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Abstract—We prove the Hyers-Ulam stability of linear differential equations of first order,

Py () = y(t).

Indeed, this paper deals with a generalization of a paper by Alsina and Ger {1] or of papers by Miura,
Takahasi and Choda [2] and by Miura [3]. © 2004 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

In 1940, Ulam gave a wide ranging talk before the Mathematics Club of the University of Wis-
consin in which he discussed a number of important unsolved problems [4]. Among those was
the question concerning the stability of homomorphisms:

Let G3 be a group and let Gy be a metric group with a metric d(-,-). Given any
£ > 0, does there exist a 6 > 0 such that if a function h : G; — G5 satisfies the
inequality d(h(zy), h(z)h(y)) < 6 for all z,y € G, then there exists a homomorphism
H : Gy — Gy with d(h(z), H(z)) < € for all x € G4?

In the following year, Hyers affirmatively answered the question of Ulam for the case where Gy
and Gy are Banach spaces. Furthermore, the result of Hyers has been generalized by Rassias [5,6].
Since then, the stability problems of various functional equations have been investigated by many
authors (see [7-10]).

Throughout this paper, let I = (a,b) be an open real interval, where we assume that ¢ and b
satisfy —~oc0 € a < b € 40c0. Assume further that ¢ : I — R is a given function for which the
integral f: dr /() exists for any t € I.

Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of a differential
equation (see [1]). In fact, they proved that if a differentiable function y : I — R satisfies
ly'(t) — y(t)] < € for all ¢t € I, then there exists a differentiable function g : I — R satisfying
g'(t) = g(t) for any t € I such that |y(t) — g(t)| < 3¢ for every t € I.
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The above result of Alsina and Ger has recently been generalized by Miura, Takahasi and
Choda [2], by Miura [3], and also by Takahasi, Miura and Miyajima [11]. Indeed, they dealt
with the Hyers-Ulam stability of the differential equation y/(t) = Ay(t), while Alsina and Ger
investigated the differential equation y'(¢) = y(¢t).

The aim of this paper is to investigate the Hyers-Ulam stability of the following linear differ-
ential equation of first order: '

p(t)y'(8) = y(t). 1)
More precisely, we prove that if either ¢(¢) > 0 holds for all ¢ € I or ¢(¢) < 0 holds for all ¢ € I,

and further if a differentiable function y : I — R satisfies the inequality |¢(t)y'(t) — y(t)] < € for
all t € I, then there exists a real number ¢ such that

- [ )|

for any t € I.

2. PRELIMINARIES

Following an idea of Alsina and Ger [1] (see also [2,3,11]), we will first prove a preliminary
lemma.

LEMMA 1. Assume that a differentiable function z : I — R is given.

(a) The inequality z(t) < ¢(t)2'(t) is true for allt € I if and only if there exists a differentiable
function o : I — R such that o/(t)p(t) > 0 and

2(t) = oft) exp {[;‘—%},
forallt e I.

(b) The inequality z(t) > ¢(t)z'(t) holds true for any t € I if and only if there exists a
differentiable function 3 : I — R such that #'(t)e(t) < 0 and

) = ptyen { [ 251,

forallte I.

Proor. (a) Assume that the inequality z(t) < ¢(t)2/(t) holds for all t € I. Let us define a

function @ : I — R to be
a(t) =ex {—/t—(-iz—} z(t)
PU e 2

Obviously, « is differentiable on I. Differentiation of o with respect to t yields

)= - expd = [T (o)) — 2
o(t) = e {- [ T L0 - 20),

i.e., our hypothesis implies that o/(t)(t) > 0 is true for all t € I.
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Conversely, assume that there exists a.differentiable function o : I — R such that o/(t)¢(t) > 0
for each t € I. Let us define a function z: I — R by

w0 -aren{ [ 35}

Then, z is differentiable on I. By differentiation of z, we obtain

¢ dr
12/ (t) = o (t)p(t) ex {/—}—f—zt > z(t),
o(t)z'(t) = o (t)p(t) exp e (t) = 2(t)
for all ¢ € I, which completes the proof of (a).
For the proof of part (b), we only need to replace z(t) by —z(t) and apply part (a). ]

The following theorem provides us with an explicit form of a differentiable function which
satisfies inequality (2) below.

THEOREM 2. Given an € > 0, a differentiable function y : I — R is a solution of the following
inequality:

le()y'(t) —y(B)] <e, (2)
for all t € I, if and only if there exists a differentiable function o : I — R such that
tdr
t) =+ at)ex / ————} ' 3
u) =+ atem{ [ 5 ©
and
0 < d/(t)p(t) < 2eexp {—/ti} (4)
- - o e(m))’
foranyt el

Proovr. First, assume that a differentiable function y : I — R is a solution of inequality (2).
Equivalently, y satisfies

y(t) —e < p(ty'(8) S y(t) +e, (5)
foreacht € 1.
Define z(t) = y(t) — . It then follows from the inequality on the left side of (5) that z(t) <

©(t)z'(t) holds for every t € I. According to Lemma 1(a), there exists a differentiable function
a : I — R such that the expression in (3) holds for all t € I, where « additionally satisfies

o (t)p(t) 2 0, (6)

for any t € I.
Analogously, define z(t) = y(t) +¢. For this case, the inequality on the right side of (5) implies

that z(t) > ¢(t)2'(¢) holds for any t € I. According to Lemma 1(b), there exists a differentiable
function 3 : I — R such that

v +e=pew ] [ ;d(—j—)} @)

and
| B(ee() <0, ®)
forallt e I.
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Differentiate both expressions in (3) and (7) with respect to ¢ and then equate both resulting
equalities. Then, we have

V) =aen{ [ f{—)} sge{ [ 5o)

0| [ L2 s (e [ ) 422),

where the last equality follows from a repeated application of (3) and (7).
Consequently, we have

2 b dr
B =0o(t —————exp{—/ —},
A R WA
which together with (6) and (8) imply the validity of (4) for any ¢ € I.
Now, assume that a function y : I — R is given by (3) for all t € I, where o : I - R is a
differentiable function and satisfies the inequalities in (4) for any ¢t € I. Differentiate y(t) with

respect to ¢ and multiply by ¢(t) the resulting equation and then subtract y(t) from the resulting
equation. Then, we get

(WO~ ) = Dprem { [ 2T}
¥ Y Y - Y p o ‘P(T) "

By (4) and the last equation, we conclude that —e < (t)y'(¢t) — y(t) < e for all ¢t € I, which is
equivalent to the inequality of (2). ]
3. HYERS-ULAM STABILITY OF
DIFFERENTIAL EQUATION (1)

In the following theorem, we prove the Hyers-Ulam stability of the differential equation (1)
which obviously improves a result of Alsina and Ger (see [1, Remark]) as well as a result of
Miura, Takahasi and Choda (see |2, Theorem 2.3]; see also [3,11]).

THEOREM 3. If either ¢(t) > 0 holds for all t € I or ¢(t) < 0 holds for allt € I, and if a
differentiable function y : I — R satisfies inequality (2) for all t € I, then there exists a real

number ¢ such that ‘g
-
t) —cex — 1 L g, 9
v e { [ 5} < ©)
for any t € 1.

PRrooOF. First, we assume that ¢(t) > 0 holds true for all ¢ € I and that a differentiable function
y : I — R satisfies inequality (2) for all ¢t € 1.

Define ¢ := lim;—;- (t), where o : I — R is given in Theorem 2. Since ¢(t) > 0 for all ¢ € I,
we can divide the inequalities in (4) by —¢(t) and integrate them from ¢ to b:

02a(t)—c=-—/tbo/(s)ds_>_25/tb (—;%)exp{—/:—qj—:)} ds
b gr t dr
=2Eexp{—/a ;g(T—)}—%exp{—/a (—’%—)—},

for all £ € I. From the above inequalities, we further get

625+(a(t)-c)exp{£t%} 225exp{——/tb£z—_—)} —&> —s,
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for every t € I. These inequalities, together with (3), prove the validity of inequality (9) for any
tel

We now assume that ¢(t) < 0 holds true for all ¢ € I and that a differentiable function
y : I — R is a solution of inequality (2). If we define ¢ := lim;—,,4 a(t) and apply a similar
argument to this case, we obtain the desired result. 1

Here, we notice that v exp{ fat dr/¢(T)} is the general solution of the differential equation (1),
where 7y is an arbitrary real constant.

Theorem 3 states that each solution of inequality (2) can be approximated by a solution of
the differential equation (1) within a distance e. Unfortunately, there is no efficient way to find
out the constant ¢ occurring in inequality (9), even though we can get some information on the
behavior of y(t) from Theorem 2.

However, if an initial condition, say y(a), is known, then the following corollary may help to
evaluate the lower and upper bounds for y(¢).

COROLLARY 4. Assume that a is a real number and that ¢(t) > 0 holds for allt € I. Let a
function y : I U {a} — R be differentiable on I and continuous at a on the right. If y satisfies
inequality (2) for allt € I and for some € > 0, then

wa-ew{ [Tl recum <@ raen] [Zoe g

foranyt e I.

PRroOF. If y satisfies inequality (2) for all t € I, Theorem 2 implies that there exists a differen-
tiable function a : I — R satisfying (3) and (4) for any t € I.
Since ¢(t) > 0 for ¢t € I, we can divide the inequalities in (4) by ¢(t) and integrate them from

a to t so that
0<aft)—c< 2 2£exp{ /t dT}
a (7)

where we define ¢ = lim; o+ a(t), and so

oo | [} -con{ [ ) coam{ [ 4]

From these inequalities, and considering (3), we conclude that (10) is true because if we let
t — a+ in (3), then we obtain ¢ = y(a) — €. |

If ¢(t) < 01is assumed for each t € I, we can prove the following corollary by using an analogous
argument. Hence, we omit the proof.

COROLLARY 5. Assume that a is a real number and that o(t) < 0 is true for any t € I. Moreover,
assume that y : IU {a} — R is a function which is differentiable on I and continuous at a on the
right. If y satisfies inequality (2) for allt € I and for some £ > 0, then

(y(a)+s)eXp{[1t;?(i—)} —e <3(0) < (o)~ Dexp { |

foreacht € I.

t
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