R0(s) and P0(s) satisfying
the Bezout equation (Appendix A, Remark A1):

R0ðsÞsAðsÞ þ P0ðsÞBðsÞe�ss ¼ CðsÞKðsÞ ð9Þ

Here, onemight notice two points: (i) the operatorsR0(s) and
P0(s) are pseudo-polynomials (not standard real polynomials)

with unknown degrees and are not unique; (ii) considering in
(9) the product sA(s) (rather than justA(s)) entails an integral
action in the final regulator. Following [13,14], one divides

P0(s) by the polynomial sA(s), which is monic, and gets
P0(s) = Q(s)sA(s) + P(s) with deg P(s) 6 n. Then, letting R(s)
= R0(s) + Q(s)B(s)e�ss, (9) rewrites:

RðsÞsAðsÞ þ PðsÞBðsÞe�ss ¼ CðsÞKðsÞ ð10Þ

As deg(P(s)B(s)e�ss) 6 2n � 1, it follows that deg
(R(s)sA(s)) = deg(C(s)K(s)) = 2n which implies that deg
(R(s)) = n � 1, because deg(sA(s)) = n + 1. Furthermore, as
sA(s) and C(s)K(s) are monic, R(s) must in turn be monic. In

light of the above observations, it is readily seen that R(s)
and P(s) are uniquely expressed as follows:

RðsÞ ¼ sn�1 þ
Xn�2
i¼0

Riðe�ssÞsi þ R�1ðsÞ

PðsÞ ¼
Xn
i¼0

Piðe�ssÞsi þ P�1ðsÞ
ð11Þ

where R�1(s) and P�1(s) belong to G, the set of transfer func-

tions of distributed and punctual delay operators (Appendix
A). For i P 0, Ri(e

�ss) and Pi(e
�ss) belong to R[e�ss], the set

of polynomials in e�ss. Unlike the case of non-delayed systems,

the (finite-degree) operators R(s) and P(s) are presently
pseudo-polynomials and, consequently, are analytical func-
tions of s (Appendix A, Remark A1). Now, let us temporarily

suppose that the system (1) and (2) is not subject to the con-
straint (3). Then, the FSA control method suggests the control

law ûðsÞ ¼ � PðsÞ
sRðsÞ êyðsÞ. Clearly, this corresponds to a regulator

featuring an unitary-feedback and integral action. With the
above notations, the saturated pole-placement regulator is
given the alternative expression:

ûðsÞ ¼ KðsÞ�sRðsÞ
KðsÞ ûðsÞ � PðsÞ

KðsÞ êyðsÞ; where the involved transfer
functions are asymptotically stable (because K(s) is Hurwitz)
and causal (Remark 2, Part 1). As the system input is subject
to the constraint (3), the above regulator is modified so that

it generates a control action not exceeding the constraint lim-
its. Specifically, the following saturated controller is considered
and illustrated by the block diagram below (see Fig. 1):
Figure 1 Block diagram of the closed-loop system.
v̂ðsÞ ¼ KðsÞ � sRðsÞ
KðsÞ ûðsÞ � PðsÞ

KðsÞ êyðsÞ ð12aÞ

uðtÞ ¼ satðvðtÞÞ ¼ sgnðvðtÞÞminðjvðtÞj; uMÞ ð12bÞ
Remark 2

(1) Note that the controller (12a) and (12b) is causal (i.e.

v(t) and u(t) depend only on measurements available at
time t) because (K(s) � sR(s))/K(s) is a strictly proper
transfer function and also P(s)/K(s)P(s)/K(s) is proper.

Indeed, it is readily seen from (11) and (8) that:

KðsÞ � sRðsÞ
KðsÞ ¼ kn�1s

n�1 þ � � � þ k1sþ k0

KðsÞ �
Xn�2
i¼0

Riðe�ssÞ
siþ1

KðsÞ

� R�1ðsÞ
s

KðsÞ

The first fraction on the right side of this equality is clearly

strictly proper (because the degree of K(s) equals n). Further-
more, all fractions si+1/K(s) are also strictly proper because
i+ 1< n for i= 0 . . . n � 2). This implies that the transfer

functions Ri(e
�ss)si+1/K(s) are causal because Ri(e

�ss) are
polynomials in e�ss. The last transfer function R�1(s)s/K(s) is
also causal because s/K(s) is strictly proper and R�1(s) belongs
to G i.e. R�1(s)is the transfer function of a distributed delay

operator (Appendix A, property A1). A similar argument
can be reproduced to prove that P(s)/K(s) is in turn causal.

(2) If the control signal stops saturating for a long time then

the controller (12a) and (12a) reduces to the standard lin-
ear pole placement regulator ûðsÞ ¼ �ðP ðsÞ=sRðsÞÞêyðsÞ.
Then, it is easily checked that the tracking error under-

goes the equation:

êyðsÞ ¼ �ðRðsÞAðsÞ=KðsÞCðsÞÞsŷ�ðsÞ

and so vanishes exponentially fast, in the case of constant
references, because C(s)K(s) is Hurwitz.

(3) The above remark also shows that the closed-loop sys-
tem turns out to be linear with finite-spectrum in the absence

of saturation (i.e. its transfer function has a finite number of
poles coinciding with the zeros of the polynomials K(s)C(s)).
This is an important characteristic of the used control design

method. This characteristic is not necessarily ensured with
more standard design techniques.To illustrate this, consider a
simple proportional regulator u(t) = �Key(t) with K represents

a real constant. Putting this regulator in closed-loop with the
system (1) leads to closed-loop system:

êyðsÞ ¼ �ðAðsÞ=ðAðsÞ þ KBðsÞe�ssÞÞŷ�ðsÞ

Clearly, the closed-loop transfer function is infinite spectrum
as its denominator A(s) + KB(s)e�ss has an infinite number
of zeros. This is a well known fact in delayed systems theory,

e.g. [22,23] and references therein.
(4) The controller (12a) and (12b) contains a distributed

delay that can only approximately be implemented using digi-

tal means. This issue has been investigated in [19–21].
4. Controller tracking capability analysis

The closed-loop control system composed of the constrained
system (1)–(4) and the saturated regulator (12a) and (12b)
will now be analyzed. The aim was to show how the design
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parameters should be selected in order to achieve the control
objective of Section 2. The analysis is progressively conducted
in three major steps. First, it is shown in Section 4.1 that all

signal rates (i.e. _u; _v; _yÞ are related to the reference rate _y�

through L2 stable operators. Then, it is established in Section
4.2 that the input saturation error v � u is related to the track-

ing mismatch error j _y�j þ ju� � satðu�Þj through a L2 stable
operator. This will prove to be a crucial ingredient to prove,
in Section 4.3, the achievement of L2/L2a tracking performance

(7a) and (7b). These results are reached by making use of abso-
lute stability tools [15] which are particularly useful when fac-
ing static nonlinearities like the saturation function. The
present approach, which is not very usual in constrained

dead-time systems [7–12], finds some roots in recent works
on non-delayed constrained systems e.g. [17].

4.1. Signal rate analysis

In this subsection, the focus is made on the first time-deriva-
tives of all signals. It is shown that signal derivatives are

related to the reference signal rate through L2 stable operators.
Combining (1) and (12a) so that ey is eliminated, one gets the
following relation between signals rate:

sv̂ðsÞ ¼ �CðsÞ � AðsÞ
AðsÞ ðsûðsÞÞ þ PðsÞ

KðsÞ ðsŷ
�ðsÞÞ ð13Þ

This equation fits the feedback representation of Fig. 2

where:

d̂1ðsÞ ¼
PðsÞ
KðsÞ ðsŷ

�ðsÞÞ ð14Þ

This feedback schema allows application of absolute stabil-
ity theorems [15]. The aim was to establish a sufficient condi-
tion (on the polynomial C(s)) that ensures the L2-stability of

the feedback in order to get bounding properties on the deriv-
atives of u and v. To this end, we begin firstly by showing that
the nonlinear operator W (which represents the mapping:
_v! _uÞ lies in some conic sector3 ([01]). It is subject of propo-
sition 1 whose proof is placed in Appendix B.

Proposition 1. Let the polynomial C(s) in (10) be chosen such
that:

inf
06x<þ1

Re
CðjxÞ
AðjxÞ

� �
> 0 ð15Þ

Then, the feedback of Fig. 2 is L2-stable. Consequently, the fol-
lowing mappings: _y� ! _u�; _y� ! _v, _y� ! _u; _y� ! _y, _y� ! _ey
are all L2-stable.
4.2. Control saturation error analysis

In this subsection, a key result concerning the control satura-
tion error v � u will be established. It consists in showing that
the mapping j _y�j þ ju� � satðu�Þj ! jv� uj is L2-stable.

Proposition 2. Consider the control system composed of the
system (1) and (2), subject to the saturation constraint (3), in
3 Recall that w in Fig. 2 belongs to a sector [a, b] if:

að _vÞ2 6 _u _v 6 bð _vÞ2.
closed-loop with the controller (12a) and (12b) where the

polynomial C(s) in (10) satisfies (15). Then, the mapping
j _y�j þ ju� � satðu�Þj ! jv� uj is L2-stable.

The proof of this proposition is placed in Appendix C.

4.3. L2 tracking performance achievement
Theorem 1. Consider the closed-loop control system of Propo-
sition 2. Then, the performance operator (6a),

j _y�j þ ju� � satðu�Þj ! jeyj, is actually L2 � stable. Conse-
quently, the controller (12a) and (12b) features the L2/L2a

tracking performance described by (7a) and (7b)

Proof. Using (1a) and operating sRA on both sides of (4) give:

RAsêyðsÞ ¼ RAsŷðsÞ � RAsŷ�ðsÞ
¼ RBe�sssûðsÞ � RAsŷ�ðsÞ ð16Þ

Similarly, operating KBe�ss on both sides of (12a) yields:

KBe�ssv̂ðsÞ ¼ KBe�ssûðsÞ � RBe�sssûðsÞ � BPe�ssêyðsÞ ð17Þ

Adding (16) and (17) yields, using (10):

KCêyðsÞ ¼ KBe�ssðûðsÞ � v̂ðsÞÞ � RAðsŷ�ðsÞÞ ð18Þ

Recall that the mapping j _y�j þ ju� � satðu�Þj ! u� v is
L2-stable (by Proposition 2). Also, both Be�ss/C and RA/KC
are L2-stable. Then, one immediately gets from (18) that the

mapping j _y�j þ ju� � satðu�Þj ! jeyj is L2 stable. h

Remark 3. Interestingly, the result of Theorem 1 holds what-
ever the reference shape and even if this reference is not con-
straint-compatible. This is an original result, compared to

existing literature, especially that on direct control design for
delayed input-constrained systems [8–10] which generally dealt
with stabilization problems (in the presence of null reference).

The result of Theorem 1 is also in progress with respect to the
conference paper [18] as, there, the reference signal was
supposed to be constraint-compatible (in which case
u* � sat(u*) = 0). The notions of tracking mismatch error

(i.e. the quantity j _y�j þ ju� � satðu�ÞjÞ, the L2a-norm and corre-
sponding normed space are also new features with respect to
[18].
5. Simulation

The system (1) and (2) is simulated in Matlab/Simulink using
the following numerical values:

AðsÞ ¼ s2 þ 1:25sþ 0:25; BðsÞ ¼ sþ 0:7; s ¼ 2s

uM ¼ 1
ð19Þ

First, let us make some comparison with the simulation
example in [11] (although the system considered there is a
two-input). Clearly, our example is more interesting as it is a

second order and the delay is important (nearly 45% of the
system equivalent time constant). In [11], the system is a first
order and the delay is merely 10% of the system time-constant.

Applying the control design of Section 3 to the example
(19), a controller like (12a) and (12b) is obtained by solving
the Bezout Eq. (10)using the following Hurwitz polynomials:
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CðsÞ ¼ s2 þ 1:85sþ 0:71 and KðsÞ ¼ s2 þ 2:25sþ 1:125

It is readily checked (e.g. plotting the Nyquist plot of
C(s)/A(s)) that condition (15) is satisfied. No condition is

imposed on K(s). Solving Eq. (10), one gets P(s) = 3.13s2 +
4.26s+ 1.12 and

RðsÞ ¼ sþ 2:85� 3:16e�ss þ 0:233
1� e�ðsþ1Þs

sþ 1

� �

� 1:03
1� e�ðsþ0:25Þs

sþ 0:25

� �
þ 3:20

1� e�ss

s

� �
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Figure 3 Controller tracking performance in presence of a

constraint-compatible reference when condition (15) is satisfied.

Top: the system output (solid), reference signal (dashed). Bottom:

the computed control (dashed) and applied control (solid).

Figure 4 Controller tracking performance in presence of a

constraint-compatible reference when condition (15) is not satis-

fied. Top: the system output (solid) and reference signal (dashed).

Bottom: the computed control (dashed) and applied control

(solid).
As pointed out in the general case (Remark 2, Part 1), the

controller transfer functions (K(s) � sR(s))/K(s) and P(s)/K(s)
are strictly proper. The resulting tracking quality is illustrated
by Fig. 3 considering a constraint-compatible square reference.
It is seen that the tracking performance is quite satisfactory

where the system output tracks well its reference trajectory.
Furthermore, note that the output-reference tracking rapidity
performance is structurally limited by the presence of the input

dead-time. This observed dead-time in the output-reference
matching is structural as no linear state or output feedback
can compensate a system dead-time. To better appreciate the

tracking performance of (12a) and (12b), and to check the
importance of condition (15), let us now take C(s) = s2 +
2s+ 100 and keep all remaining controller parameters

unchanged. It is easily checked that condition (15) is no longer
satisfied. The new closed-loop system responses are plotted in
Fig. 4 which shows a clear deterioration of output-reference
tracking performance.
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6. Conclusion

Control problem of input-delayed nonminimum-phase linear
systems (1) and (2) is considered in the presence of actuator sat-

uration (3). The control design is performed within the ring of
pseudo-polynomials, using the (finite-spectrum) pole-place-
ment design technique. Using input-output stability tools, it is

formally shown that the controller (12a) and (12b) enjoys the
appealing L2/L2a tracking features described by (7a) and (7b).
Accordingly, the tracking quality depends on the L2/L2a norm
of the tracking mismatch error j _y�j þ ju� � satðu�Þj. The smaller

this error, the better the output-reference tracking quality.
This result is quite powerful as it holds, whatever the

bounded reference signal.. To the author’s knowledge, no

equivalent result is currently available in the context of actua-
tor saturation control of input-delayed systems. The present
work can be extended in many directions including generaliza-

tion to multivariable systems, distributed delay systems, and
uncertain delay.

Appendix A. Pseudo-polynomials algebra

This appendix gives a brief presentationof relevant concepts and
results of pseudo-polynomial algebra. For a more exhaustive

presentation, the author might consult the references [13,14].

Definition A1. 2D-polynomials are bi-variable polynomials of
the form fðs; xÞ ¼

Pn
i¼0fiðxÞsi where fi 2 R[x], the ring of real

polynomials in x. The set of 2D-polynomials with variables s

and x is denoted R[s, x], the degree of a 2D-polynomial f(s, x)
in the variable s is the largest integer i such that fi „ 0 and is
denoted degs(f).

The 2D-polynomials considered in this paper involve the
Laplace variable s and the delay operator e�ss as a second var-

iable. Though the two variables s and e�ss are analytically
related, they are algebraically independent i.e. f(s, e�ss) = 0
(for all s 2 C) ) all coefficients of f(s, e�ss) are null.

Definition A2. The set G is the ring of all rational complex
functions of the form g(s) = n(s, e�ss)/d(s), with n 2 R[s, e�ss],
d(s) 2 R[s] and degs(n) < deg(d), such that g(s) is analytical onC.

Property A1. The elements of G are transfer functions of dis-

tributed delay operators G: x fi G[x] with G½x�ðtÞ ¼
R qs
ps gðhÞ

xðt� hÞdh, where g is a real function and p, q are positive
integers.

Property A2. Let F = R[e�ss] + G. Then, F is the ring of all

rational complex functions of the form gðsÞ ¼ nðs;e�ssÞ
dðsÞ , with

n 2 R[s, e�ss], d 2 R[s], degs(n) 6 degs(d) and such that
g(s) is analytical on C. Consequently, the elements of F are

transfer functions of operators H: x fi H[x] such that:

H½x�ðtÞ ¼
Pm

i¼0hixðt� isÞ þ
R qs
ps hðhÞxðt� hÞdh, for some real

numbers h0, . . . , hm, integers m, p, q and real function h.

That is, F is the set of transfer functions of all punctual and
distributed delay operators.

Definition A3. Let E be the ring of polynomials in s with
coefficients in F i.e. E = F[s]. Then, E is the ring of all
analytical functions of the form g(s) = n(s, e�ss)/d(s), with

n 2 R[s, e�ss], d(s) 2 R[s] (without condition on the relative
degrees of n and d).

The elements of E are called pseudo-polynomials.

Remark A1. In the above definitions, gðsÞ ¼ nðs;e�ssÞ
dðsÞ is said to

be analytical means that this function is well defined on the
whole complex plane. It turns out that, all zeros of d(s) are also
zeros of n(s, e�ss) with at least the same multiplicity.

Definition A4. The degree in E is defined by:

deg nðs;e�ssÞ
dðsÞ

� �
¼ degsðnðs; e�ssÞÞ � degsðdðsÞÞ.

Note that for g(s) 2 E, if deg(g) 6 0 then, g(s) 2 F and if
deg(g) < 0 then g(s) also belongs to G.

Property A3. Any f 2 E can be uniquely decomposed as

fðsÞ ¼
PdegðfÞ

i¼0 fiðe�ssÞsi þ gðsÞ with g(s) 2 G and fi(e
�ss) 2

R[e�ss].

Definition A5. Let f 2 E be of degree n. Then f is monic if
fn(e
�ss) is constant equal to 1, where the notations are as in

Property A3.

Property A4. Let f, g 2 E be any pair of pseudo-polynomials

1. The pair f, g has a unique greater common divisor (GCD) (up

to a multiplicative real factor). The two elements are coprime
if their GCD is invertible in E i.e. the GCD is a real number.

2. E is a Bezout ring. That is, any ideal generated by a finite set

of elements of E is principal i.e. it is generated by the GCD’s
of these elements.

3. For any f, g 2 E, there exist a pair of elements, x (s) and y

(s), of E such that:

xðsÞfðsÞ þ yðsÞgðsÞ ¼ GCDðfðsÞ; gðsÞÞ ðA1Þ

4. For any f, g 2 E, with g(s) monic, there exists a unique pair
of elements q, r 2 E such that

fðsÞ ¼ qðsÞgðsÞ þ rðsÞ; with degsðrðsÞÞ < degsðgðsÞÞ:

Property A5. A fraction N (s)/D(s) of elements of E is proper

if D (s) is monic and degs(D)> degs(N). A proper fraction is
realizable by a set of delay differential equations (with punctual
and distributed delay operators).
Appendix B. Proof of proposition 1

The first step is to show that the nonlinear mapping w, in the
feedback of Fig. 2, belongs to the sector [01] in the sense that:
0 6 _v� _u 6 ð _vÞ2. By definition, one has sat(x) = sgn(x)min

(ŒxŒ, uM), for all x 2 (�1, +1). This implies that:

dsat

dx
ðxÞ¼ 1 for jxj6 1 and

dsat

dx
ðxÞ¼ 0; for jxj> 1 ðB1Þ

On the other hand, one gets from (12b):

_uðtÞ ¼ dsat

dv
ðvðtÞÞ � _vðtÞ ðB2Þ
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Multiplying both sides of (B2) by _vðtÞ gives _v� _u ¼ dsat
dv
ðvÞ _v2.

This, together with (B1), implies that 0 6 _v� _u 6 ð _vÞ2 which

proves that w actually belongs to the sector [01]. Then, it fol-
lows applying the circle criterion (see e.g. [15]) that the feed-
back of Fig. 2 is L2-stable provided that:

inf06x<+1Re((C(jx) � A(jx))/A(jx)) > �1. But this con-
dition is nothing other than (15). Then, it follows from Fig. 2
that the two mappings d1 ! _v and d1 ! _u are L2-stable. As the
transfer function S(s)/K(s) is asymptotically stable, one has

from (14) that, the mapping _y� ! d1 is also L2-stable. Combin-
ing the above results, one gets that _y� ! _v and _y� ! _u are both
L2-stable.

On the other hand, it readily follows from (1) that:

sŷðsÞ ¼ BðsÞe�ss

AðsÞ sûðsÞ ðB3Þ

As A(s) is Hurwitz and B(s)e�ss/A(s) is proper, it follows that
the mapping _u! _y is L2-stable. We have already shown that
_y� ! _u is L2-stable. Then, one gets that _y� ! _y is L2-stable.

Then, Eq. (4) implies that the mapping _y� ! _ey ¼ _y� _y� is
in turn L2-stable. Finally, by definition, one has u*(t) =
(a0/b0)y

*(t+ s) which clearly shows that the mapping
_y� ! _u� is L2-stable.

Appendix C. Proof of proposition 2

From (12a) one gets, using (4) and Definition 1 (Part 1):

v̂ðsÞ � ûðsÞ ¼ �R

K
sûðsÞ � P

K
êyðsÞ

¼ �R

K
sûðsÞ � P

K
Be�ss

A
ûðsÞ � b0

a0
essû�ðsÞ

� �

This implies successively that:

v̂ðsÞ � ûðsÞ ¼ �R

K
sûðsÞ � PBe�ss

KA
ðûðsÞ � û�ðsÞÞ

þ b0
a0
� B

A

� �
Pe�ss

K
û�ðsÞ

v̂ðsÞ � ûðsÞ ¼ �R

K
sûðsÞ � PBe�ss

KA
ðûðsÞ � û�ðsÞÞ þ d̂2ðsÞ

with d̂2ðsÞ ¼ b0
a0
� B

A

� �
Pe�ss

K û�ðsÞ

v̂ðsÞ � ûðsÞ ¼ � p0Be
�ss

KA
ðûðsÞ � û�ðsÞÞ þ d̂2ðsÞ þ d̂3ðsÞ;

with d̂3ðsÞ ¼ � R
K sûðsÞ �

ðP�p0ÞBe�ss

sKA
ðsûðsÞ � sû�ðsÞÞ

v̂ðsÞ � ûðsÞ ¼ p0b0
k0a0
ðû�ðsÞ � ûðsÞÞ þ d̂2ðsÞ þ d̂3ðsÞ þ d̂4ðsÞ

with d̂4 ¼ s0Be
�ss

KA
� s0b0

k0a0

� �
ðû�ðsÞ � ûðsÞÞ

Going back to time context, one gets:

vðtÞ � uðtÞ ¼ p0b0
k0a0
ðu�ðtÞ � satðu�ðtÞÞÞ þ p0b0

k0a0
ðsatðu�ðtÞÞ � uÞ

þ d2ðtÞ þ d3ðtÞ þ d4ðtÞ

vðtÞ�uðtÞ¼ c0
a0
ðsatðu�ðtÞÞ�uðtÞÞþd2ðtÞþd3ðtÞþd4ðtÞþd5ðtÞ
with d5 ¼ c0
a0
ðsatðu�Þ � u�Þ

vðtÞ � uðtÞ ¼ c0
a0
ðsatðu�ðtÞÞ � uðtÞÞ þ d6ðtÞ ðC1Þ

with d6 ¼ d2 þ d3 þ d4 þ d5

where p0 = P(0) and this result is obtained using the fact that
p0b0 = k0c0 by letting s = 0 in (10). Let us demonstrate that all

mappings l fi di (i= 2 . . . 5) are L2-stable where:

l¼def j _y�j þ ju� � satðu�Þj ðC2Þ

To this end, we will make intensive use of Proposition 1.

Mapping l fi d2. By definition one has:

d̂2ðsÞ ¼
b0
a0
� B

A

� �
Pe�ss

K
û�ðsÞ

¼ b0AðsÞ � a0BðsÞ
a0AðsÞ

� �
Pe�ss

K
û�ðsÞ

d̂2ðsÞ ¼
DðsÞ
a0AðsÞ

Pe�ss

K
sû�ðsÞ ðC3Þ

where

DðsÞ ¼ b0ðsn�1 þ an�1s
n�2 þ � � � þ a1Þ � a0ðbn�1sn�2 þ � � � þ b1Þ

The passage from the second to the third equality in (C3) is

performed using the fact that:

b0ðsn þ an�1s
n�1 þ � � � þ a1sþ a0Þ � a0ðbn�1sn�1 þ � � � þ b1s

þ b0Þ ¼ DðsÞ � s

In view of (2), it is checked that the transfer function D(s)/a0
A(s) is strictly proper and asymptotically stable (because A(s)
is Hurwitz). Owing to Pe�ss/K, recall that (see Section 3)
P(s) is a pseudo-polynomial and so it is an analytical function

i.e. it has no poles on the complex plane. Therefore, the only
poles of Pe�ss/K are the zeros of K(s) which is a Hurwitz poly-
nomial in s. Hence, the linear transfer function Pe�ss/K is
asymptotically stable. Using these observations, it follows

from (C2) that the mapping _u� ! d2 is L2-stable. We know
by Proposition 1 that the mapping _y� ! _u� is L2-stable. Then,
one immediately gets that l fi d2 is L2-stable.

Mapping l fi d3. R/K is L2-stable because is K Hurwitz and
the mapping _y� ! _u� is L2-stable by Proposition 1. Then, one
gets that the mapping:

l! R

K
_u is L2-stable ðC4Þ

Similarly, as (P � p0)/s is a pseudo-polynomial with degree
n � 1(=deg(P) � 1), the transfer function (P � p0)/(sK) turns
out to be L2-stable because K is Hurwitz. By Proposition 1,

the mappings _y� ! _u and _y� ! _u� are L2-stable. Then one gets,

letting v̂ðsÞ ¼def ðP�p0ÞBe�ss

sKA
ðsûðsÞ � sû�ðsÞÞ, that:

l! v is L2-stable ðC5Þ

From (C4) and (C5) one gets: l fi d3 is L2-stable.
Mapping l fi d4. First, let us perform the following

decomposition:
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1

s

p0Be
�ss

KA
� p0b0

k0a0

� �
¼ 1

s

p0Bk0a0e
�ss � p0b0KA

k0a0KA

� �

¼ T1ðsÞ þ T2ðsÞ ðC6Þ

where T1ðsÞ ¼
k0a0p0e

�ss
Pn�1

i¼1
bis

i�1�p0b0
P2n

i¼1
aisi�1

k0a0KA
,

T2ðsÞ ¼
p0b0
KA

e�ss � 1

s

� �
with ai ¼

Xminði;nÞ

j¼maxð0;i�nÞ
kjai�j ðC7Þ

In view of (C6), d4is rewritten as follows:

d̂4ðsÞ ¼ ðT1ðsÞ þ T2ðsÞÞðsû� sû�Þ ðC8Þ

Let us demonstrate that both transfer functions T1 and T2

are L2-stable. This is clearly the case for T1 because it is strictly
proper and its denominator KA is Hurwitz. Owing to T2,

notice that the pseudo-polynomial (e�ss � 1)/s is the transfer
function of the linear operator H: x fi Hx with:

ðHxÞðtÞ ¼
Z s

0

xðt� hÞdh ¼
Z t

0

hðhÞxðt� hÞdh

with hðhÞ ¼def 1 if 0 6 h 6 s
0 otherwise



.

Clearly the impulse response h belongs toL1. Then, the lin-
ear operator H is asymptotically and L2-stable [15]. Further-
more, p0b0/AK is clearly L2-stable (because AK is Hurwitz).
Then, it follows from (C7) that T2 is L2-stable. Again, by Prop-

osition 1 the mappings _y� ! _u and _y� ! _u� are L2-stable. Then
one gets from (C8) that l fi d4 is L2-stable.

Mapping l fi d5. By definition d5 ¼ c0
a0
ðsatðu�Þ � u�Þ. Then,

one gets from (C2) that l fi d5 is L2-stable.

Mapping l fi d6. As d6 = d2 + d3 + d4 + d5, it follows
from the previous steps that the mapping l fi d6 is in turn
L2-stable.

The rest of the proof consists in showing that:

jvðtÞ � uðtÞj 6 jd6ðtÞj; for all t ðC9Þ

It is clear that (C9) holds when Œv(t)Œ 6 uM because one has
v(t) � u(t) = 0, due to (12b). So let us establish (C9) in the case

where Œv(t)Œ > uM. As A and C are Hurwitz, their coefficients
a0 and c0 are positive (by e.g. Routh criterion). Furthermore,
as Œv(t)Œ > uM, one has from (12b) that Œu(t)Œ = uMsgn(v(t))

which implies that Œu(t)Œ > Œsat(u*(t))Œ. Then, multiplying both
sides of (C1) by sgn(v(t)) and using the fact that
sgn(v(t)) = sgn(u(t)), one gets for all t:

jvðtÞ � uðtÞj ¼ c0
a0
ðsatðu�ðtÞÞsgnðvðtÞÞ � juðtÞjÞ

þ d6ðtÞsgnðvðtÞÞ 6 d6ðtÞsgnðvðtÞÞ ðC10Þ

This implies, on the one hand, that d6(t)sgn(v(t)) is nonnega-
tive; and, on the other hand, that Œv(t) � u(t)Œ 6 Œd6(t)Œ.
Hence, inequality (C10) does hold which proves Proposition 2.
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