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In urban areas, logistic transportation operations often run into problems because travel speeds change,
depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel
speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passen-
ger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent
and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This
study considers the effect of exploiting statistical information available about historical accidents, using
stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors pro-
pose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average
time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochas-
tic information while planning). The results, using test instances with up to 762 requests based on a real-
world road network, show that in certain conditions, exploiting stochastic information about travel
speeds leads to significant improvements over deterministic approaches.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction which provides a characteristic travel speed for each road within
Most published articles related to vehicle routing problems
assume travel speeds that are constant over time (e.g., Muelas,
LaTorre, & Peña, 2013;; Paquette, Cordeau, Laporte, & Pascoal,
2013; Parragh and Schmid, 2013). In reality, travel speeds rarely
are constant but instead depend on factors such as traffic conges-
tion caused by rush hours, accidents, construction sites, or bad
weather conditions. An example in Fig. 1 reveals the average travel
speeds observed on a specific road segment in the city of Vienna,
by time of day. The morning and afternoon peaks (rush hours),
which are typical for inner-city roads, are clearly visible. The com-
parison with the real (stochastic) travel speed observed during one
specific day on the same road segment shows that travel speeds
are highly sensitive to the time of day, with significant stochastic
fluctuations caused by different effects. Therefore, assuming that
travel speeds are non-stochastic or even time-independent often
causes planned schedules to fail with respect to time windows or
ride time limitations.

Some recent publications treat travel speeds as time-depen-
dent, by dividing each day into discrete time intervals, each of
a network (Ehmke, Steinert, & Mattfeld, 2012; Fleischmann, Gietz,
& Gnutzmann, 2004; Ichoua, Gendreau, & Potvin, 2003; Kok, Hans,
Schutten, & Zijm, 2010; Lorini, Potvin, & Zufferey, 2011; Potvin, Xu,
& Benyahia, 2006; Schmid & Doerner, 2010; Xiang, Chu, & Chen,
2008). Even these approaches assume travel speeds to be deter-
ministic though, with the assertion that travel speed, in terms of
average values for each interval, is known a priori and not influ-
enced by any stochastic effects. Some authors (Eglese, Maden, &
Slater, 2006; Fleischmann, Gnutzmann, & Sandvoß, 2004; Maden,
Eglese, & Black, 2010) use a different approach and incorporate
time-dependent travel speeds in the process of calculating shortest
paths. However, to the best of our knowledge, these algorithms do
not take stochastic information about future travel speeds into ac-
count to obtain better solutions. Instead, these methods treat tra-
vel times as deterministic, so they are restricted to reacting to
changes in travel speeds by recalculating the shortest paths.

Travel speeds should be treated as stochastic if we hope to rep-
resent reality more precisely. This approach would also improve
the reliability and productivity of the planned schedules signifi-
cantly (Fu, 1999, 2002; Nielsen, Andersen, & Pretolani, 2013;
Tas�, Dellaert, van Woensel, & de Kok, 2013; Tas�, Gendreau, Dellaert,
van Woensel, & de Kok, 2013). In this article, we present variants of
stochastic solution methods that use a state-of-the-art, network-
consistent, time-dependent travel time layer to take the stochastic
influence of future traffic accidents into account while computing
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Fig. 1. Time-dependent average travel speeds and real (stochastic) travel speeds
along a road segment in Vienna over 24 hour.
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vehicle routes. The stochastic accident influence is estimated based
on statistical parameters derived from historical, real-world infor-
mation about accidents with physical injuries collected by differ-
ent Austrian authorities. There are in fact several factors that can
cause stochastic deviations from time-dependent average travel
speeds: accidents, temporary construction sites, or large one-time
events (e.g., sports games, fares) are just some possible examples.
We decided to use data about accidents with physical injuries be-
cause of three reasons. First, the respective information is collected
systematically by the authorities (and thus available). Second, the
influence of major traffic accidents on travel speeds is strong en-
ough to make a difference. Third, traffic accidents occur frequently
enough to model them based on statistical information derived
from historical data. The numerical results (see Section 5.2) show,
that the severity of missed time windows and excess ride times
caused by unexpected stochastic changes in travel speed can be re-
duced significantly by exploiting historical information about traf-
fic accidents with physical injuries.

Especially when conveying passengers, missed time windows
and excessive ride times due to changes in travel speeds have a
strong negative effect on perceived service quality. This effect be-
comes even more important when the transported passengers
are medical patients or elderly people. The challenge of transport-
ing elderly or disabled people has been widely studied; it is usually
modeled as a dial-a-ride-problem (DARP), as introduced in the
early 1970s by Wilson and Colvin (1977), Wilson and Weissberg
(1976), Wilson, Sussman, Wong, and Higonnet (1971). Healy and
Moll (1995) showed that the DARP is NP-hard, and much effort
has been dedicated to the development of (meta-)heuristic solu-
tion approaches for this problem class, especially in the form of
real-world-motivated DARPs (Cordeau & Laporte, 2007; Parragh,
Doerner, & Hartl, 2008). A recent review of articles covering the
optimization for dynamic ride-sharing was presented by Agatz,
Erera, Savelsbergh, and Wang (2012).

In this article, we study the effect of using information about
stochastic deviations from time-dependent average travel speeds
to plan vehicle routes for a dynamic DARP. This research offers four
main contributions:

� We extend four metaheuristic solution approaches to handle
stochastic, time-dependent travel speeds in the case of a
dynamic DARP.
� We adapt a state-of-the-art, network-consistent, time-dependent
travel time layer (i.e., a ‘‘method to generate time-dependent travel
times that are guaranteed to be network-consistent’’ (Lecluyse,
Sörensen, & Peremans, 2013)) and thereby estimate the stochastic
effects of future traffic accidents.
� We propose a new scheduling algorithm for the DARP that is

designed specifically to handle time-dependent travel speeds.
� We show that exploiting historical data about traffic accidents

using a stochastic planning algorithm has beneficial effects on
solution quality in certain conditions.

The remainder of this article is organized as follows. In Section 2,
we provide a detailed problem description, followed by an over-
view of the simulation framework in Section 3 and the solution
methods in Section 4. In Sections 5.1 and 5.2, we explain the used
test instances and the corresponding computational results,
respectively. This article concludes with a summary and short dis-
cussion of remaining research questions.

2. Problem description

The dynamic DARP with stochastic, time-dependent travel
speeds is based on a (directed) real-world road network. Let d be
the shortest path (with respect to distance, not travel time) be-

tween any two nodes in this network. Then bT ðt; dÞ ¼ bT avgðt; dÞþ
bT stocðt; dÞ is the time required to travel this path, starting at time

t, and bT avgðt; dÞ is the time required to travel the path given the
departure time t, based on the average vehicle speeds along the

path during the affected time intervals. The term bT stocðt; dÞ repre-
sents the stochastic influence on this travel time, which we assume
is revealed the moment a vehicle starts traveling this path. Note
that we also assume the shortest paths within the network are
constant, not recalculated according to changing traffic situations,
but evaluated using the time-dependent or stochastic travel speeds
along each path. Although recalculating any single path is not very
demanding, doing so for a large number of possible future travel
speed scenarios would lead to significant performance problems
for an online stochastic solution method. Furthermore, we denote
by �Tðt; dÞ the time required to travel along this path when the ar-
rival time at the end of the path should be t.

Each transportation request r consists of two separate nodes
pr ; dr 2 N, representing the pickup and delivery location, respec-
tively. That is, N denotes the set of all customer locations in the
graph. The time ar represents the time the solution method (i.e.,
the dispatcher) is informed about transportation request r (e.g.,
by phone). Some requests are static (ar ¼ 0), but others are
dynamic in the sense that they become known only as the day pro-
gresses (ar > 0). For the dynamic DARP, a limited number of vehi-
cles is available to service all requests. We assume that rejecting
requests is not permitted (solution feasibility is guaranteed by
the soft evening-depot time window, described subsequently).

Each node n 2 N is assigned a quantity of qn ¼ 1 for pickup loca-
tions and qn ¼ �1 for delivery locations, indicating that one pas-
senger is boarding or leaving the vehicle. The depot node 0 is
assigned a quantity of q0 ¼ 0. Each vehicle has a limited capacity
of Qmax ¼ 3, assuming a homogeneous vehicle fleet and homoge-
neous passengers. Each passenger occupies exactly one seat inside
a vehicle, and each vehicle has exactly three seats installed. We do
not differentiate between different modes of transportation in this
work (interested readers should consult Parragh, Cordeau, Doerner,
& Hartl (2012) for a heterogeneous DARP).

Each node n (both pickup and delivery) has a time window
½en; ln�. The depot node 0 has the time window ½0; Tmax�, which
means that vehicles can leave the depot at any time e0 ¼ 0 or
thereafter and should not return later than l0 ¼ Tmax. Here, Tmax is



20 M. Schilde et al. / European Journal of Operational Research 238 (2014) 18–30
the duration of the working shift of the vehicle crew. Arriving at
the depot later than l0 invokes overtime payments and therefore
should be avoided. The beginning and end of each time window
is soft. If a service starts before the beginning of the time window,
this difference is denoted earliness, and to avoid such earliness, the
vehicle can wait before departing to this location or after arrival,
just before starting to service this location. However, waiting is
only allowed if no patient is currently aboard the vehicle. If service
starts after the end of the time window, it is denoted tardiness. A
late return to the depot counts as tardiness as well. Therefore,
every request can feasibly be inserted into any solution at any time
so that incoming requests never have to be rejected.

User inconvenience in terms of excess ride time usually is con-
sidered part of the objective function or a constraint on the DARP.
In our case, we impose a maximum detour constraint of 30 min-
utes, in the following sense: Let ddirect be the shortest path from
pr to dr . Then bT directðt; ddirectÞ is the time required to go directly from
pr to dr , starting at time t (based on historical time-dependent
average travel speeds). Furthermore, let the time between the
planned end of service at pr and the planned start of service at dr

be Treal. Then the equation Treal 6
bT directðt; ddirectÞ þ 30 should not

be violated for any t. However, considering the stochastic influence
on travel speeds, we cannot guarantee that this equation will
strictly hold. If travel time happens to be longer in reality than in
the plan, a detour might extend longer than 30 minutes. To penal-
ize this outcome, the amount of time by which a solution violates
this maximum detour constraint is denoted as ride time violation.

The top priority when planning the vehicle route is to minimize
passenger dissatisfaction. Total costs also must be kept as low as
possible. We therefore use a lexicographic objective function:

� The primary objective is to minimize the sum of tardiness, ear-
liness, and ride time violations over all routes.
� The secondary objective is the number of routes (vehicles used).
� The tertiary objective is the total route duration.

In general, solutions are compared against the primary objec-
tive. If two solutions are equal in terms of the primary objective,
the secondary one is used for comparison. Only if both the primary
and the secondary objective are equal for two solutions, does the
comparison include the tertiary objective.

3. Simulation framework

Algorithm 1. FIFO-approach by Ichoua et al. (2003)

1: t  t0; d dij; k GetIntervalðtÞ
2: t0  t þ d

v ijk

3: whileðt0 > �tkÞ do
4: d d� v ijkð �tk � tÞ
5: t  �tk

6: k kþ 1
7: t0  t þ d

v ijk

8: end while
9: return ðt0 � t0Þ

Because the problem at hand is dynamic, we use a simulation
framework developed for the dynamic stochastic DARP with ex-
pected return transports (i.e., transports from a hospital back to
the patients’ home location are stochastic, while travel speeds
are assumed to be time-independent) as the basis for our simula-
tion environment (Schilde, Doerner, & Hartl, 2011). It is designed
to keep track of all transportation requests continuously during
the execution, and it provides information about incoming new re-
quests to the solution methods whenever necessary. The frame-
work also manages simulation time and travel times. Therefore,
after initializing and loading the problem data, the chosen solver
module starts, with the simulation time set to zero. Whenever
the solver module comes to a point at which it can handle new
transportation requests, the simulation framework updates the
simulation time according to the actual CPU time elapsed since
starting, providing a list of newly known requests to the solver
module.

We therefore extended the framework to make it capable of
managing stochastic, time-dependent travel speeds (see Sec-
tion 3.1). We also added an interface that allows the solver mod-
ules to request travel times between two locations for a given
departure or arrival time. Thus the framework provides travel
times, based on historical average speeds within the affected inter-
vals. Only when the simulation time advances are real travel times,
including the actual stochastic influences, revealed to the solver
modules. The framework accordingly relies on the assumption that
true (stochastic) travel speeds along the path to a vehicle’s next
stop are revealed to a solver the moment the vehicle departs for
this next stop. No update of travel times takes place while traveling
the corresponding path. Nor is the actual path recalculated; rather
only the corresponding travel speeds along this path are updated at
the moment of departure. Additionally, the simulator keeps track
of all vehicle departures, which represent the executed solution.

Another essential aspect of this extended framework is that it
guarantees the ‘‘first-in, first-out’’ property (FIFO, Ichoua et al.
(2003), also known as ‘‘non-passing property’’, Ahn & Shin
(1991)). Two vehicles traversing the same edge in a graph cannot
overtake each other. Beyond the logical implications of this prop-
erty, we enforce it for systemic reasons. Our scheduling algorithm
is based on a strategy that requires the calculation of a definite
departure time for any given arrival time (see the definition of �T
in Section 2). In such situations, guaranteeing the FIFO property
is crucial, because otherwise multiple departure times could result
in the same arrival time. We guarantee the FIFO property by using
the approach presented by Ichoua et al. (2003), as listed in
Algorithm 1. We denote by t0 in interval k the departure time at
location i, by dij the total distance to be travelled, by v ijk the veloc-
ity on link ði; jÞ during interval k, and by �tk the end of interval k. The
algorithm iteratively determines the distance travelled within each
affected interval k to obtain a realistic, time-dependent travel time.
This approach can easily be inverted, such that the travel time is
calculated given a specific arrival time.

We assume that time-dependent average values of travel
speeds are known from historical floating car data (FCD). That is,
we divide a day into 24 intervals, each implying a specific (known)
average travel speed for each road segment in a real-world road
network. The corresponding FCD were collected and analyzed dur-
ing a project in the city of Vienna in 2009. Thus we gain a very real-
istic representation of the real-world traffic situation during the
observation interval, including temporal and geographical correla-
tions between travel speeds on different streets.

Furthermore, we assume historical accident information is
available. For this purpose, we use accident information collected
partly by Statistics Austria and partly by the Automated Data
Processing, Information and Communications Technology depart-
ment at the City of Vienna (Municipal Department 14). This in-
cludes the geographical location of 4078 traffic accidents that
resulted in personal injury within the city limits of Vienna during
2011 (information about accidents without personal injuries is
not collected). With this data set, we determined the probability
of a severe accident within the boundaries of each of the 23
Viennese districts during each hour of the day.
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3.1. Congestion circles

To determine the influence of traffic accidents on actual travel
speeds, we use the concept of a network-consistent, time-depen-
dent travel time layer, as proposed by Lecluyse et al. (2013). The
main idea is to model traffic accidents as congestion circles. An
accident’s influence on traffic is thus determined by a factor repre-
senting accident severity and the area covered by a circle centered
at the accident location. The size of this circle expands up to its
maximum diameter, stagnates for some time, and then slowly
shrinks back to size 0. The actual influence on travel speeds on
any link in the underlying graph can be calculated on the basis of
the severity factor of the accident, weighted by the percentage of
the link currently covered by the circle area. For brevity, we refer
interested readers to Lecluyse et al. (2013) for the calculation
details.

The exact calculation of the timing information (e.g., when a
vehicle on a given link passes the time-dependent circle boundary,
when it leaves the circle again) is computationally quite demand-
ing and needs to be performed online for each circle and each link
inside the network. Therefore, we use an approximation to allow
for real-time calculation within the solution framework. Specifi-
cally, we do not superimpose the travel time layer on the actual
road network but use bee-line connections between the origin
and destination of the vehicle instead.

For each origin–destination pair and each travel speed interval,
we determine the maximum percentage of the bee-line section
covered by the congestion circle. Next, we weight this factor by
the percentage of the respective interval duration during which
the link is actually covered by the circle (taking into account the
time when the circle does not cover the link at all, the time until
the circle reaches its maximum radius, the stagnation time at full
extension, the time during which the circle shrinks, and the time
when the circle does not cover the link any more). The resulting
factor then can reduce the actual travel speed on the given path
during the respective interval.

Using this method, we determine the expected influence of all
accidents known from historical data on each origin–destination
pair. This expected influence provides the basis for evaluating the
proposed methods (i.e., resulting travel speeds are revealed in
the solution methods as real travel speeds). Thus we ensure that
all solution methods are evaluated using real-world accident
information.

A graphical representation of the expected accident influence
as an average over all links within a single test instance appears
in Fig. 2. The morning and evening rush hour clearly arise; the
higher traffic densities during these periods imply a higher likeli-
hood of traffic accidents. The overall average influence of acci-
dents on any link inside this test instance is a 1.02% reduction
in travel speed (dashed line in Fig. 2). The maximum influence
on any link in any interval in this instance is a 4.87% reduction
in travel speed.
4. Solution methods

Our solution approaches proceed as follows: First, the sequence
of transportation requests inside each route is determined. Second,
the feasibility and timing for each route is determined using a
scheduling algorithm. For the sequencing, we first generate an ini-
tial solution (see Section 4.2), which can be improved using one of
four metaheuristic solution methods, as described in Sections 4.3,
4.4 and 4.5. For the second phase, we present a new alternative
scheduling algorithm for the DARP that is designed especially to
handle time-dependent travel speeds. This method, the block
scheduling algorithm (BSA), is described next.
4.1. Block scheduling algorithm

The block scheduling algorithm is inspired by two existing
ideas: the concept of scheduling blocks presented by Jaw, Odoni,
Psaraftis, and Wilson (1986) (which was also used by Fu (2002)
and is similar to the concept of zero split points presented by Par-
ragh, Doerner, & Hartl (2010)) and the forward time slack concept
proposed by Savelsbergh (1992). A service block is a sequence of
nodes within a route that starts and ends with the vehicle being
empty. The forward time slack is originally defined as the maxi-
mum amount of time the departure from a node can be delayed
without causing the route to be infeasible. For our scheduling algo-
rithm, we define the forward time slack as the maximum amount
of time the start of service at a node can be delayed without
increasing tardiness with respect to its time window.

Instead of adapting one of the two most commonly used sched-
uling algorithms proposed for the deterministic DARP (Cordeau &
Laporte, 2003; Hunsaker & Savelsbergh, 2002) to the requirements
of the dynamic DARP with stochastic, time-dependent travel
speeds, we decided to introduce a completely new scheduling algo-
rithm, the BSA. Changes to the two existing algorithms, which are
required for several reasons, would be too extensive. In particular,
shifting services with respect to the time they are performed can
have a direct influence on all subsequent travel times (i.e., shifting
it into the future causes future vehicle movement to be shifted into
intervals with different travel speeds, thus changing the time re-
quired for these movements). The problem at hand also includes
only soft time windows, soft maximum ride time constraints
(due to the stochastic influences on travel speeds), and no waiting
time allowed whenever a person is aboard a vehicle.

The major difference between the two existing scheduling algo-
rithms and our BSA is that the existing methods are based on the
assumption that delaying the departure to a stop along the route,
within the limits represented by the forward time slack, does not
have a negative upstream effect on consecutive stops’ timing. In
the case of time-dependent travel speed, this assumption is not va-
lid though. Therefore, our BSA is designed to handle the effects
caused by time-dependent travel speeds. It includes an iterative
correction phase, compensating for such effects automatically.
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Our description of the BSA depends on the assumption that all
information related to solution quality (i.e., tardiness, earliness,
ride time violations, number of vehicles used, and total route
duration) is calculated a posteriori in an additional evaluation step
after the scheduling algorithm. This information does not have any
influence on the scheduling of a given vehicle route but would add
further complexity to the presented algorithm outlines. Neverthe-
less, including the required calculations in an actual implementa-
tion of the BSA is possible.

Algorithm 2. Block scheduling algorithm outline
1:
 // STAGE 1
2:
 for all stops along the route do

3:
 Determine timing without waiting time

4:
 if vehicle is empty before this stop then

5:
 Add waiting time before this stop if needed

6:
 Remember new block characteristics

7:
 else

8:
 Update block characteristics

9:
 end if
10:
 end for

11:
 // STAGE 2
12:
 for all blocks in backwards order do

13:
 if block can and should be shifted then

14:
 Shift block by adding waiting time in front

15:
 Update block characteristics

16:
 while shift caused critical problems do

17:
 Undo part of the shift to correct problems

18:
 Update block characteristics

19:
 end while

20:
 end if

21:
 end for
The BSA is a two-stage method, as outlined in Algorithm 2; we
provide a simple example of how the BSA works in Fig. 3. In the
first stage, the algorithm creates an initial schedule for the given
route by using forward propagation (Lines 2–10). Waiting times
are permitted only directly before departing for a pickup if the
vehicle is empty (not after arriving at the pickup location). Such
a point along the route at which the vehicle is empty also indicates
the beginning (and end) of a service block. During this first stage,
all the required parameters for the respective service blocks are
stored for the second stage. This initial schedule then gets refined
in the second stage with the introduction of additional waiting
time before the service blocks, to reduce earliness with respect to
the time windows (Lines 12–21). This second stage moves through
the found blocks in backward order and introduces just enough
waiting time prior to the first stop of each block to minimize ear-
liness without increasing tardiness. The time-dependent nature of
travel speeds means that this shift can cause problems if the
changing travel times cause the current block to overlap the next
block. However, the effect can be addressed by iteratively remov-
ing part of the inserted waiting time again.
Algorithm 3. Block scheduling algorithm: Stage 1
1:
 i 0; Q0  0; H ;;

2:
 for n ¼ 1; . . . ; jSj : Dn�1 > R do

3:
 if Qn�1 þ qn > Qmax then

4:
 Infeasible

5:
 end if
6:
 Bn  Dn�1 þ bT ðDn�1; dn�1;nÞ

7:
 Dn  Bn þ pn
8:
 if Qn ¼ 0 then

9:
 if Bn < en then
10:
 Bn  en
11:
 Dn�1  Bn � �TðBn; dn�1;nÞ

12:
 Dn  Bn þ pn
13:
 end if

14:
 i iþ 1; H H [ fig

15:
 Hstart

i  n

16:
 Hwaiting

i  Dn�1 � Bn�1 � pn�1
17:
 Hearliness
i  maxfen � Bn;0g
18:
 Hslack
i  maxfln � Bn; 0g
19:
 else

20:
 Hearliness

i  maxfmaxfen � Bn;0g;Hearliness
i g
21:
 Hslack
i  minfmaxfln � Bn;0g;Hslack

i g

22:
 end if

23:
 Qn  Qn�1 þ qn
24:
 end for
Algorithm 4. Block scheduling algorithm: Stage 2
1:
 for i ¼ jHj � 1; . . . ;1 : DHstart
i �1 > R do
2:
 if ðHslack
i > 0Þ ^ ðHearliness

i > 0Þ ^ ðHwaiting
iþ1 > 0Þ then
3:
 s minfHslack
i ;Hearliness

i ;Hwaiting
iþ1 g
4:
 Borig  BHstart
iþ1 �1
5:
 Hwaiting
i  Hwaiting

i þ s

6:
 BHstart

i
 BHstart

i
þ s
7:
 DHstart
i �1  BHstart

i
� �TðBHstart

i
; dHstart

i �1;Hstart
i
Þ

8:
 Htardiness
i  0
9:
 / 0

10:
 for n ¼ Hstart

i þ 1; . . . ;Hstart
iþ1 � 1 do
11:
 Dn�1  Bn�1 þ pn�1

12:
 Bn  Dn�1 þ bT ðDn�1; dn�1;nÞ

13:
 Htardiness

i  maxfmaxfBn � ln;0g;Htardiness
i g
14:
 Hslack
i  minfmaxfln � Bn;0g;Hslack

i g

15:
 if n ¼ Hstart

iþ1 � 1 then

16:
 Hwaiting

iþ1  Dn � Bn � pn
17:
 if ðð/ < /maxÞ ^ ðHtardiness
i > 0ÞÞ _ ðHwaiting

iþ1 < 0Þ then

18:
 / /þ 1

19:
 scorr  ððBn � BorigÞ=sÞjminf�Htardiness

i ;Hwaiting
iþ1 gj
20:
 s s� scorr
21:
 Hwaiting
i  Hwaiting

i � scorr
22:
 BHstart
i
 BHstart

i
� scorr
23:
 DHstart
i �1  BHstart

i
� �TðBHstart

i
; dHstart

i �1;Hstart
i
Þ

24:
 n Hstart
i þ 1
25:
 Htardiness
i  0
26:
 end if

27:
 end if

28:
 end for

29:
 end if

30:
 end for



Fig. 3. Example BSA. The first stage creates an initial schedule. The second stage inserts additional waiting time before the first block to reduce earliness when arriving at the
pickup node for the second request. Due to changes in travel speed, the travel time between locations 2þ and 1� as well as between 1� and 2� increases, causing the block to
overlap the next block, which must be corrected.
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A detailed outline of the two stages appears in Algorithms 3 and
4. We rely on the following notation: S is the set of nodes to be vis-
ited by the current route (in chronological order, 0 and jSj are the
indices of the depot nodes), Qn is the number of passengers aboard
the vehicle when it arrives at node n 2 S;Bn is the beginning time of
service at node n;Dn is the departure time from node n, pn is the
service time at node n;Hi is used to store information about service
block i;R denotes currently simulated point in time, and dn�1;n de-
notes the shortest path between two consecutive stops.

The first stage consists of creating an initial schedule using for-
ward propagation (Algorithm 3). Waiting times (to reduce earli-
ness with respect to time windows) are only permitted if no
person is aboard the vehicle (Lines 10–12). Because all time win-
dows and the maximum ride time limitation are soft, the only
definitive infeasibility would be a violation of the vehicle capacity
(Line 4). Thus we obtain a feasible schedule that consists of a se-
quence of service blocks, connected by waiting time and subse-
quent dead-heading movement. During this first phase, we keep
track of four properties for each block i (Lines 15–21): the starting
index (Hstart

i ), the maximum earliness within the block (Hearliness
i ),

the minimum forward time slack within the block (Hslack
i ) and

the waiting time before the block (Hwaiting
i ).

In the second stage, the algorithm steps backward through the
schedule blocks and even postpones entire blocks to reduce earli-
ness (Algorithm 4). Thus the waiting time before each block i is in-

creased by the minimum of Hearliness
i , Hslack

i , and Hwaiting
iþ1 (Lines 3–7).

All timings inside the block and the block’s properties get updated
accordingly, using forward propagation again (Lines 11–14). Dur-
ing this process, the algorithm keeps track of the maximum tardi-

ness within each block (Htardiness
i ). Thus we obtain a schedule that

minimizes earliness and tardiness with respect to time windows
without waiting time within a service block. However, because of
the time-dependent nature of travel speeds, postponing a service
block can cause the block to overlap the next block (i.e., we would
need to shift the subsequent block, which we already shifted in a
previous iteration) or an increase in tardiness within the block.
Vehicle movements might be shifted into later time intervals with
lower travel speeds. The BSA iteratively compensates for this effect
before continuing with the preceding block by determining the
amount by which the block overlaps the subsequent block caused
by the current block movement relative to the performed post-
ponement. Then it undoes part of the block’s postponement
accordingly (Lines 19–25). At this point, either tardiness inside
the current block or overlapping the next block have been induced
by the shifting operation (or, if a correction was already performed,
by what remains of the original shift). Therefore, the performed
shift is partly undone by shifting the block backward in time by
scorr ¼ ððBn � BorigÞ=sÞjminf�Htardiness
i ;Hwaiting

iþ1 gj. The term
ðBn � BorigÞ=s represents a factor that indicates by how much the
end of this block shifts forward in time if the beginning of the block
is shifted forward by one time unit. Using this factor (which is an
approximation, because the exact effect depends on the actual po-
sition of the block with respect to the time intervals), the amount
of tardiness or overlapping that needs to be corrected can be
weighted. This correction is performed iteratively, as long as the
block overlaps the subsequent block. If the correction is performed
solely to compensate for an increase in tardiness inside the block
caused by the shift, it is executed only up to /max times. This limi-
tation helps to avoid excessive computation time. Overlapping of
the subsequent block must be eliminated completely before
continuing.

4.2. Initial solution

Algorithm 5. Modified cheapest insertion heuristic
1:
 R ListOfKnownRequests ()

2:
 x AddEmptyRoute ()

3:
 for r 2 R do

4:
 if Dðx; rÞ > Dðxþ; rÞ AND VðxÞ > 0 then

5:
 x InsertRequestIntoNewRoute (x; r)

6:
 else

7:
 x InsertRequestAtBestPosition (x; r)

8:
 end if

9:
 end for
10:
 return x
To create an initial solution for all our algorithms, we used an
adapted version of the cheapest insertion heuristic proposed by
Rosenkrantz, Stearns, and Lewis (1974) for the traveling salesper-
son problem, as outlined in Algorithm 5. We denote by Dðx; rÞ
the decrease in solution quality with respect to the objective func-
tion caused by inserting a request r into an existing route in solu-
tion x and by Dðxþ; rÞ the decrease caused by inserting r into a new
route in solution x. Furthermore, VðxÞ represents the number of
vehicles still unused in a given (partial) solution x.

4.3. Dynamic variable neighborhood search

The first solution method we adapt to the requirements of our
problem is a dynamic variable neighborhood search (VNS), pre-
sented for the DSDARP by Schilde et al. (2011). Algorithm 6 pro-
vides the outline. The main difference with traditional VNS
(Hansen & Mladenović, 2005; Mladenović & Hansen, 1997) appears
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in Line 5: Because the problem at hand is dynamic, the algorithm
must ensure that dynamically arising requests get taken into
account during execution. Therefore, the method inserts such re-
quests into the current solution at the beginning of each iteration
(i.e., before performing the shaking step). The iterative search pro-
cess stops when it reaches the end of the simulated working shift
and all transportation requests have been completely serviced (a
late return to the depot is possible).

Algorithm 6. Dynamic VNS
1:
 x InitialSolution ()

2:
 NðjÞ  SelectFirstNeighborhood ()

3:
 while StoppingCriterionNotMet () do

4:
 x RescheduleWithTrueTravelSpeeds (x)

5:
 x InsertNewRequests (x)

6:
 x0  ShakeSolution (x;NðjÞ)

7:
 x MoveOrNot (x; x0)

8:
 NðjÞ  SelectNextNeighborhood (j)

9:
 end while
10:
 return x as best found solution
Whenever a vehicle departs for the next stop along its route, the
real travel time is revealed to the solution method by the simula-
tion framework. Thus, the algorithm reschedules all subsequent re-
quests in this route (Line 4). The remainder of the dynamic VNS
corresponds to the reduced VNS concept reported by Hansen and
Mladenović (2005), so we do not use an additional local search step
after the shaking step. Extensive testing has shown that the neigh-
borhood operators implicitly include some local search behavior,
because reinsertion into the same route is allowed, which makes
an additional local search step relatively ineffective.

As in the previously reported version of dynamic VNS (Schilde
et al., 2011), we use a set of four neighborhood operators, based
on those reported by Parragh et al. (2010), during the shaking
phase of the dynamic VNS algorithm (Line 6). Each operator applies
up to five different intensity levels j ¼ f1 . . . 5g. The first operator
randomly removes j transportation requests from a randomly se-
lected route and reinserts them into any route at the position
where they fit best, such that it causes the smallest possible dete-
rioration in solution quality. The second operator randomly selects
two routes and removes up to j consecutive requests from each of
them, starting at a randomly selected position. The removed re-
quests then can be reinserted into the corresponding other route
at the position where they fit best. The third operator starts by ran-
domly selecting an origin route and a destination route, then re-
moves a sequence of up to j consecutive requests from the
origin route and reinserts them into the destination route where
they fit best. It iterates j times, using the destination route as
the new origin route and a randomly selected new destination
route. Finally, the fourth operator randomly selects one route and
determines all positions inside the route at which the correspond-
ing vehicle is empty (‘‘zero split points’’). It then randomly selects
two of these points, whereby up to j� 1 other such points may be
in between these two points. After removing all transportation re-
quests between the selected points, it reinserts these requests into
any route at the position where they fit best.

We start our search using the first operator with intensity level
j ¼ 1. During each iteration we randomly create one neighboring
solution. If this solution is better than the current incumbent solu-
tion, it replaces the current incumbent, and the next iteration con-
tinues with the first neighborhood operator with the lowest
intensity level (j ¼ 1). Otherwise, the intensity level increases for
the next iteration (j ¼ jþ 1). If the maximum value for the inten-
sity is reached, the next neighborhood operator with intensity level
j ¼ 1 is used (sequence: move! swap! chain! zero split). If the
maximum intensity occurs with the last neighborhood operator,
the first operator with the lowest intensity is used again (Line 8).

4.4. Dynamic stochastic variable neighborhood search

The second algorithm we apply to our problem is an adaptation
of the dynamic stochastic variable neighborhood search approach
(dynamic S-VNS), which is based on the dynamic S-VNS algorithm
presented for the DSDARP (Schilde et al., 2011). The primary goal
of the S-VNS concept is to determine the quality of any given
solution using samples of future developments. Its outline is in
Algorithm 7.

Algorithm 7. Dynamic S-VNS
1:
 x�  x InitialSolution (); Z  1

2:
 NðjÞ  SelectFirstNeighborhood ()

3:
 while StoppingCriterionNotMet () do

4:
 x RescheduleWithTrueTravelSpeeds (x)

5:
 x�  RescheduleWithTrueTravelSpeeds (x�)

6:
 if NewRequestsPresent () then

7:
 x�  InsertNewRequests (x�)

8:
 x x�
9:
 end if

10:
 x0  ShakeSolution (x;NðjÞ; Z)

11:
 Z  SelectSampledAccidents (Z)

12:
 x MoveOrNot (x; x0; Z)

13:
 x�  MoveOrNot (x�; x0; Z)

14:
 NðjÞ  SelectNextNeighborhood (j)

15:
 Z  AdaptSampleSize (Z)

16:
 end while

17:
 return x� as best found solution
Dynamic S-VNS takes stochastic information about future travel
speeds into consideration while planning and evaluates solutions
on the basis of samples of future travel speeds. Therefore, we
would use a set of sampled accident scenarios, created in a prepro-
cessing step. These samples of possible future traffic accidents are
created according to the distribution parameters determined from
historical data, including the temporal and spatial distribution. A
dynamically selected subset of Z of these samples in combination
with the historical time-dependent average travel speeds is then
used by the stochastic method to calculate the respective travel
times for each vehicle movement, using the procedure described
in Section 3.1.

The overall structure of dynamic S-VNS is similar to that for dy-
namic VNS. At the beginning of each iteration, the algorithm
reschedules the current incumbent solution and the best-so-far
solution using real travel speeds if they are known by now (Lines
4 and 5). If new requests have become known during the last iter-
ation, they enter the best-so-far solution (Line 7), and the search
process continues. The subsequent shaking step uses the same
neighborhood structures described for dynamic VNS (Line 10). If
the new solution has a better average solution quality with respect
to the current set of samples, it is selected as the new current
incumbent solution (Line 12). Also, the best-so-far solution gets
updated on the basis of the same subset of sampled accidents (Line
13). Because the computational complexity of calculating future
travel speeds depends on the size of the subset of sampled acci-
dents Z, this number should be rather small. Our algorithm starts
using a single sample (Z ¼ 1) and adapts the number of samples
dynamically, depending on the execution time of the solution
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evaluation. If the evaluation takes less than 1 second, Z increases
by 1; otherwise, it decreases by 1 (Line 15).

4.5. Multiple plan approach and multiple scenario approach

Algorithm 8. Structure of the Multiple Plan Approach
1:
 x InitialSolution (); P  fxg

2:
 NðjÞ  SelectFirstNeighborhood ()

3:
 while StoppingCriterionNotMet () do

4:
 �x RescheduleWithTrueTravelSpeeds

(�x) 8�x 2 P

5:
 for �x 2 P

6:
 if

ð�x – xÞ ^ ðTimeoutð�x; xÞ _ Departureð�x; xÞÞ
then
7:
 P  P n f�xg

8:
 else if NewRequestsPresent () then

9:
 InsertNewRequests (�x)
10:
 end if

11:
 end for

12:
 if HasChanged (P) then

13:
 x SelectCurrentIncumbent (P)

14:
 end if

15:
 x0  ShakeSolution (x;NðjÞ)

16:
 if x0 R P then

17:
 P  P [ fx0g

18:
 end if

19:
 NðjÞ  SelectNextNeighborhood (j)

20:
 end while
Algorithm 9. Structure of the Multiple Scenario Approach
1:
 x InitialSolution (); P  fxg; Z  1

2:
 NðjÞ  SelectFirstNeighborhood ()

3:
 while StoppingCriterionNotMet () do

4:
 �x RescheduleWithTrueTravelSpeeds

(�x; Z) 8�x 2 P

5:
 for �x 2 P do

6:
 if

ð�x – xÞ ^ ðTimeoutð�x; xÞ _ Departureð�x; xÞÞ
then
7:
 P  P n f�xg

8:
 else if NewRequestsPresent () then

9:
 InsertNewRequests (�x)
10:
 end if

11:
 end for

12:
 if HasChanged (P) then

13:
 Z  SelectSampledAccidents (Z)

14:
 x SelectCurrentIncumbent (P; Z)

15:
 Z  AdaptSampleSize (Z)

16:
 end if

17:
 x0  ShakeSolution (x;NðjÞ)

18:
 if x0 R P then

19:
 P  P [ fx0g

20:
 end if

21:
 NðjÞ  SelectNextNeighborhood (j)

22:
 end while
With dynamic VNS and dynamic S-VNS, we directly compare a
purely deterministic approach (dynamic VNS) with a stochastic ap-
proach (dynamic S-VNS). To check if the observed differences can
be expected as a general outcome when comparing deterministic
and stochastic methods for this problem, we implement an
additional pair of methods. To allow for direct comparisons be-
tween the two additional algorithms, we again use two very simi-
lar concepts. Namely, we adapt the multiple plan approach (MPA,
see Algorithm 8) and the multiple scenario approach (MSA, see
Algorithm 9) to the requirements of the problem at hand. Both
methods were originally proposed for the dynamic vehicle routing
problem with time windows and stochastic customers by Bent and
Van Hentenryck (2004).

We base both methods on the adaptations for the DSDARP
(Schilde et al., 2011) and introduce all modifications required to
cope with stochastic, time-dependent travel speeds. As an underly-
ing search procedure, we use our implementation of the dynamic
VNS. Thus we can guarantee that all differences found between
the results of our four methods are caused by the essential concep-
tual design (deterministic versus stochastic, long-term memory
versus no long-term memory) and not by the underlying search
method.

The main idea behind the two approaches is to use a pool of
solutions as long-term memory that stores each unique solution
found during the search process (Line 17/19 in Algorithm 8/9). At
every point in time, the algorithms use one of these solutions (x)
as their current incumbent solution (Line 13/14 in Algorithm 8/
9). At the beginning of each iteration, all solutions in the pool are
scheduled according to the currently known real travel speeds
(Line 4/4 in Algorithm 8/9). To guarantee the feasibility of all solu-
tions in the pool, solutions that are incompatible with decisions
made in the current incumbent solution get eliminated from the
pool when necessary (Line 7/7 in Algorithm 8/9). The resulting
solution is thus defined by the sequence of actions taken during
execution. Then all newly known requests are inserted into every
solution in the pool.

The main difference between MPA and MSA is that the latter
incorporates stochastic information in the search process, while
the former does not. For this purpose, the multiple scenario ap-
proach uses sampled future travel speed deviations in a similar
way as dynamic S-VNS does. Contrary to dynamic S-VNS, it does
not use the set of dynamically selected sampled accidents to com-
pare a candidate solution to the current incumbent solution but
rather to select the current incumbent solution out of all solutions
in the pool. Therefore, each solution has to be rescheduled using
the information about each of the used samples; then the resulting
average solution qualities are compared. As for S-VNS, the size of
the used set of samples Z is dynamically adjusted, such that the
execution time of one evaluation equals 1 second (Line 15 in Algo-
rithm 9).

According to Bent and Bent and Van Hentenryck (2004), the
best strategy to select the current incumbent solution uses a con-
sensus function, similar to a least commitment strategy (i.e., select
the solution most similar to all other solutions in long-term mem-
ory). Previous findings for the DSDARP (Schilde et al., 2011) indi-
cate that this strategy may not be the best choice in all
circumstances though. Because the dynamic DARP with stochastic,
time-dependent travel speeds is structurally similar to the
DSDARP, we decided to use the best solution in the pool as our cur-
rent incumbent solution.
5. Numerical analysis

5.1. Test instances

The ride times in our test instances are based on historical
floating car data gathered during a project in the city of Vienna in
2009. Descriptions of the calculations of time-dependent travel
times based on FCD-data are available in Reinthaler, Nowotny,
Weichenmeier, and Hildebrandt (2007), Laborczi, Linauer, and



Table 1
Average solution quality, depending on instance size and share of dynamic requests
K. All results are relative to those obtained with the corresponding deterministic
solution method (VNS – S-VNS and MPA – MSA). Positive values (highlighted in bold)
indicate superior results obtained by the stochastic method mentioned in the column
header. Dissatisfaction refers to the primary objective, calculated as the sum of
tardiness, earliness, and ride time violation; #Vehicles is the secondary objective,
calculated as the number of vehicles used; and Duration is tertiary objective, equal to
the total route duration.

Size K (%) Dissatisfaction (%) #Vehicles (%) Duration (%)

S-VNS MSA S-VNS MSA S-VNS MSA

Tiny 15 �1.00 �2.24 �15.97 �15.29 �12.69 �11.46
Tiny 30 0.37 �0.26 �12.97 �20.08 �10.88 �18.01
Tiny 45 2.50 7.83 �8.23 �19.31 �11.97 �13.50
Tiny 60 4.09 8.16 �12.92 �12.77 �14.15 �12.81
Tiny 75 7.92 8.99 �8.94 �21.40 �15.17 �11.49
Tiny 90 6.70 5.84 �17.65 �20.18 �17.14 �9.89
Tiny 100 5.81 4.34 �20.09 �20.09 �21.18 �12.73
Small 15 3.51 �3.53 �9.15 �12.22 �7.53 �12.79
Small 30 0.82 �5.89 �5.75 �12.16 �7.46 �12.43
Small 45 1.50 �6.41 �7.04 �12.16 �9.77 �14.83
Small 60 2.99 �4.33 �10.38 �13.41 �11.48 �13.17
Small 75 �0.08 �2.82 �6.31 �13.83 �10.82 �13.46
Small 90 3.50 �2.48 �9.93 �10.77 �13.93 �12.12
Small 100 4.66 0.62 �12.20 �12.05 �16.97 �13.25
Medium 15 4.85 �20.02 �3.33 �9.09 �8.94 �13.15
Medium 30 3.99 �15.95 �4.49 �8.42 �10.51 �13.87
Medium 45 5.97 �12.67 �5.11 �8.15 �10.21 �13.31
Medium 60 3.84 �10.60 �3.99 �10.82 �12.66 �12.11
Medium 75 7.96 �7.72 �5.01 �9.82 �13.16 �13.16
Medium 90 7.91 �3.80 �11.83 �11.47 �17.78 �13.56
Medium 100 4.10 0.00 �12.67 �12.30 �19.38 �13.44
Large 15 �0.18 �40.67 �5.45 �10.51 �13.22 �15.81
Large 30 2.11 �44.34 �4.52 �9.47 �12.79 �16.19
Large 45 2.46 �32.50 �4.45 �9.41 �13.78 �14.05
Large 60 1.63 �25.55 �5.83 �13.12 �13.49 �13.88
Large 75 4.52 �15.25 �6.08 �11.92 �14.39 �13.81
Large 90 3.28 �11.45 �4.74 �8.80 �15.98 �13.71
Large 100 �15.36 �3.66 �14.74 �10.21 �12.68 �13.16

Avg. 2.87 �8.44 �8.92 �12.83 �13.22 �13.40
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Nowotny (2006), and Linauer and Nowotny (2006), and the in-
stances can be downloaded from http://www.jku.at/plm/

instances.
For this study we assume that a day consists of 24 time inter-

vals, each of one hour in length. For each link inside the used
real-world road network and each of the intervals, we can deter-
mine an average vehicle speed. These travel speeds serve as the
planning basis for the deterministic approaches (see Section 4).
In addition, we generate stochastic deviations from these average
velocities using the congestion circle procedure described in
Section 3.1.

We create our transportation requests on the basis of distribu-
tion parameters derived from real-world data on the daily opera-
tions of an Austrian ambulance service provider during the
course of one year. A detailed description of the process for deter-
mining the distribution parameters can be found in Schilde et al.
(2011). In addition, we used a set of geographic patient locations
and hospital sites in the city of Vienna, corresponding to the origi-
nal locations serviced during the year. To model the geographic
distribution of the generated requests, the set includes an occur-
rence counter for each location, which then can assign locations
to created requests via roulette wheel. By sampling the distribution
of the interarrival time of two consecutive requests, we determine
the arrival times for all requests. Similarly, the distribution of the
time between an incoming request and the latest time of arrival
at the hospital is sampled, to construct the requests’ time win-
dows. By varying the distribution of interarrival times, we create
instances with N ¼ f215;430;578;762g requests arising during a
ten-hour work day. In what follows, we refer to these instance
sizes as ‘‘tiny’’, ‘‘small’’, ‘‘medium’’, and ‘‘large’’. Each instance con-
sist of 50% inbound (home to hospital) and 50% outbound (hospital
to home) requests.

For each of the four instance sizes, we create eight instances with
different percentages of dynamic requests. Thus the instances were
created such that the requests can be selected as static or dynamic by
defining the desired degree of dynamism. For our computational
experiments, we use degrees of dynamism, K ¼ f0%;15%;30%;

45%;60%;75%;90%;100%g, to determine how this factor influ-
ences our results.

Finally, we calculate a greedy solution for each test instance
using the modified cheapest insertion procedure described in Sec-
tion 4.3, under the assumption that all requests are known a priori.
The number of vehicles used in this solution is increased by 10%,
which provides the maximum number of vehicles available to all
four solution algorithms.

5.2. Numerical results

Computational testing is performed using non-parallel C++
implementations of the described algorithms. Compilation is done
using the GNU C++ compiler in its version 4:3 on SuSE Linux Enter-
prise Server 11. All calculations are performed using one core of an
Intel Xeon E7-8837 (WestmereEX, 2.66 GHz) and 8 GB of memory.

In what follows, we present the results obtained in terms of rel-
ative solution quality. The results for the stochastic methods there-
fore are given as a percentage gap from the results obtained by their
deterministic counterparts. A positive percentage always indicates
that the corresponding method yields better solution quality than
the compared approach, whereas a negative value indicates the
opposite. Using 10 independent runs, we also calculate the 95% con-
fidence intervals for the differences between each pair of objective
function values. We compare the results obtained by our two deter-
ministic methods (dynamic VNS and MPA) using time-dependent
travel speeds against results obtained by the same methods using
constant average travel speeds. These two time-independent ver-
sions are denoted AVNS and AMPA in the following discussion.
These results are also presented as the relative gap from those ob-
tained when using time-dependent travel speeds.

As we mentioned previously, the main focus of our research was
to determine if our stochastic algorithms (dynamic S-VNS and MSA)
obtain better solutions for this problem than deterministic methods
(dynamic VNS and MPA). We provide summaries of the results ob-
tained by dynamic S-VNS and MSA depending on K in Figs. 6 and
7, respectively, though we do not report the results for K ¼ 0%, be-
cause they are strongly negative and would distort the scale. A com-
plete list of all results appears in Table 1 for the stochastic methods
when dynamic requests are present, Table 2 for the stochastic meth-
ods without any dynamic requests, and Table 3 for the deterministic
methods with time-independent travel speeds (all relative to the re-
sults obtained by the deterministic methods with time-dependent
travel speeds).

Not all stochastic solution approaches appear equally suitable
for the problem at hand. Whereas dynamic S-VNS is a promising
concept, MSA does not obtain the same solution quality, even with
the same underlying search procedure (see Fig. 5). Especially in
larger problem settings with few dynamic requests, MSA cannot
compete with the results obtained by MPA (see Fig. 7). The quality
of the results obtained by the latter is very similar to that of the re-
sults obtained by dynamic VNS though. Nevertheless, MSA already
offers a powerful approach for different problem settings (e.g., the
vehicle routing problem with stochastic customers).

The reason for the relative disadvantage of MSA compared with
dynamic S-VNS reflects the computational demands of evaluating a
pool of solutions based on sampled accidents, which is far greater
than the demand associated with comparing a single candidate



Table 2
Average solution quality, depending on instance size with no dynamic requests
(K ¼ 0%). All results are relative to those obtained with the corresponding
deterministic solution method (VNS – S-VNS and MPA – MSA). Negative values
indicate inferior results obtained by the stochastic method mentioned in the column
header. Dissatisfaction refers to the primary objective, calculated as the sum of
tardiness, earliness, and ride time violation; #Vehicles is the secondary objective,
calculated as the number of vehicles used; and Duration is tertiary objective, equal to
the total route duration.

Size K (%) Dissatisfaction (%) #Vehicles (%) Duration (%)

S-VNS MSA S-VNS MSA S-VNS MSA

Tiny 0 �4.89 �4.28 �17.41 �22.66 �4.17 �14.82
Small 0 �4.65 �5.21 �11.14 �12.97 �0.34 �12.68
Medium 0 �55.97 �20.91 0.00 �9.36 �1.02 �13.90
Large 0 �115.17 �44.18 1.63 �7.95 �2.82 �12.48

Avg. �45.17 �18.65 �6.73 �13.24 �2.09 �13.47

Table 3
Average solution quality, depending on instance size and share of dynamic requests
K, using deterministic solution methods with average (time-independent) travel
speeds. All results are relative to those obtained by the corresponding solution
method using time-dependent travel speeds (VNS – AVNS, MPA – AMPA). Negative
values indicate superior results obtained by the method with time-dependent travel
speeds (i.e., it is always superior). Dissatisfaction refers to the primary objective,
calculated as the sum of tardiness, earliness, and ride time violation; #Vehicles is the
secondary objective, calculated as the number of vehicles used; and Duration is
tertiary objective, equal to the total route duration.

Size K (%) Dissatisfaction (%) #Vehicles (%) Duration (%)

AVNS AMPA AVNS AMPA AVNS AMPA

Tiny 0 �54.81 �54.75 4.45 �22.66 8.07 10.75
Tiny 15 �52.88 �48.91 �2.10 �15.29 5.98 8.73
Tiny 30 �56.33 �49.74 �3.77 �20.08 3.34 6.55
Tiny 45 �55.38 �45.79 2.88 �19.31 1.80 4.84
Tiny 60 �52.99 �43.07 �0.83 �12.77 4.19 4.60
Tiny 75 �44.48 �40.70 2.44 �21.40 3.27 4.46
Tiny 90 �46.34 �37.35 �1.68 �20.18 3.37 3.96
Tiny 100 �49.37 �43.02 �2.62 �20.09 �0.45 1.92
Small 0 �65.73 �63.85 �0.23 �12.97 4.75 6.14
Small 15 �60.05 �59.17 1.60 �12.22 5.34 7.62
Small 30 �63.81 �62.70 �0.23 �12.16 4.17 5.61
Small 45 �62.39 �62.85 �3.76 �12.16 2.03 3.80
Small 60 �51.89 �52.60 0.00 �13.41 2.24 4.51
Small 75 �55.72 �55.32 �0.23 �13.83 0.77 1.87
Small 90 �41.73 �44.58 0.00 �10.77 1.03 2.26
Small 100 �35.79 �39.62 �0.96 �12.05 2.02 1.40
Medium 0 �53.43 �47.46 3.61 �9.36 4.50 6.19
Medium 15 �50.98 �47.12 2.22 �9.09 4.04 6.59
Medium 30 �52.43 �45.65 0.96 �8.42 5.02 6.33
Medium 45 �45.59 �44.71 3.04 �8.15 5.63 5.34
Medium 60 �47.05 �45.24 3.35 �10.82 3.13 4.67
Medium 75 �45.78 �48.10 2.10 �9.82 2.11 2.64
Medium 90 �46.88 �46.11 1.83 �11.47 1.70 1.69
Medium 100 �39.54 �42.39 �1.56 �12.30 2.04 0.46
Large 0 �65.85 �63.50 1.17 �7.95 3.73 6.68
Large 15 �71.60 �74.48 2.20 �10.51 2.62 3.87
Large 30 �64.58 �70.47 0.00 �9.47 3.10 3.94
Large 45 �69.26 �67.33 1.05 �9.41 1.16 3.18
Large 60 �67.43 �65.43 0.48 �13.12 1.46 4.42
Large 75 �64.18 �64.08 �1.34 �11.92 1.12 1.96
Large 90 �63.47 �65.43 �0.36 �8.80 1.34 0.66
Large 100 �62.04 �62.69 �2.64 �10.21 1.13 1.43

Avg. �66.05 �66.68 0.07 �10.18 1.96 3.27
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Fig. 4. Average (circles) and 95% confidence intervals (whiskers) of the gaps
between the primary objective function values obtained by dynamic VNS and those
obtained by dynamic S-VNS, depending on the percentage of dynamic requests
aggregated over all instance sizes. Positive values indicate superior results obtained
by the latter.
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between the primary objective function values obtained by MPA and those obtained
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solution against the current incumbent. Therefore, the size of the
used sample set is much smaller for MSA than for dynamic S-
VNS (e.g., 1.04 vs. 142.80 samples on average; maximum of 42
vs. 161 samples for the small instance during one run with an aver-
age of 682.09 plans in the pool of MSA).

Our findings also clearly show that incorporating stochastic
information about future traffic accidents while planning routes
for the dynamic DARP does not automatically guarantee better
results. In certain conditions, the additional effort put into stochas-
tic solution methods can result in superior solutions, largely
depending on the amount of dynamism inherent in the problem.
It appears that dynamic S-VNS works best in settings with 45% to
90% of dynamic requests (see Fig. 4). For fully static instances
and very large fully dynamic instances, deterministic dynamic
VNS clearly is the method of choice. For instances with relatively
few dynamic requests, neither of the two methods dominates.

The competitiveness of deterministic methods in scenarios
without dynamic requests can be explained by the extended peri-
ods of time available for algorithms to react to changes in travel
speeds. Every time a real travel speed is revealed to the method,
the solution can be fully reoptimized before the next vehicle de-
parts for its next stop. In situations with dynamically arising re-
quests, the time available for recalculation is rather limited,
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because the new request must be addressed, which requires more
robust solutions in the first place. For instances with many dy-
namic requests, the opposite effect seems to be true. That is, the
time for reoptimization is very limited, but a deterministic method
can make more out of it, because it is significantly faster as a result
of the conceptual overhead introduced by stochastic methods such
as dynamic S-VNS.

Using time-dependent travel speeds in deterministic methods
outperforms constant travel speeds, as expected (see Table 3).
The additional possible improvements obtained from the use of
stochastic travel speeds is even greater than expected. The mean
expected deviation from average time-dependent travel speeds
due to accident influences is only 1.02% (see Section 3.1), so ob-
tained improvements of up to 8.99% may seem surprising at a first
glance. The explanation for this effect is quite simple though. Let
the planned travel time between two stops along a route be
bT ðt; dÞ ¼ 100 minutes. Then an increase of 1 minute (Treal ¼ 101
minutes) might cause an increase in the primary objective by 1
minute as well, but only if the remainder of the route can compen-
sate for this 1 minute shift. Otherwise, all further stops along the
route might be shifted by 1 minute too (or by more or less, due
to the interval boundaries), causing an increase in the primary
objective of up to 1 minute times the number of further stops along
the route. That is, a very small unexpected change in travel speeds
can cause large changes in solution quality.

6. Summary and outlook

With this article we present adapted versions of two conceptu-
ally similar pairs of metaheuristic solution approaches for the dy-
namic DARP with stochastic, time-dependent travel speeds. The
first pair consists of a dynamic variable neighborhood search
method (dynamic VNS) and a stochastic variant thereof (dynamic
S-VNS). The second pair includes the multiple plan approach
(MPA) and the multiple scenario approach (MSA). All four methods
use our implementation of dynamic VNS as a search component.
Our main aim is to determine if stochastic algorithms that take
information about future traffic accidents into account lead to bet-
ter solutions than deterministic methods using only average, time-
dependent travel speeds.

We test all algorithms on sets of real-world inspired test in-
stances. Our findings show that dynamic S-VNS works well for set-
tings with 45% to 90% dynamic requests and between around 400
and 600 requests in total. In purely static or very dynamic settings,
the deterministic dynamic VNS leads to better results. For the
problem at hand, the additional effort of managing a pool of found
solutions does not offer additional benefits. The concept of main-
taining a pool of solutions in MSA turns out to be unsuitable for
this problem setting, except for very small instances and medium
degrees of dynamism.

In summary it can be stated that the exploitation of historical
accident information within our dynamic S-VNS for the dynamic
DARP with stochastic, time-dependent travel speeds leads to sig-
nificantly better results in cases with 45% to 90% of initially un-
known requests.

In further work, we plan to study a combination of this problem
with expected return transports to determine if more information
about future stochastic influences might be even more beneficial to
solution quality or offer additional insights. Including approaches
for dynamic re-calculation of the underlying shortest paths based
on time-dependent travel speeds could also be an interesting
extension to the work presented in this article. An extension of
the problem at hand with heterogeneous passengers, a heteroge-
neous vehicle fleet, and/or multiple depots could be of interest as
well. Finally, additional real-world aspects, such as driver-related
constraints, might be informative.
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