
Discrete Mathematics 311 (2011) 966–977

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On graph equivalences preserved under extensions
Zbigniew Lonc a,∗, Mirosław Truszczyński b
a Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-661 Warsaw, Poland
b Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA

a r t i c l e i n f o

Article history:
Received 9 February 2010
Received in revised form 9 December 2010
Accepted 25 February 2011
Available online 29 March 2011

Keywords:
Strong equivalence of graphs
General graph properties
Computational complexity
Connectivity

a b s t r a c t

Let G be the set of finite graphs whose vertices belong to some fixed countable set, and
let ≡ be an equivalence relation on G. By the strengthening of ≡ we mean an equivalence
relation ≡s such that G≡s H , where G,H ∈ G, if for every F ∈ G, G ∪ F ≡ H ∪ F . The most
important case thatwe study in this paper concerns equivalence relations defined by graph
properties. We write G≡

Φ H , where Φ is a graph property and G,H ∈ G, if either both G
andH have the propertyΦ , or both do not have it.We characterize the strengthening of the
relations ≡

Φ for several graph properties Φ . For example, if Φ is the property of being a k-
connected graph,we find a polynomially verifiable (for k fixed) condition that characterizes
the pairs of graphs equivalent with respect to ≡

Φ
s . We obtain similar results when Φ is the

property of being k-colorable, edge 2-colorable, Hamiltonian, or planar, and when Φ is the
property of containing a subgraph isomorphic to a fixed graph H . We also prove several
general theorems that provide conditions for ≡s to be of some specific form. For example,
we find a necessary and sufficient condition for the relation ≡s to be the identity. Finally,
we make a few observations on the strengthening in a more general case when G is the set
of finite subsets of some countable set.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Equivalence relations partition their domains into classes of equivalent objects–objects indistinguishable with respect
to some characteristic. In the case of domains whose elements can be combined, equivalence relations can be strengthened.
In this paper, we introduce the concept of strengthening, motivate it, and study it in the case of equivalence relations that
arise in the domain of graphs.

To illustrate what we have in mind, let us consider a set X of possible team members. Teams are finite subsets of X . We
have some equivalence relation on the set of teams, which groups in its equivalence classes, teams of the same value. Thus,
given two equivalent teams, say A, B ⊆ X , we could use any of themwithout compromising the quality. But there is more to
it. Let us consider a team C , such that A is its sub-team, that is, A ⊆ C , and where B ∩ (C − A) = ∅. Let us also suppose that
for one reason or another we are unable to keep all members of A in C . If we need the ‘‘functionality’’ of A in C , we might
want to replace A with its equivalent B by forming the team C ′

= B ∪ (C − A). After all, A and B are equivalent. But this is a
reasonable solution only if by doing so, we do not change the quality of the overall team, that is, if C and C ′ are equivalent,
too. And, in general, it is not guaranteed.

Let us observe that in our example C = A ∪ (C − (A ∪ B)) and C ′
= B ∪ (C − (A ∪ B)), that is, they are extensions of

A and B, respectively, with the same set, (C − (A ∪ B)). This suggests that we might call teams A and B strongly equivalent
(with respect to the original equivalence relation) if for every finite set D ⊆ X, A ∪ D and B ∪ D are equivalent. Clearly,
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Fig. 1. (a) Graphs that are not strongly equivalent with respect to 2-connectivity; (b) Extensions of the graphs from (a) showing that graphs in (a) are not
strongly equivalent with respect to 2-connectivity; and (c) Two graphs that are strongly equivalent with respect to 2-connectivity.

if A and B are strongly equivalent, then any two teams obtained by extending A and B with the same additional members
are equivalent! Thus, the relation of strong equivalence, the ‘‘strengthening’’ of the original one, is precisely what we need
when we consider teams not as individual entities but as potential sub-teams in bigger groups.

The matter of interchangeability is recognized as important in the programming language research, where often much
care is needed when replacing one module of code with another because of issues such as side effects and thread safety. In
a declarative programming language Prolog, modules that are equivalent with respect to the first-order logic semantics (for
instance differ only in the order of literals in rule bodies) often behave differently when embedded in a bigger program [1].
The concept of strong equivalence has also drawn significant attention in knowledge representation, most notably in
answer-set programming [6,8,4,9]. Researchers argued there that it underlies the notion of a module of a program, and
is essential to modular program development. Recently, there was interest in the notion of strong equivalence in the area
of argumentation, another subarea of knowledge representation [7].

We study the strengthening of an equivalence relation in the domain of graphs, where to the best of our knowledge it
has not been considered yet. As a result, we obtain a new class of graph-theoretic problems. Importantly, when applied to
specific properties, for instance, to the graph connectivity, the notion of strengthening has interesting practical implication
and does give rise to nontrivial arguments and characterizations. Interestingly, argumentation networks discussed in [7] are
based on directed graphs and some problems of interest there can be phrased as graph problems. Thus some ideas that we
study in our paper can be found in [7] in a form specialized to argumentation problems.

To motivate our research of strong equivalence in the context of graph properties, let us consider the following scenario.
In the context of networks, which we typically represent as graphs, the concept of their connectivity is of paramount
importance (cf. [2]). Let us define graphs G and H to be equivalent if both are k-connected or if neither of them is. With
time networks grow and get embedded into bigger networks. The key question is: are the graphs G and H interchangeable,
in the sense that the networks obtained by identical extensions of G and H are equivalent with respect to k-connectivity?

For example, neither of the two graphs in Fig. 1(a) is 2-connected and so, they are equivalent with respect to 2-
connectivity. They are not, however, strongly equivalent with respect 2-connectivity. Indeed, the graphs obtained by
extending themwith two edges aw and bw, shown in Fig. 1(b) are not 2-connectivity equivalent—one of them is 2-connected
and the other one is not! On the other hand, one can verify directly from the definition that the graphs shown in Fig. 1(c)
are strongly equivalent with respect to 2-connectivity. Later in the paper, we provide a characterization that allows us to
decide the question of strong equivalence with respect to connectivity.

Our paper is organized as follows.Whilemost of our results concern strengthening of equivalence relations on graphs, we
start by introducing the concept of the strengthening of an equivalence relation in a more general setting of the domain of
finite subsets of a set. We derive there several basic properties of the notion, which we use later in the paper. In particular,
for a class of equivalence relations defined in terms of properties of objects – such equivalence relations are of primary
interest in our study – we characterize those relations that are equal to their strengthenings.

The following sections are concernedwith equivalence relations on graphs defined in terms of graphproperties, a primary
subject of interest to us. Narrowing down the focus of our study to graphs allows us to obtain stronger andmore interesting
results. In particular, we characterize relations whose strengthening is the identity relation, and those whose strengthening
defines one large equivalence class, with all other classes being singletons. We apply these general characterizations to
obtain descriptions of strong equivalence with respect to several concrete graph-theoretic properties including possessing
Hamiltonian cycles and being planar. Main results of the paper, are contained in the two sections that follow. They concern
graph-theoretic properties, which do not fall under the scope of our general results. Specifically, we deal there with vertex
and edge colorings, and with k-connectivity. The characterizations we obtain are nontrivial and show that the idea of
strengthening gives rise to challenging problems that often (as in the case of strengthening equivalence with respect to
k-connectivity) have interesting motivation and are of potential practical interest.

2. The problem and general observations

We fix an infinite countable set E and denote by G the set of finite subsets of E .
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Definition 1. Let ≡ be an equivalence relation on G. We say that sets G,H ∈ G are strongly equivalent with respect to ≡,
denoted by G≡s H , if for every set F ∈ G,G ∪ F ≡ H ∪ F . We call ≡s the strengthening of ≡.

While most of our results concern the case when E is a set of edges over some infinite countable set of vertices V , in this
section we impose no structure on E and prove several basic general properties of the concept of strong equivalence.

Proposition 1. Let ≡ be an equivalence relation on sets in G. Then:

(1) the relation ≡s is an equivalence relation
(2) for every sets G,H ∈ G,G≡s H implies G ≡ H (that is, ≡s ⊆≡)
(3) for every sets G,H, F ∈ G,G≡s H implies G ∪ F ≡s H ∪ F .

Proof. (1) All three properties of reflexivity, symmetry and transitivity are easy to check. For instance, let us assume that
for some three sets D,G,H ∈ G,D≡s G and G≡s H . Let F ∈ G. By the definition, D ∪ F ≡ G ∪ F and G ∪ F ≡ H ∪ F . By
the transitivity of ≡,D ∪ F ≡ H ∪ F . Since F was an arbitrary element of G,D≡s H .

(2) By the definition of ≡s, for every set F ∈ G,G ∪ F ≡ H ∪ F . In particular, if F = ∅, we get that G ≡ H .
(3) For every set F ′

∈ G, F ∪ F ′
∈ G. Since, G≡s H, (G ∪ F) ∪ F ′

= G ∪ (F ∪ F ′) ≡s H ∪ (F ∪ F ′) = (H ∪ F) ∪ F ′. Thus, the
claim follows. �

Proposition 2. Let ≈ and ≡ be equivalence relations on G. Then:

(1) if ≈⊆≡, then ≈s ⊆ ≡s
(2) if ≈s = ≡s, then (≈ ∩ ≡)s = ≈s.

Proof. Arguments for each of the assertions are simple. As an example, we prove (2) here. By (1), it suffices to show that
≈s ⊆ (≈ ∩ ≡)s. Thus, let us consider sets G,H ∈ G such that G≈s H . Let F ∈ G. Clearly, G ∪ F ≈ H ∪ F . Moreover, by
the assumption, G≡s H . Thus, G ∪ F ≡ H ∪ F , as well. It follows that G ∪ F(≈ ∩ ≡)H ∪ F . As F is arbitrary, G(≈ ∩ ≡)sH
follows. �

Corollary 1. Let ≡ be an equivalence relation on sets in G. Then, (≡s)s = ≡s. Moreover, for every equivalence relation ≈ on G
such that ≈s = ≡s, ≡s ⊆≈.

Proof. By Proposition 1(2), ≡s ⊆≡. Thus, by Proposition 2(1), (≡s)s ⊆ ≡s. Conversely, let us consider sets G,H ∈ G such
that G≡s H and let F , F ′

∈ G. Since G≡s H,G∪ (F ∪ F ′) ≡ H ∪ (F ∪ F ′). Thus, (G∪ F) ∪ F ′
≡ (H ∪ F) ∪ F ′. As F ′ is arbitrary,

G ∪ F ≡s H ∪ F follows. Consequently, as F is arbitrary, too, G(≡s)sH .
To prove the ‘‘moreover’’ part of the assertion, we note that ≈s ⊆≈. Thus, ≡s ⊆≈, as needed. �

Corollary 1 states, in particular, that for every equivalence relation ≡ on G, ≡s is the most precise among all equivalence
relations ≈ such that ≈s = ≡s.

Most of our results concern equivalence relations defined in terms of functions assigning to sets inG collections of certain
objects. Let U be a set and let f : G → 2U. For sets G and H , we define:

(1) G∼=
f H if f (G) = f (H), and

(2) G≡
f H if f (G) = f (H) = ∅, or f (G) ≠ ∅ and f (H) ≠ ∅.

Obviously, ∼=f
⊆ ≡

f . Thus, by our earlier results, ∼=f
s ⊆ ≡

f
s , ≡

f
s ⊆ ≡

f , and ∼=
f
s ⊆ ∼=

f .
Properties of elements of G (formally, subsets of G) give rise to a special class of equivalence relations of the latter type.

Namely, given a property Φ ⊆ G, we define U = {0} and set fΦ(G) = {0} if and only if G ∈ Φ (otherwise, fΦ(G) = ∅).
Clearly, G≡

fΦ H if and only if both G and H have Φ (G,H ∈ Φ), or if neither G nor H does (G ∉ Φ and H ∉ Φ). To simplify
the notation, we always write ≡

Φ instead of ≡fΦ . By Φ we denote the property G − Φ .
In the remainder of this section we present a general result concerning the relation ≡

Φ that does not require any
additional structure of subsets of G. It characterizes those properties Φ ⊆ G, for which ≡

Φ
= ≡

Φ
s (the strengthening

does not change the equivalence relation). The remainder of the paper is concerned with the relations ∼=
f and ≡

f (including
relations ≡

Φ ) and their strengthenings in the case when G consists of graphs. In several places, we will consider properties
that are monotone. Formally, a property Φ ⊆ G is monotone if for every G,H ∈ G,G ⊆ H and G ∈ Φ imply H ∈ Φ .

Lemma 2.1. Let Φ ⊆ G be a property such that ∅ ∉ Φ . Then, ≡
Φ

= ≡
Φ
s if and only if there is X ⊆ E such that

Φ = {G ∈ G | G ∩ X ≠ ∅}.

Proof. (⇐) Let us assume that there is X ⊆ E such that Φ = {G ∈ G | G ∩ X ≠ ∅}. To prove that ≡
Φ

= ≡
Φ
s , it suffices to

show that G≡
Φ H implies G≡

Φ
s H (the converse implication follows by Proposition 1(2)).

Thus, let G≡
Φ H . First, let us assume that G,H ∈ Φ . It follows that G ∩ X ≠ ∅ and H ∩ X ≠ ∅. Consequently, for every

set F , (G ∪ F) ∩ X ≠ ∅ and (H ∪ F) ∩ X ≠ ∅. Thus, G ∪ F ,H ∪ F ∈ Φ and so, G ∪ F ≡
Φ H ∪ F . It follows that G≡

Φ
s H .

The only remaining possibility is that G,H ∉ Φ . Since G∩ X = H ∩ X = ∅, for every graph F , (G∪ F)∩ X ≠ ∅ if and only
if (H ∪ F) ∩ X ≠ ∅. That is, for every graph F ,G ∪ F ≡

Φ H ∪ F and so, G≡
Φ
s H in this case, as well.
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(⇒) First, we prove that Φ is monotone. Let G ⊆ H and let G ∈ Φ . Let us assume that H ∉ Φ . It follows that ∅ ≡
Φ H and so,

by the assumption, ∅ ≡
Φ
s H . Thus, G = ∅ ∪ G≡

Φ H ∪ G = H . Since H ∉ Φ,G ∉ Φ , a contradiction with G ∈ Φ . It implies
the falsity of the assumption H ∉ Φ , that is, it implies that H ∈ Φ .

We define X = {e ∈ E | {e} ∈ Φ}. We will show that G ∈ Φ if and only if G ∩ X ≠ ∅. If G ∩ X ≠ ∅, then there is e ∈ X
such that {e} ⊆ G. Since {e} ∈ Φ , by the monotonicity of Φ it follows that G ∈ Φ .

Conversely, let us assume that G ∈ Φ . Let G′
⊆ G be a maximal subset of G such that G′

∉ Φ . Such G′ exists as ∅ ∉ Φ .
Moreover, since G ∈ Φ,G′

≠ G. It follows that there is e ∈ G − G′. We have ∅ ≡
Φ G′ as neither set has property Φ . By the

assumption, ∅ ≡
Φ
s G′. Thus, {e} = ∅ ∪ {e} ≡

Φ G′
∪ {e}. By the maximality of G′, G′

∪ {e} ∈ Φ . Thus, {e} ∈ Φ . Consequently,
e ∈ X and G ∩ X ≠ ∅. �

Theorem 1. Let Φ be a property. Then, ≡Φ
= ≡

Φ
s if and only if there is X ⊆ E such that Φ = {G ∈ G | G ∩ X ≠ ∅} or

Φ = {G ∈ G | G ⊆ X}.

Proof. (⇒) Let us assume that ∅ ∉ Φ . Then, Lemma 2.1 implies that there is a set X such that Φ = {G ∈ G | G ∩ X ≠ ∅}.
If ∅ ∈ Φ , then ∅ ∉ Φ . Since ≡

Φ
= ≡

Φ, ≡Φ
s = ≡

Φ
s . Thus, ≡

Φ
= ≡

Φ
s . By Lemma 2.1, there is a set Y such that

Φ = {G ∈ G | G ∩ Y ≠ ∅}. Setting X = E − Y , we obtain that Φ = {G ∈ G | G ⊆ X}.
(⇐) If Φ = {G ∈ G | G ∩ X ≠ ∅}, then ∅ ∉ Φ and the result follows from Lemma 2.1. Thus, let us assume that
Φ = {G ∈ G | G ⊆ X}. We have then that Φ = {G ∈ G | G ∩ Y ≠ ∅}, where Y = E − X . Moreover, ∅ ∉ Φ . Thus,
by Lemma 2.1, ≡Φ

s = ≡
Φ . By our earlier observations, ≡Φ

s = ≡
Φ . �

3. Strengthening of equivalence relations on graphs

Fromnowonwe focus on the special case of equivalence relations on graphs. That is, we assume a fixed infinite countable
set V of vertices and define E to be the set of all unordered pairs of two distinct elements from V (the set of all edges on V).
Thus, the elements of G (finite subsets of E ) can now be regarded as graphs with the vertex set implicitly determined by the
set of edges. For a graph G, we denote by V (G) the set of vertices of G, that is, the set of all endvertices of edges in G. From
this convention, it follows that we consider only graphs with no isolated vertices. We understand the union of graphs as the
set-theoretic union of sets. We also write |G| for the number of edges in a graph G. Given a graph G and edges e ∉ G and
f ∈ G, we often write G + e and G − f for G ∪ {e} and G − {f }, respectively. We refer the reader to Diestel [3] for definitions
of all graph-theoretic concepts not defined in this paper.

Our first result fully characterizes equivalence relations of G whose strengthening is the identity relation.

Theorem 2. Let ≡ be an equivalence relation on G. Then, ≡s is the identity relation on G if and only if for every complete graph
K ∈ G and for every e ∈ K , K ≢s K − e.

Proof. (⇒) Let K be a complete graph in G and let e ∈ K . Since K ≠ K − e, K ≢s K − e, as required.
(⇐) Let G,H ∈ G. Clearly, if G = H then G≡s H (as ≡s is reflexive). Conversely, let G≡s H . Let us assume that G ≠ H .
Without loss of generality, we may assume that there is an edge e ∈ G − H . Let K be the complete graph on the set of
vertices V (G∪H). Since G≡s H,G∪ (K − e) ≡s H ∪ (K − e) (cf. Proposition 1(3)). Moreover, G∪ (K − e) = K (as G ⊆ K and
e ∈ G) and H ∪ (K − e) = K − e (as H ⊆ K and e ∉ H). Consequently, K ≡s K − e, a contradiction. It follows that G = H . �

Remark 1. If we assume (as we did in the previous section) that G is simply a collection of all finite subsets of an arbitrary
infinite countable set E , we could prove the following result (by essentially the same method we used in Theorem 2): let
≡ be an equivalence relation on G. Then, ≡s is the identity relation on G if and only if for every finite S ∈ G and every
e ∈ S, S ≢s S − e. Applying this result to the case when E is the set of edges over some infinite countable set of vertices, and
G is a set of graphs built of edges in E gives a weaker characterization than the one we obtained, as its condition becomes
‘‘for every graph S and every e ∈ S, S ≢s S − e’’, while the condition in Theorem 2 is restricted to complete graphs only.

We will now illustrate the applicability of this result. Let G,H ∈ G and let us define G≡
hc H if and only if G and H either

both have or both do not have a Hamiltonian cycle. Theorem 2 implies that the relation ≡
hc
s is the identity relation. In other

words, for every two distinct graphs G and H , there is a graph F such that exactly one of the graphs G ∪ F and H ∪ F is
Hamiltonian.

Theorem 3. Let G,H ∈ G. Then G≡
hc
s H if and only if G = H.

Proof. (⇒) Let K be a finite complete graph from G and let e ∈ K . If |K | = 1, then K = {e} and K − e = ∅. Let e = uv
and let w be a vertex in V different from u and v. We define F = {uw, vw}. Clearly, K ∪ F has a Hamiltonian cycle and
(K − e) ∪ F = F does not have one. Thus, K ≢

hc
s K − e. Next, let us assume that |K | = 3. Then, K has a Hamiltonian cycle

and K − e does not. Thus, K ≢
hc K − e and, consequently, K ≢

hc
s K − e.

Finally, let us assume that |K | ≥ 6 (that is, K is a finite complete graph on at least four vertices). Let v1, . . . , vn, where
n ≥ 4, be the vertices of K and let e = v1v2. We select fresh vertices from V , say w3, . . . , wn−1. We set F = {viwi | i =

3, . . . , n − 1} ∪ {wivi+1 | i = 3, . . . , n − 1}. It is clear that K ∪ F has a Hamiltonian cycle. However, (K − e) ∪ F does not
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Fig. 2. Graphs K ∪ F and (K − e) ∪ F .

have one! Indeed, any such cycle would have to contain all edges in F , and that set cannot be extended to a Hamiltonian
cycle in (K − e) ∪ F (cf. Fig. 2). Thus, also in this case K ≢

hc
s K − e and, by Theorem 2, ≡hc

s is the identity relation.
(⇐) This implication is evident. If G = H then, clearly, G≡

hc
s H . �

We note that the strengthening of a related (and more precise) equivalence relation ∼=
hc , where hc is the function that

assigns to a graph the set of its Hamiltonian cycles, is also the identity relation.
Next, we turn our attention to other equivalence relations on graphs determined by properties of graphs (subsets of G).
We say that a property Φ ⊆ G is strong if for every G,H ∈ G,G≡

Φ
s H if and only if G,H ∈ Φ or G = H . In other words, a

propertyΦ is strong, if the strong equivalencewith respect to≡
Φ does not ‘‘break up’’ the equivalence classΦ of the relation

≡
Φ (does not distinguish between any graphswith the propertyΦ) but, in the same time, breaks the other equivalence class

into singletons.
We will now characterize properties Φ that are strong.

Theorem 4. Let Φ be a property of graphs in G (a subset of G). Then,Φ is strong if and only if Φ is monotone and for every graph
G ∉ Φ , and every edge e ∈ G,G ≢

Φ
s G − e.

Proof. (⇐) We need to show that for every G,H ∈ G, G≡
Φ
s H if and only if G,H ∈ Φ or G = H . If G,H ∈ Φ then, by the

monotonicity of Φ , for every F ∈ G,G ∪ F ∈ Φ and H ∪ F ∈ Φ . Thus, G ∪ F ≡
Φ H ∪ F . Since F is arbitrary, G≡

Φ
s H . If G = H

then G≡
Φ
s H is evident.

Conversely, let G≡
Φ
s H . Then G≡

Φ H and so, either both G and H have Φ , or neither G nor H has Φ . In the first case, there
is nothing left to prove. Thus, let us assume that G,H ∉ Φ .

Let e ∈ G−H . We define G′
= G∪H . Since G≡

Φ
s H,G′

= G∪H ≡
Φ H∪H = H . SinceH ∉ Φ,G′

∉ Φ . Let G′′ be amaximal
graph such that V (G′′) = V (G′),G′

⊆ G′′ and G′′
∉ Φ (since G′

∉ Φ , such a graph exists). We observe that G′′
= G∪ (G′′

− e)
and G′′

− e = H ∪ (G′′
− e). Thus, G′′

≡
Φ
s (G′′

− e) (cf. Proposition 1(3)), a contradiction. It follows that G ⊆ H . By symmetry,
H ⊆ G and so, G = H .
(⇒) Let us assume that there is a graphG ∉ Φ such that for every supergraphG′ ofG,G′

∉ Φ . LetH be any proper supergraph
of G (clearly, G has proper supergraphs). and let F be any graph. Then G ∪ F and H ∪ F are both supergraphs of G. It follows
that G ∪ F ∉ Φ and H ∪ F ∉ Φ . Consequently, G ∪ F ≡

Φ H ∪ F . Since F is an arbitrary graph, G≡
Φ
s H . However, Φ is strong

and so the equivalence class of G under ≡
Φ
s consists of G only (as G ∉ Φ). Thus, G = H , a contradiction. It follows that for

every graph G ∉ Φ , there is a supergraph G′ of G such that G′
∈ Φ .

Let us now assume thatΦ is notmonotone. Then, there are graphs G andH such that G ⊆ H,G ∈ Φ , andH ∉ Φ . LetH ′ be
a supergraph of H such that H ′

∈ Φ . It follows that G≡
Φ H ′ and, as Φ is strong, G≡

Φ
s H ′. Thus, H = G ∪ H ≡

Φ H ′
∪ H = H ′,

a contradiction (as H ∉ Φ and H ′
∈ Φ). It follows that Φ is monotone.

Finally, let G ∉ Φ and e ∈ G. Since Φ is strong, the equivalence class of G under ≡
Φ
s consists of G only. Consequently,

G ≢
Φ
s G − e. �

To illustrate the scope of applicability of this result, we will consider now several graph-theoretic properties. We start
with the property of non-planarity, that is, the set of all graphs that are not planar.

Theorem 5. The property of non-planarity is strong.

Proof. Let Φ denote the property of non-planarity. It is clear that Φ is monotone. Thanks to Theorem 4, to complete the
proof it suffices to show that for every graph G ∉ Φ and every edge e ∈ G,G ≢

Φ
s G − e.

Thus, letG ∉ Φ , that is, letG be a planar graph. Let e ∈ G.Wewill denote by x and y the endvertices of e. First, let us assume
that G = {e}. Let K be a complete graph on five vertices that contains e. Clearly, ∅ ∪ (K − e) is planar and {e} ∪ (K − e) = K
is not. Thus, G ≢

Φ
s G − e.

From now on, we will assume that G has at least three vertices. Let G′ be a maximal planar supergraph of G such that
V (G) = V (G′). We will now fix a particular planar embedding of G′, and assume that e belongs to the outerface (such an
embedding exists). With some abuse of terminology, we will refer also to this embedding as G′. We observe that by the
maximality of G′, every face in G′ is a triangle. Since G ⊆ G′, to prove that G ≢

Φ
s G − e, it suffices to show that G′

≢
Φ
s G′

− e
(by Proposition 1(3)).
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1. |V (G′)| = 3. Then G′ is a triangle. Let x, y, and z be the vertices of G′ and let (as before) e = xy. Let v and w be two new
vertices and F = {vx, vy, vz, wx, wy, wz, vw}. Then G′

∪ F = K , where K is a complete graph on five vertices. Clearly, K
is not planar. On the other hand, (G′

− e) ∪ F = K − e is planar. Thus, G′
∪ F ≢

Φ(G′
− e) ∪ F and so, G′

≢
Φ
s G′

− e.
2. |V (G′)| ≥ 4. There are two distinct faces, say F1 and F2 in G′, sharing the edge e. Both faces are triangles and, without loss

of generality, we assume that F2 is the outerface. Let us assume, as before, that e = xy and let v1 (respectively, v2) be the
third vertex of the face F1 (respectively, F2). We note that there is a path from v1 to v2 in G′ that does not contain x nor y.
Indeed, every two edges incident to y and consecutive in the embedding of G′ are connected with an edge, as all faces in
G′ are triangles (cf. Fig. 3(a)).

Let w be a new vertex and F = {wx, wy, wv1, wv2}. Then (G′
− e) ∪ F is planar (cf. Fig. 3(b)). On the other hand, the

graph G′
∪ F contains a subgraph homeomorphic to the complete graph on five vertices and so, G ∪ F is not planar. Thus,

G′
∪ F ≢

Φ(G′
− e) ∪ F and, consequently, G′

≢
Φ
s G′

− e. �

Corollary 2. Let ≡
pl be the equivalence relation such that for every two graphs G and H,G≡

pl H if both G and H are planar or
both G and H are non-planar. Then, for every two graphs G and H, G≡

pl
s H if and only if both G and H are non-planar or G = H.

Proof. The relation ≡
pl

= ≡
Φ , where Φ is the non-planarity property. Since the relation Φ is strong (by Theorem 5), the

assertion follows. �

Theorem 4 applies to many graph-theoretic properties concerned with the containment of particular subgraphs. Wewill
present several such properties below.

Theorem 6. The property ΦH consisting of all graphs containing a subgraph isomorphic to H is strong in each of the following
cases:
(1) H is a star
(2) H is a cycle
(3) H is a 2-connected graph such that for every 2-element cutset {x, y}, xy is an edge of H
(4) H is a 3-connected graph
(5) H is a complete graph.

Proof. In each case the property is monotone. Thus, we only need to show that for every G ∉ ΦH and every edge e ∈ G,
there is a graph F such that G ∪ F ≢

ΦH (G − e) ∪ F . Below we assume that e = xy.
(1) If H = {e}, for some e ∈ E , and G ∉ ΦH , then G = ∅ and so the required property holds vacuously. Thus, let us assume

that H consists of k ≥ 2 edges. Since G ∉ ΦH , degG(x) < k. Let F be a star with k − degG(x) edges all incident to x and
with the other end not in G. Clearly, G ∪ F contains a star with k edges. On the other hand, (G − e) ∪ F does not.

(2) LetH be a cyclewith k edges.Wedefine F to be a pathwith k−1 edges,with endvertices x and y, andwith all intermediate
vertices not in G. Clearly, G ∪ F has a cycle of length k and (G − e) ∪ F does not.

(3) Let F ′ be a graph isomorphic to H , such that V (F ′) ∩ V (G) = {x, y} and xy is an edge of F ′. Let F = F ′
− e. Clearly, G ∪ F

contains a subgraph isomorphic to H . Let us assume that (G − e) ∪ F contains a subgraph, say H ′ isomorphic to H . This
subgraph is not contained entirely in G − e (as then Gwould contain a subgraph isomorphic to H and G ∉ ΦH ). Also, H ′

is not a subgraph of F (F has one fewer edge than H ′). Thus, {x, y} is a cutset of H ′ and xy is not an edge of H ′. It follows
that H has a 2-element cutset whose elements are not joined with an edge, a contradiction.

Parts (4) and (5) of the assertion follow from (1)–(3). Indeed, if a graph H is 3-connected, then it is 2-connected, too.
Moreover, it vacuously satisfies the requirement that for every 2-element cutset {x, y}, xy is an edge ofH . Thus, (4) follows. If
H is a complete graph, then it is a star (if it consists of only one edge) or a cycle (if it consists of three edges), or is 3-connected.
Thus, (5) follows. �

We note that except stars, the 3-edge path is the only tree H such that ΦH is strong. Indeed, if H is a k-edge tree different
from a star and a 3-edge path then we define G to be a complete graph on k vertices and e to be any edge of G. Then, G ∉ ΦH
(as it has only k vertices). However, for every graph F , either both G ∪ F and (G − e) ∪ F contain H or neither does. Thus,
G≡

ΦH
s G − e, which implies that ΦH is not strong.
If H is a 3-edge path then G ∉ ΦH if and only if every component of G is a star or a triangle. Let e = xy be an edge in G. If

e itself is a component of G then let F be a 2-edge path yzu, where z and u are new vertices (not in V (G)). If e is an edge of
a star centered at x then we define F to be an edge yz, where z is a new vertex. Finally, if e is an edge of a triangle then let
F be an edge zu, where z is the third vertex of the triangle and u is a new vertex. In each case G ∪ F contains a 3-edge path
while (G − e) ∪ F does not. Hence G ≢

ΦH
s G − e which, by Theorem 4, implies that ΦH is strong when H is the 3-edge path.

Theorem 6 states that for every 3-connected graph H , the property ΦH is strong. However, the problem of characterizing
graphs H of connectivity 1 and 2 such that ΦH is not strong is open.

4. Colorability, edge colorability and connectivity

In the rest of the paper, we discuss strengthening of equivalence relations arising in the context of some well studied
graph-theoretic concepts: connectivity, colorability and edge colorability. We start with a simple lemma.
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a b

Fig. 3. (a) Graph G′; (b) Graph (G′
− e) ∪ F .

Lemma 4.1. Let G and H be graphs. If V (G) = V (H) and the families of vertex sets of components of G and H are not the same
then there exists a pair of vertices which are joined by an edge in one of the graphs G or H and are in two different components in
the other graph.

Proof. By our assumptions there exists a component, say G′ in G such that V (G′) is not the vertex set of any component
in H . Let H ′ be a component in H such that V (H ′) ∩ V (G′) ≠ ∅ and let x be any element of V (H ′) ∩ V (G′). As V (G′) ≠

V (H ′), V (G′)−V (H ′) ≠ ∅ or V (H ′)−V (G′) ≠ ∅. We will consider the former case only because both cases are very similar.
Let y ∈ V (G′)−V (H ′). Since both x and y belong to the component G′, there exists a path P in G joining xwith y. Clearly, x and
y belong to two different components in H so there is an edge in the path P that joins vertices that belong to two different
components of H . �

4.1. Colorability

Let k be a positive integer and let the function cl assign to every graph the set of its good k-colorings (to simplify the
notation, we drop the reference to k). We will show that ≡

cl
s = ∼=

cl
= ∼=

cl
s .

Theorem 7. Let k be a positive integer. For every graphs G and H, the following conditions are equivalent:

(i) G≡
cl
s H,

(ii) G∼=
cl H,

(iii) G∼=
cl
s H.

Proof. (i) ⇒ (ii). Let G≡
cl
s H . By the inclusion ≡

cl
s ⊆ ≡

cl, either both G and H are well k-colorable or both G and H are not
well k-colorable. In the latter case the sets of good k-colorings of G and H are empty so they are equal. Thus assume that
both G and H are well k-colorable.

Let us suppose V (G) ≠ V (H) and assume without loss of generality that there exists a vertex v ∈ V (G) − V (H). Denote
by x a neighbor of v in G. We define a graph F whose vertex set consists of the vertices v, x and some k−1 vertices which are
not in V (G) ∪ V (H). The edges of F join each pair of vertices except v and x. The graph G ∪ F contains a complete subgraph
Kk+1 on the vertex set V (F), so G ∪ F is not well k-colorable. On the other hand, the graph H ∪ F is well k-colorable because
both H and F are well k-colorable and their only possible common vertex is x. Hence G ≢

cl
s H , a contradiction.

We have shown that V (G) = V (H). Let us suppose that the sets of good k-colorings of G and H are not equal and assume
without loss of generality that there is a good k-coloring C = {C1, C2, . . . , Ck} of G, which is not a good k-coloring of H .
We define F to be the complete k-partite graph on the set of vertices V (G), whose monochromatic sets of vertices are
C1, C2, . . . , Ck. Clearly, C is the only good k-coloring of F . Since G ∪ F = F ,G ∪ F has a good k-coloring. On the other
hand, C is not a good k-coloring of H . Thus, it is not a good k-coloring of H ∪ F , either. We have shown that G ≢

cl
s H . This

contradiction proves that the sets of good k-colorings of G and H are the same.
(ii)⇒ (iii) Let us assume that the sets of good k-colorings of G andH are equal. If both these sets are empty then they remain
empty (and so, equal) for the graphs G ∪ F and H ∪ F , for every graph F . If the sets of good k-colorings of G and H are equal
but not empty then V (G) = V (H), as good k-colorings of a graph are partitions of the set of vertices of this graph. Let F be
any graph. If both G ∪ F and H ∪ F are not well k-colorable then G ∪ F ∼=

cl H ∪ F . Let now C = {C1, C2, . . . , Ck} be a good
k-coloring of G ∪ F . Obviously, C ′

= {C1 ∩ V (G), C2 ∩ V (G), . . . , Ck ∩ V (G)} is a good k-coloring of G, so by our assumption,
C ′ is a good k-coloring of H . Thus no block of C contains an edge of H (as V (G) = V (H)). Similarly, no block of C contains an
edge of F because C ′′

= {C1 ∩V (F), C2 ∩V (F), . . . , Ck ∩V (F)} is a good k-coloring of F . It follows that C is a good k-coloring
of H ∪ F . Thus the set of good k-colorings of G ∪ F is a subset of the set of good k-colorings of H ∪ F . The converse inclusion
can be shown exactly the same way. Consequently, (iii) holds.
(iii) ⇒ (i) This implication follows from the obvious inclusion ∼=

cl
s ⊆ ≡

cl
s (we refer to Proposition 2(1) and note that

∼=
cl

⊆ ≡
cl). �

Theorem 8. Let cl be the function assigning to every graph the set of its good k-colorings. If k ≥ 3 then the problem of deciding
if G ≢

cl
s H is NP-complete.
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Proof. By Theorem 7, to demonstrate that G ≢
cl
s H , it suffices to show a k-coloring of one of the graphs G or H which is not

a k-coloring of the other graph. Hence the problem is in NP.
We will now reduce the NP-complete problem of existence of a k-coloring of a graph (cf. [5]) to our problem. Let G′ be a

graph. We define G to be the graph obtained from G′ by adding an edge xy, where x and y are two new vertices. We define
H to be the graph obtained from G by adding an edge zx, where z is some vertex of G′. We will prove that G′ is k-colorable if
and only if G ≢

cl
s H .

Let us suppose first that G′ is k-colorable. Then there exists a k-coloring of G such that both vertices x and z belong to the
same block of the k-coloring. This k-coloring of G is not a k-coloring of H because xz is an edge in H . Thus G ̸∼=

cl H and, by
Theorem 7, G ≢

cl
s H . Conversely, if G′ is not k-colorable then neither is G nor H . Hence, the sets of k-colorings of both G and

H are empty and, consequently, equal. By Theorem 7 again G≡
cl
s H . �

Remark 2. For k = 1, that is, when the function cl assigns to a graph the set of its good 1-colorings, all four equivalence
relations ≡

cl, ∼=
cl, ≡cl

s and ∼=
cl
s coincide and for every pair of graphs G and H,G≡

cl H if and only if G = H = ∅ or G ≠ ∅ ≠ H .
Indeed, under our notion of a graph as a collection of edges, the only graph that has a good 1-coloring is the empty graph. �

For k = 2 the problem to decide if G ≢
cl
s H is solvable in polynomial time. It is a consequence of the following fact.

Proposition 3. Let cl be the function assigning to every graph the set of its good 2-colorings. For any two graphs G and H,G≡
cl
s H

if and only if either none of the graphs G and H is bipartite or

(1) both G and H are bipartite
(2) V (G) = V (H)
(3) G and H have the same families of vertex sets of connected components, and
(4) connected components with the same vertex sets in G and H have the same bipartitions.

Proof. (⇒) Let G≡
cl
s H and assume that at least one of the graphs G or H is bipartite. Otherwise the necessity holds. As

≡
cl
s ⊆ ≡

cl, both G and H are bipartite. Hence the sets of good 2-colorings of G and H are nonempty and they are equal by
Theorem 7. Since good k-colorings in a graph are partitions of the vertex set of this graph, V (G) = V (H).

Let us suppose the families of vertex sets of components of G and H are not the same. Then, by Lemma 4.1, there exists
a pair of vertices that are joined by an edge in one of the graphs G or H and are in different components in the other graph.
Without loss of generality we can assume that there are vertices, say x and y, that are joined by an edge in G but belong to
two different components in H . Let us denote by Hx (respectively, Hy) the two components in H that contain x (respectively,
y) and by Vx (respectively, Vy) the monochromatic class of Hx (respectively, Hy) that contains x (respectively, y). Let F be the
complete bipartite graph on the set of vertices V (Hx) ∪ V (Hy) whose monochromatic classes are Vx ∪ Vy and the other one
(V (Hx) ∪ V (Hy)) − (Vx ∪ Vy). The graph H ∪ F is bipartite while G ∪ F is not because it contains the graph F + xy which
has an odd cycle. By the definition of the relation ≡

cl
s ,G ≢

cl
s H , a contradiction. Hence for each component in G, there is a

component in H with the same vertex set. By symmetry, G and H have the same families of vertex sets of their connected
components.

Let us suppose now that for some two components G′ of G and H ′ of H with the same vertex sets, the bipartitions of G′

andH ′ are not the same. Then there exists a pair of vertices u and v such that they both are in the samemonochromatic class
in G′ but in the different monochromatic classes in H ′. The graph (G ∪ H ′) + uv is not bipartite because there is a path of an
even length joining u and v in G so (G∪H ′)+uv contains an odd cycle. On the other hand, the graph (H∪H ′)+uv = H+uv
is bipartite. Hence G ≢

cl
s H , a contradiction. This completes the proof of necessity.

(⇐) If both G and H are not bipartite then for every graph F , both G ∪ F and H ∪ F are not bipartite so G≡
cl
s H . Let now

both G and H be bipartite. Let us denote by C a good 2-coloring of G and suppose C is not a good 2-coloring of H . Then
there exists an edge, say e, in H whose both ends are contained in the same block of C. Let H ′ be the component of H that
contains this edge. By our assumptions, there is a component G′ of G that has the same vertex set and the same bipartition
as H ′. Thus the edge e has its ends in two different blocks of this bipartition of G′ so in two different blocks of C as well. This
contradiction proves that every good 2-coloring of G is a good 2-coloring ofH . In a very similar way one can prove that every
good 2-coloring of H is a good 2-coloring of G. By Theorem 7, we conclude that G≡

cl
s H . �

4.2. Edge 2-colorability

We will now consider the property of edge 2-colorability. We note that a graph is edge 2-colorable if and only if each of
its connected components is a path or a cycle of an even length. We denote by ≡

e2c the equivalence relation in which two
graphs are equivalent if and only if both are edge 2-colorable or neither of the two is.

The following theorem characterizes the relation ≡
e2c
s .

Theorem 9. Let G and H be graphs. Then G≡
e2c
s H if and only if at least one of the following conditions holds

(1) Both G and H are not edge 2-colorable (each contains an odd cycle or a vertex of degree at least 3).
(2) Both G and H are edge 2-colorable (no odd cycles and maximum degree at most 2), V (G) = V (H), and for every even (odd)

path component in G there is an even (odd) path component in H with the same endpoints.



974 Z. Lonc, M. Truszczyński / Discrete Mathematics 311 (2011) 966–977

Proof. (⇒) If both G and H are not edge 2-colorable, there is nothing left to prove. Since G≡
e2c
s H , then G≡

e2c H and,
consequently, both G and H are edge 2-colorable. Let us suppose that V (G) ≠ V (H), say V (H) − V (G) ≠ ∅. Let
u ∈ V (H) − V (G). We denote by v and w some new vertices (occurring neither in G nor in H). We define F = {vu, wu}.
Clearly, G ∪ F is edge 2-colorable, while H ∪ F is not. Thus, G ≢

e2c
s H , a contradiction, so V (G) = V (H).

Suppose now there is a vertex u such that degG(u) = 1 and degH(u) = 2. Let v be a new vertex (occurring neither in
G nor in H). We define F = {vu}. Obviously, as before, G ∪ F is edge 2-colorable, while H ∪ F is not. Hence, G ≢

e2c
s H , a

contradiction. By the symmetry argument it follows that for every vertex u, degG(u) = degH(u).
Let now P be a path inGwith endpoints a and b. By the property proved above, degH(a) = degH(b) = 1. Let us assume that

a and b are endpoints of two different paths in H . We select a new vertex, say u. If P has odd length, we define F = {au, ub}.
Otherwise, we define F = {ab}. Clearly, G ∪ F contains an odd cycle and so, it is not edge 2-colorable. On the other hand,
H ∪ F does not contain any odd cycles and so, it is edge 2-colorable, a contradiction.

Thus, a and b are the endpoints of the same path in H , say P ′. It remains to prove that the length of P ′ is of the same parity
as the length of P . If G+ab is edge 2-colorable, then the cycle P +ab has even length. As G≡

e2c
s H,H +ab is edge 2-colorable

too. Thus, the cycle P ′
+ ab is also even, so both paths P and P ′ are of odd length. Similarly, if G+ ab is not edge 2-colorable,

then P + ab is an odd cycle. It follows that P ′
+ ab is an odd cycle, too and, consequently, P and P ′ are both of even length.

(⇐) Let F be a graph and let us assume that G ∪ F is edge 2-colorable. It follows that G is edge 2-colorable and so, H is edge
2-colorable, too. Moreover, no vertex in G ∪ F has degree 3 or more. By our assumptions, the same holds for H ∪ F because
the degrees of vertices in G and H are the same. Let us consider any cycle C in H ∪ F . If C ∩ F = ∅, then C ⊆ H . Consequently,
C is even. Thus, let F ′

= C ∩ F . By our assumptions, adding F ′ to G results in exactly one new cycle in G, say C ′. Moreover,
the parity of the lengths of C ′ and C is the same. Since G ∪ F is edge 2-colorable and contains C ′, C ′ is even. Thus, C is even,
too. It follows that H ∪ F is edge 2-colorable. By symmetry, for every graph F ,G ∪ F is edge 2-colorable if and only if H ∪ F
is edge 2-colorable. �

4.3. Connectivity

Because we use the term graph for sets of edges and assume the vertex set is defined implicitly, the concepts related to
connectivity need to be redefined for our setting. To this end, with every graph G in our sense (that is, G ⊆ E ) we associate
the corresponding ‘‘standard’’ graph, that is, the pair (V (G),G) consisting of the vertex set V (G) and the edge set G. We will
denote this standard graph by G∗. For a graph G ⊆ E and a set of vertices C ⊆ V we denote by G − C the graph (in the
standard sense) obtained from G∗ by removing from it vertices of C .

A graph G ⊆ E is connected if G∗ is connected. Otherwise, G is disconnected. Similarly, by a (connected) component of
a graph G we understand a (connected) component of the standard graph G∗. Below we use the terms such as connected
graph, connected component, etc., both in the context of graphs and the corresponding standard graphs.

By a cutset in a connected graph G ⊆ E wemean a set of vertices C ⊆ V such that G− C disconnected. A set C of vertices
is a cutset of a disconnected graph G if C = ∅ or, for some component G′ of G, C ∩ V (G′) is a cutset of G′. Clearly, C ≠ ∅ is a
cutset of G if and only if it separates some pair of vertices in G. Let us observe that the only graphs without any cutsets are
the complete graphs.

Let cs be a function that assigns to every graph the set of its cutsets of cardinality smaller than k, where k ≥ 1 (as in the
case of colorability, to simplify the notation, we drop the reference to k). Thus, G≡

cs H , if either both graphs G and H have a
cutset of cardinality less than k or both do not have such a cutset. We will now characterize the relation ≡

cs
s .

Lemma 4.2. If G≡
cs
s H then V (G) = V (H).

Proof. Let us suppose that V (G) ≠ V (H). We can assume without loss of generality that there exists a vertex x ∈

V (H) − V (G).
We will first assume that k = 1. Let z be any vertex in H different from x and let y be a new vertex (not in H nor G). We

define F = {zu | u ∈ V (H) − {x, z}} ∪ {xy}. It follows that H ∪ F is connected (that is, has no cutsets of size 0) and G ∪ F is
not connected (the edge xy is separated from the rest of the graph). Thus, G ≢

cs
s H , a contradiction.

Thus, from now on, we assume that k ≥ 2. Let K be a set of k vertices which are not in V (G) ∪ V (H) and let
ℓ = max(k − degH(x), 1). Since x has a positive degree in H and k ≥ 2, ℓ < k. We define F to be the graph obtained
from the complete graph on (V (H)∪K)−{x} by adding the vertex x and edges joining xwith all vertices of some ℓ-element
subset L of K . The graphH∪F can be obtained from F by adding the edges incident inH with x. As degH∪F (x) = degH(x)+ℓ ≥

k − ℓ + ℓ = k, the graph H ∪ F does not have a cutset of cardinality smaller than k. On the other hand, the set L is a cutset
in G ∪ F . Indeed, L is a cutset of the component of G ∪ F containing K ∪ {x} as it separates x from the rest of the graph. Since
|L| < k,G ∪ F has a cutset of cardinality smaller than k. Thus, G ≢

cs
s H , a contradiction, and so V (G) = V (H) follows. �

Theorem 10. Let G and H be graphs. Then, G≡
cs
s H if and only if V (G) = V (H) and for every set C ⊆ V (G) such that |C | < k,

the families of vertex sets of components of G − C and H − C are the same.

Proof. (⇐) To show sufficiency assume that G ≢
cs
s H . Then, for some graph F ,G∪ F ≢

cs H ∪ F . We can assume without loss
of generality that G ∪ F has a cutset C of cardinality smaller than k and H ∪ F does not have such a cutset. As (G ∪ F) − C
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Fig. 4. The set {c} is the only one-element cutset of G and of H . Thus, G∼=
cs H . However, the families of the vertex sets of components of G − c and H − c

are different and so, G ≁=
cs
s H . �.

is disconnected, there are vertices x and y which belong to two different components of (G ∪ F) − C . On the other hand,
(H ∪ F) − C is connected so there exists a path, say P , joining x and y in (H ∪ F) − C . Let e be any edge in P which does not
belong to F . Then, clearly, e is an edge of H − C . Since the families of vertex sets of components of G − C and H − C are the
same, there is a component of G− C that contains both ends of the edge e. Consequently there exists a path, say Pe in G− C
joining the ends of the edge e. Let us replace in the path P every edge ewhich is not in F by the path Pe. The resulting graph
is a connected subgraph of (G ∪ F) − C containing the vertices x and y. We have got a contradiction with the definition of x
and y. Thus our initial assumption that G ≢

cs
s H was false, so G≡

cs
s H .

(⇒) We pass on to the proof of necessity. By Lemma 4.2, V (G) = V (H).
Let C ⊆ V (G), |C | < k. Let us suppose the families of vertex sets of components of G− C and H − C are not the same. By

Lemma 4.1, there exists a pair of vertices which are joined by an edge in one of the graphs G − C or H − C and are in two
different components in the other graph. Without loss of generality we assume that there is an edge e in H − C whose ends
belong to two different components in G − C . Let G′ be one of these components. We denote by L a set of ℓ = k − 1 − |C |

verticeswhich are not inV (G)∪V (H).Wedefine F to be the graph on the set of verticesV (G)∪L inwhich every pair of vertices
in V (G′) is joined by an edge, every pair of vertices in V (G)−V (G′) is joined by an edge and every vertex in C ∪ L is joined by
an edgewith every other vertex of F . Clearly, C ′

= C∪L is a cutset in G∪F = F of cardinality |C ′
| = |C |+k−1−|C | = k−1.

Let us consider any cutset C ′′ in H ∪ F . Since V (H ∪ F) = V (H) ∪ L = V (F) = V (G) ∪ L = V (G∪ F) and every vertex in C ′ is
joined by an edge with every other vertex of H ∪ F , C ′′

⊇ C ′. Let us observe that (H ∪ F) − C ′
⊇ (F − C ′) + e. The last graph

is a connected spanning subgraph of (H ∪ F) − C ′, so C ′ is not a cutset of H ∪ F . We have shown that every cutset in H ∪ F
has at least k vertices which shows that G ≢

cs
s H . This contradiction completes the proof. �

Remark 3. It follows from Theorem 10 that for every fixed k, the problem to decide if G≡
cs
s H is polynomial time solvable,

where cs is the function assigning to every graph the set of its cutsets of cardinality smaller than k. It is an open question
what the complexity status of this problem is when k is a part of the instance. �

Next, we will show that ≡
cs
s = ∼=

cs
s . That is, ∼=

cs despite being more precise than ≡
cs has the same strengthening.

Theorem 11. G≡
cs
s H if and only if G∼=

cs
s H.

Proof. (⇐) This implication follows from a generally true inclusion ∼=
f
s ⊆ ≡

f
s .

(⇒) Let G and H be graphs such that G≡
cs
s H . We assume that there is a graph F such that G∪ F ≁=

cs H ∪ F . Since G≡
cs
s H , by

Proposition 1(3), G ∪ F ≡
cs
s H ∪ F . By Lemma 4.2, V (G ∪ F) = V (H ∪ F). As G ∪ F ≁=

cs H ∪ F , we can assume without loss of
generality that there exists a cutset C in G∪ F , |C | < k, which is not a cutset in H ∪ F . Let x and y be a pair of vertices which
belong to two different components of (G ∪ F) − C . We denote by G′ the component of (G ∪ F) − C that contains x. Clearly,
there is a path in (H ∪ F) − C that joins the vertices x and y. Consequently there exists an edge, say e, in (H ∪ F) − C with
one vertex in V (G′) and the other one in V ((H ∪ F) − C) − V (G′) = V ((G ∪ F) − C) − V (G′).

Let L be a set of cardinality k − 1 − |C | of vertices not in V (G ∪ F). We define K to be the graph on the set of vertices
V (G∪ F) ∪ L in which every pair of vertices in V (G′) is joined by an edge, every pair of vertices in V ((G∪ F) − C) − V (G′) is
joined by an edge and every vertex in C ′

= C ∪ L is joined by an edge with every other vertex of K . Clearly, C ′ is a cutset in
G∪F ∪K = K of cardinality |C ′

| = |C |+k−1−|C | = k−1. Since G≡
cs
s H , the graphH ∪F ∪K has a cutset C ′′ of cardinality

smaller than k. We observe that C ′′
⊇ C ′ because V (H∪F ∪K) = V (K) and every vertex in C ′ is joined by an edgewith every

other vertex in V (H∪F ∪K). As |C ′′
| < k, C ′′

= C ′. By the definition of K , V ((H∪F ∪K)−C ′) = V (K −C ′) = V ((G∪F)−C)
and the graph (H ∪ F ∪ K) − C ′ contains complete graphs on the sets of vertices V (G′) and V ((G ∪ F) − C) − V (G′) as
subgraphs. The graph (H ∪ F ∪ K) − C ′ contains the edge e whose one end is in one of the complete subgraphs mentioned
above and the other one in the other complete subgraph. Therefore the graph (H ∪ F ∪ K) − C ′ is connected so C ′′

= C ′ is
not a cutset in H ∪ F ∪ K , a contradiction.

We have shown that G ∪ F ∼=
cs H ∪ F for every graph F , so G∼=

cs
s H . �

Remark 4. Unlike in the case of k-coloring, ∼=cs
≠ ∼=

cs
s . A simple example for k = 2 is shown in Fig. 4.

For a given graph G it would be interesting to find a smallest (with respect to the number of edges) subgraph G′ of G
such that G′

≡
cs
s G. We observe, however, that even for k = 2, it is a difficult problem. Indeed, let us consider the problem of

deciding if for a given graph G and an integerm there exists a subgraph G′ of G such that G≡
cs
s G′ and G′ has at mostm edges.

One can easily verify that the problem is in the class NP (cf. Remark 3). Moreover it is NP-complete because it follows from
Theorem 10 that for a 2-connected graph G andm = |V (G)| the problem asks for the existence of a Hamiltonian cycle in G.

Let Φ be the set of all graphs (we stress, in our sense) with a cutset of cardinality smaller than k. It is obvious that
≡

Φ
= ≡

cs. Let us denote by Ψ the set of graphs (again, in our sense) that are not k-connected. One can observe that for
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every graph G,G ∈ Ψ if and only if G has a cutset of cardinality smaller than k or |V (G)| ≤ k. Similarly, G ∈ Ψ if and
only if G has a cutset of cardinality smaller than k or G is a complete graph on at most k vertices. As the two properties
are closely related, it is natural to ask if ≡Φ

s = ≡
Ψ
s . We will answer this question positively (in the proof, we will use both

characterizations of G ∈ Ψ given above).

Theorem 12. G≡
Φ
s H if and only if G≡

Ψ
s H.

Proof. (⇒) Let us suppose G≡
Φ
s H but G ≢

Ψ
s H . Then, without loss of generality, there exists a graph F such that G ∪ F ∈ Ψ

and H ∪ F ∉ Ψ . In this case, H ∪ F has no cutsets of cardinality smaller than k and |V (H ∪ F)| > k. Since G≡
Φ
s H,G ∪ F

has no cutsets of cardinality smaller than k. Thus, |V (G ∪ F)| ≤ k because G ∪ F ∈ Ψ . Hence |V (G ∪ F)| < |V (H ∪ F)|, a
contradiction because, by Lemma 4.2, V (G) = V (H), so V (G ∪ F) = V (H ∪ F), as well.
(⇐) Let us suppose now that G≡

Ψ
s H but G ≢

Φ
s H . Then, without loss of generality, there exists a graph F such that G ∪ F

has a cutset of cardinality smaller than k and H ∪ F does not have such a cutset. It follows that G ∪ F ∈ Ψ . Since
G≡

Ψ
s H,H ∪ F ∈ Ψ . Thus, |V (H ∪ F)| ≤ k and, consequently, H ∪ F is a complete graph on at most k vertices. As

G≡
Ψ
s H,G ∪ H ∪ F ≡

Ψ H ∪ H ∪ F = H ∪ F , so G ∪ H ∪ F ∈ Ψ .
Let us suppose first that G ∪ H ∪ F has a cutest C of cardinality smaller that k. Let G′ be one of the components of

(G ∪ H ∪ F) − C and let G′′
= (G ∪ H ∪ F) − (C ∪ V (G′)). The complete graph H ∪ F has common vertices with at most one

of the graphs G′ and G′′, say with G′′. Let H ′ be a complete graph on k + 1 vertices that contains H ∪ F and has no common
vertices with G′. Now, G ∪ H ∪ F ∪ H ′

∈ Ψ because C is its cutset, while H ∪ H ∪ F ∪ H ′
= H ′

∉ Ψ because it is a complete
graph on k + 1 vertices. Hence G ≢

Ψ
s H , a contradiction.

We have proved that G ∪ H ∪ F has no cutsets of cardinality smaller than k so, as G ∪ H ∪ F ∈ Ψ , |V (G ∪ H ∪ F)| ≤ k.
Consequently, |V (G ∪ H)| ≤ k. Since G ≢

Φ
s H,G ≠ H have different edge sets. We can assume without loss of generality

that there is an edge, say e = xy in H , which is not an edge in G. Let K be a graph obtained from the complete graph on a
(k + 1)-element set of vertices containing V (G ∪ H) by deleting the edge e. Clearly, G ∪ K = K but H ∪ K is the complete
graph on k+ 1 vertices. The former graph has a cutset V (K) − {x, y} of cardinality k− 1 and the latter graph has no cutsets.
Hence G ∪ K ∈ Ψ and H ∪ K ∉ Ψ so G ≢

Ψ
s H . This contradiction proves that G≡

Φ
s H . �

5. Open problems and further research directions

We do not know of any past research concerning the strengthening of equivalence relations on graphs. Nevertheless, it
seems to us that this is a natural concept worth further investigations. In this paper, we focused on the strengthening of the
equivalence relations that are determined by graph properties. For many properties Φ we studied, the relations ≡

Φ
s turned

out to have a very simple structure (for instance, they broke both equivalence classes of ≡Φ, Φ and Φ , into singletons, that
is, were identities; or kept Φ as an equivalence class and broke the other one into singletons). In several cases, however,
(for the properties Φ of being k-connected, k-colorable, and edge 2-colorable), the structure of the relations ≡

Φ
s turned out

to be more complex and so more interesting, too. Therefore, a promising research direction could be to identify and study
additional natural graph propertiesΦ , for which the relations≡

Φ
s have a nontrivial structure. Establishing characterizations

of the relations ≡
Φ
s , and determining the complexity of deciding whether for two given graphs G and H,G≡

Φ
s H holds, are

particularly interesting and important. Given the results of our paper, it seems that the properties of being edge k-colorable
and edge k-connected are natural candidates for this kind of investigation. In the former case we were only able to find
a characterization of the relation ≡

Φ
s , when Φ is the property of being edge 2-colorable. The theorem we proved in this

case suggests that for an arbitrary k the structure of the relation ≡
Φ
s may be quite complicated, which makes the problem a

challenge. In the latter case, we feel theremay be strong similarities with the strengthening of the property of k-connectivity
but do not have any specific results.

There are a few open problems directly related to the results of this paper. One of them is to establish the computational
complexity of the problem to decide if G≡

Φ
s H (given graphs G and H , and an integer k), when Φ is the property of being

k-connected. For a fixed k, it follows from our Theorem 10 that the problem is solvable in polynomial time. The question is
open however, when k is a part of the instance.

Another problem concerns the property ΦH of containing a subgraph isomorphic to H . It was shown in Theorem 6 that
the relation ≡

ΦH
s has some very simple structure for many graphs H . The question arises what is the structure of ≡ΦH

s for all
other graphs H .

There are also several natural general questions concerning the concept of strengthening of an equivalence relation in
graphs. For example it would be interesting to find a general condition for the function f that guarantees that the relations
≡

f
s and ∼=

f
s are equal.

Another general problem is to establish conditions that ensure that there exists a weakest equivalence relation ≡
′ such

that≡′
s is the same as≡s and, whenever it is so, to find this≡

′. In some cases, the problem is easy. For example, the relations
≡

cl
s and ∼=

cl
s studied in Section 4.1 are equal (see Theorem 7) and the relation ≡

cl is strictly weaker than ∼=
cl. As ≡

cl has only
two equivalence classes and the strengthening of the total relation (the only possible weakening of ≡

cl) is also the total
equivalence relation, ≡cl is the weakest relation ≡

′ such that ≡
′
s and ∼=

cl
s are equal. This observation does not generalize to

other properties. For instance, the relation ≡
cs is not the weakest relation ≡

′ such that ≡
′
s and ∼=

cs
s are the same. Indeed, the
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strengthening of ≡Ψ (where Ψ is the property considered in Theorem 12) coincides with ∼=
cs
s , yet ≡

cs is incomparable with
≡

Ψ (and so, in this case, there is no weakest relation of the desired property). Thus, in general, the two problemsmentioned
above seem to be nontrivial.
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