Universal Polynomial Majorants on Convex Bodies

András Kroó

Alfréd Rényi Mathematical Institute, Hungarian Academy of Sciences, Budapest, Réalitánoda u. 13–15, H-1053 Hungary

Communicated by Peter B. Borwein
Received December 2, 1999; accepted in revised form February 20, 2001; published online June 18, 2001

Let \mathbf{K} be a convex body in \mathbb{R}^d ($d \geq 2$), and denote by $B_n(\mathbf{K})$ the set of all polynomials p_n in \mathbb{R}^d of total degree $\leq n$ such that $|p_n| \leq 1$ on \mathbf{K}. In this paper we consider the following question: does there exist a $p^*_n \in B_n(\mathbf{K})$ which majorates every element of $B_n(\mathbf{K})$ outside of \mathbf{K}? In other words can we find a minimal $\gamma > 1$ and $p^*_n \in B_n(\mathbf{K})$ so that $|p_n(x)| \leq \gamma |p^*_n(x)|$ for every $p_n \in B_n(\mathbf{K})$ and $x \in \mathbb{R}^d \setminus \mathbf{K}$? We discuss the magnitude of γ and construct the universal majorants p^*_n for even n. It is shown that γ can be 1 only on ellipsoids. Moreover, $\gamma = O(1)$ on polytopes and has at most polynomial growth with respect to n, in general, for every convex body \mathbf{K}.

2001 Academic Press

Key Words: convex bodies; polynomial majorants; polytopes; polytopal approximation.

Let $\mathbf{K} \subset \mathbb{R}^d$, $d \geq 2$, be a convex body i.e., it is a convex compact set with nonempty interior in \mathbb{R}^d. Consider the space P_n^d of polynomials on \mathbb{R}^d of total degree $\leq n$, endowed with the usual supremum norm on \mathbf{K}. Then the unit ball in this space is given by

$$B_n(\mathbf{K}) := \{ p \in P_n^d : \| p \|_{C(\mathbf{K})} \leq 1 \}.$$

In this paper we address the following question: is there a "largest" polynomial in $B_n(\mathbf{K})$ which majorates all elements of $B_n(\mathbf{K})$ everywhere on $\mathbb{R}^d \setminus \mathbf{K}$? In other words does there exist a $\gamma > 1$ and $p^*_n \in B_n(\mathbf{K})$ such that

$$|p_n(x)| \leq \gamma |p^*_n(x)|, \quad \forall p_n \in B_n(\mathbf{K}), \quad \forall x \in \mathbb{R}^d \setminus \mathbf{K}? \quad (1)$$

Such a p^*_n majorates all $p_n \in B_n(\mathbf{K})$ at every point outside \mathbf{K} (with the constant γ). In this sense p^*_n is a universal majorant for polynomials in $B_n(\mathbf{K})$. Naturally, we are interested in the smallest possible $\gamma > 1$ for which (1) holds with some $p^*_n \in B_n(\mathbf{K})$. Thus we set $\gamma_n(\mathbf{K}) := \inf \{ \gamma : \text{there exists a } p^*_n \in B_n(\mathbf{K}) \text{ so that (1) holds} \}$.

1 Supported by the Hungarian National Foundation for Scientific Research, Grant T023441.
The above definition is motivated by the classical inequality of Chebyshev (see [1, p. 235]) stating that when \(d = 1 \) and \(K = [-1, 1] \) we have

\[
|p_n(x)| \leq |T_n(x)|, \quad \forall p_n \in B_d([-1, 1]), \quad \forall |x| > 1,
\]

where \(T_n(x) = \cos n \pi x \) is the Chebyshev polynomial. This means in our terminology that \(\gamma_d([-1, 1]) = 1 \) for every \(n \in \mathbb{N} \), with \(\pm T_n \) being the universal majorants.

In this paper we shall study the magnitude of \(\gamma_d(K) \) when \(d > 1 \) and \(K \) is a convex body in \(\mathbb{R}^d \). First, it has to be noted that the above question is meaningful only for even \(n \in \mathbb{N} \), because \(\gamma_{2n+1}(K) = \infty \) whenever \(d > 1 \) and \(n \in \mathbb{N} \). Indeed, if \(\gamma_{2n+1}(K) < \infty \), i.e., a universal majorant \(p_{2n+1}^* \in B_{2n+1}(K) \) exists, then it follows from (1) that \(\deg p_{2n+1}^* = 2n+1 \) (and not less), and \(p_{2n+1}^* \neq 0 \) on \(\mathbb{R}^d \setminus K \). Since \(d > 1 \) we can easily find a line \(L = \{at + b : t \in \mathbb{R}^1\} \) in \(\mathbb{R}^d \) (\(a, b \in \mathbb{R}^d \)) so that \(L \cap K = \emptyset \) and the univariate polynomial \(p_{2n+1}^* (at + b) \) has degree \(2n+1 \). This yields that \(p_{2n+1}^* (at_0 + b) = 0 \) for some \(t_0 \in \mathbb{R}^1 \) contradicting the above observation that \(p_{2n+1}^* \neq 0 \) on \(\mathbb{R}^d \setminus K \).

On the other hand for even \(n \) one can give a simple example of a universal majorant in \(\mathbb{R}^d, d > 1 \). In what follows \(|x| \) denotes the Euclidean norm in \(\mathbb{R}^d \) \((d \geq 1), \langle x, y \rangle \) stands for the inner product of \(x, y \in \mathbb{R}^d \), \(B_d \) and \(\text{Int} K \) are the boundary and interior of \(K \), respectively.

Example 1. Let \(K = \{x \in \mathbb{R}^d : |x| \leq 1\} \) be the Euclidean unit ball in \(\mathbb{R}^d \). Then \(\gamma_d(K) = 1 \) with \(p_{2n}^* (x) = T_{2n}(|x|) \in B_{2n}(K) \) being a universal majorant. This follows immediately from (2) since \(T_{2n}(t) \), \(t \in \mathbb{R}^1 \) is an even polynomial.

Using affine transformations of \(\mathbb{R}^d \) the above example can be easily extended to arbitrary ellipsoids which means that \(\gamma_d(K) = 1 \) for any ellipsoid \(K \). Our first result gives a converse to this showing that \(\gamma_d(K) \) can attain its minimal value 1 only on ellipsoids.

Theorem 1. Let \(K \in \mathbb{R}^d, d \geq 2, \) be a convex body; \(n \in \mathbb{N} \). Then \(\gamma_d(K) = 1 \) if and only if \(K \) is an ellipsoid, i.e., \(K = \{x \in \mathbb{R}^d : |Ax + b| \leq 1\} \) for some \(A \in \mathbb{R}^{d \times d} \) (\(\det A \neq 0 \)) and \(b \in \mathbb{R}^d \). Moreover, in this case \(p_{2n}^* = \pm T_{2n}(|Ax + b|) \) are the only universal majorants.

Thus apart from ellipsoids we always have \(\gamma_d(K) > 1 \). It turns out that \(\gamma_d(K) = O(1) \) with a constant independent of \(n \) whenever \(K \) is a polytope. For a polytope \(K \) we shall denote by \(f_j(K) \) the number of its \(j \)-dimensional faces, \(0 \leq j \leq d - 1 \).
Theorem 2. Let K be a convex polytope in \mathbb{R}^d, $d \geq 2$. Then for every $n \in \mathbb{N}$

$$\gamma_{2n}(K) \leq \sum_{j=1}^{d-2} f_j(K) f_{d-j-1}(K) + 2f_{d-1}(K). \quad (3)$$

Moreover, if K is central symmetric then we have $\gamma_{2n}(K) \leq f_{d-1}(K)$.

Using the above theorem and some known results on degree of approximation of convex bodies by polytopes with prescribed number of vertices or faces we can verify that $\gamma_{2n}(K)$ has at most polynomial growth in n for every convex body K. Namely we have the next

Theorem 3. Let K be a convex body in \mathbb{R}^d, $d \geq 2$. Then for every $n \in \mathbb{N}$

$$\gamma_{2n}(K) \leq c(d, K) n^{d(d-1)}, \quad (4)$$

where $c(d, K) > 0$ depends only on d and K.

Note that in general, polynomials bounded by 1 on K can grow exponentially outside K. Thus the polynomial growth $\gamma_{2n}(K) = O(n^{d(d-1)})$ given by Theorem 3 is very small relative to the size of polynomials $p_n \in B_d(K)$ outside of K. The estimate (4) can be improved further if K has a C^2_∞-boundary, i.e., its second fundamental form exists on $\text{Bd } K$ and the Gauss curvature is a positive continuous function on $\text{Bd } K$.

Theorem 4. If K is a convex body in \mathbb{R}^d ($d \geq 2$) with a C^2_∞-boundary then $\gamma_{2n}(K) = O(n^{2d-1})$.

Above estimates can be used in order to obtain results on approximation of convex surfaces by algebraic surfaces. (We call zero sets of $p_n \in P^d_n$ algebraic surfaces of order n.) Denote by $d(A, B)$ the Hausdorff distance between $A, B \subset \mathbb{R}^d$.

Theorem 5. For any convex body K in \mathbb{R}^d ($d \geq 2$) there exists an algebraic surface Ω_n of order n such that $d(\text{Bd } K, \Omega_n) \leq c \left(\frac{\log n}{n}\right)^2$, where $c > 0$ depends only on K and d.

This paper is organized as follows. Section 1 contains some material on the geometry of convex bodies needed for our considerations. In Section 2 the proofs of Theorem 1–5 will be given. Finally, we shall conclude the paper by a discussion of some open problems.
1. GEOMETRY

First we need to introduce a certain quantity $k(x)$ which measures the distance from a given $x \in \mathbb{R}^d$ to the boundary BdK of a convex body $K \subset \mathbb{R}^d$. This quantity was used in [5] and [6] for the study of multivariate Chebyshev and Bernstein Inequalities.

For given $A, B \in \mathbb{R}^d$ and $u \in S^{d-1} := \{x \in \mathbb{R}^d : |x| = 1\}$ such that $\langle u, B - A \rangle > 0$ consider the corresponding "slab" given by $S_u(A, B) := \{x \in \mathbb{R}^d : \langle u, A \rangle \leq \langle u, x \rangle \leq \langle u, B \rangle\}$.

For a fixed $\varepsilon > 0$ the "ε-dilation" of this slab is defined by $S_u^\varepsilon(A, B) := \{x \in \mathbb{R}^d : \langle u, A \rangle - \delta_u \leq \langle u, x \rangle \leq \langle u, B \rangle + \delta_u\}$ where $\delta_u := \varepsilon \frac{|u|}{2}$.

Finally, set $K_u := \bigcap \{S_u^\varepsilon(A, B) : S_u(A, B) = K, A, B \in \mathbb{R}^d, u \in S^{d-1}\}$, $\zeta_k(x) := \inf\{z : x \in K_u\}$.

Clearly, $\zeta_k(x) > 1$ for $x \in \mathbb{R}^d \setminus K$, $\zeta_k(x) = 1$ on BdK, and $\zeta_k(x) < 1$ inside K. Also, it is easy to see that when K is central symmetric about 0 then $\zeta_k(x) = \inf\{\varepsilon > 0 : \frac{x}{\varepsilon} \in K\}$ is the usual Minkowski functional. It is proved in [6] that for every $x \in \mathbb{R}^d \setminus K$

$$\sup\{|p_n(x) : p_n \in B_d(K)\} = T_d(\zeta_k(x)).$$

(5)

We shall also need the following lemmas on parallel supporting hyperplanes which are proved in [5] and [6]. (A special case of Lemma 1 also appears in [7].)

Lemma 1. Let $x \in \mathbb{R}^d \setminus K$. Then there exists a line L passing through x with $K \cap L = [A, B]$, such that K possesses parallel supporting hyperplanes at A and B. Moreover, for any such line

$$\zeta_k(x) = \frac{|x - A + B|}{2} / \frac{|A - B|}{2}.$$ (6)

For the proof of the above statement see [6], Corollary 1 and the proof of Theorem 1A on p. 422. The next lemma provides a similar statement for inner points of K.

Lemma 2. Let $x \in Int K$. Then there exists a line L passing through x with $K \cap L = [A, B]$ such that (6) holds, and K possesses parallel supporting hyperplanes at A and B.

Note a slight difference in the statements of Lemmas 1 and 2: when \(x \in \mathbb{R}^d \setminus K \) by Lemma 1 (6) holds for every \(L \) as above, while for \(x \in \text{Int} \ K \) by Lemma 2 (6) holds for some \(L \) as above.

The first statement of Lemma 2 asserting that (6) holds for a certain line as above is a consequence of Proposition 2 in [5]. The second statement concerning parallel supporting hyperplanes is Proposition 1 of [5].

2. PROOFS

Proof of Theorem 1. The sufficiency in Theorem 1 is straightforward, it follows by a change of variables \(y = Ax + b \) (\(x, y \in \mathbb{R}^d \)) and Example 1.

Assume now that \(K \subset \mathbb{R}^d \) is such that \(\gamma_{2n}(K) = 1 \), and \(p_{2n}^* \in B_{2n}(K) \) is a corresponding universal majorant, so that

\[
|p_{2n}(x)| \leq |p_{2n}^*(x)|, \quad p_{2n} \in B_{2n}(K), \quad x \in \mathbb{R}^d \setminus K.
\]

Then it easily follows from (5) that

\[
|p_{2n}^*(x)| \equiv T_{2n}(\sigma_K(x)), \quad x \in \mathbb{R}^d \setminus K.
\]

In particular, we have that for every \(x \in \mathbb{R}^d \setminus K \) either \(p_{2n}^*(x) \equiv T_{2n}(\sigma_K(x)) \), or \(p_{2n}^*(x) \equiv -T_{2n}(\sigma_K(x)) \). Thus we may assume that

\[
p_{2n}^*(x) \equiv T_{2n}(\sigma_K(x)), \quad x \in \mathbb{R}^d \setminus K. \tag{7}
\]

First we shall verify that equality (7) holds for \(x \in K \), as well. Choose any \(\hat{x} \in \text{Int} K \). Then by Lemma 2 there exists a line \(L \) through \(\hat{x} \) with \(L \cap K = [A, B] \) such that

\[
\sigma_K(\hat{x}) = \frac{\hat{x} - A + B}{2}, \tag{8}
\]

and \(K \) possesses parallel supporting hyperplanes at \(A \) and \(B \). Let

\[
\hat{x} = \frac{-1 - t}{2} A + \frac{1 + t}{2} B,
\]

where it can be assumed that \(0 \leq t \leq 1 \). Then by (8), \(\sigma_K(\hat{x}) = \hat{t} \). Moreover, by Lemma 1 for every \(x \in L \setminus K \) equality (6) holds, i.e. setting \(x_i = \frac{1}{2} A + \frac{t}{2} B \) we have \(\sigma_K(x_i) = t, \ t > 1 \). This and (7) yield that

\[
p_{2n}^*(x_i) \equiv T_{2n}(t), \quad t > 1.
\]
But of course the above equality of univariate polynomials has to extend from \(\{ t \in \mathbb{R}^1 : t > 1 \} \) to the whole line, i.e.,

\[
p_\ast^2 \left(\frac{1-t}{2} A + \frac{1+t}{2} B \right) = T_{2a}(t), \quad t \in \mathbb{R}. \tag{9}
\]

In particular, setting in (9) \(t = \bar{t} \) we obtain \(p_{\ast}^2(\bar{x}) = T_{2a}(\bar{t}) = T_{2a}(\bar{x}) \). Thus and by (7)

\[
p_{\ast}^2(x) = T_{2a}(\bar{x}), \quad x \in \mathbb{R}^d. \tag{10}
\]

The next step is to verify that \(K \) is central symmetric. Set

\[
\sigma_0 := \inf_{x \in K} \bar{x}(x), \quad K_0 := \bigcap_{x > \sigma_0} K_x.
\]

Clearly, \(\sigma_0 \geq 0, K_0 \neq \emptyset \) and \(\text{Int } K_x \neq \emptyset, \quad \sigma > \sigma_0 \). Furthermore, for every \(x \in K_0 \) we have \(\bar{x}_K(x) \leq \sigma_0 \), i.e., by minimality of \(\sigma_0 \) it follows that \(\bar{x}_K(x) = \sigma_0 \) whenever \(x \in K_0 \). This last observation implies that \(K_0 \) must be a singleton. Indeed, if \(a^*, b^* \in K_0 \) \((a^* \neq b^*) \) then \([a^*, b^*] \subset K_0 \), and hence \(\bar{x}_K(x) = \sigma_0 \) for \(x \in [a^*, b^*] \). This and (10) yield that \(p_{\ast}^2 = T_{2a}(\sigma_0) \) on the line \(L^* \) through \(a^* \) and \(b^* \), in an obvious contradiction with (10). Thus \(K_0 = [a^*] \). Consider now a line \(L^* \) through \(a^* \) with \(\text{K} \cap L^* = [a^*, B^*] \) such that \(K \) possesses parallel supporting hyperplanes at \(A^* \) and \(B^* \) (Lemma 2). By (9) and (10) we have with \(x^* = \frac{1-t}{2} A^* + \frac{1+t}{2} B^* \)

\[
T_{2a}(t) = p_{\ast}^2(x^*) = T_{2a}(\sigma_K(x^*)), \quad t \in \mathbb{R}^1. \tag{11}
\]

As \(t \) increases from \(-1\) to \(1 \) the continuous function \(\sigma_K(x^*) \) decreases from \(1 \) to \(\sigma_0 \), and then increases from \(\sigma_0 \) to \(1 \). Thus in view of (11) we must have \(\sigma_0 = 0 \), and \(a^* = x_0^* = (A^* + B^*)/2 \). (In particular, \(\text{Int } K_x \neq \emptyset \) for every \(x > 0 \).) Similarly for any \(A \in \text{Bd } K \) there exists a \(B \in \text{Bd } K \) such that \(K \) possesses parallel supporting hyperplanes at \(A \) and \(B \). Thus using again (9) and (10)

\[
T_{2a}(t) = T_{2a} \left(\bar{x}_K \left(\frac{1-t}{2} A + \frac{1+t}{2} B \right) \right), \quad t \in \mathbb{R}.
\]

Again, as \(t \) varies in \([-1, 1]\) \(\bar{x}_K(A) \) must decrease from \(1 \) to \(0 \) and then increase from \(0 \) to \(1 \). Hence \([A, B]\) must contain \(a^* \) (otherwise
\(\mathbf{a}^* = \frac{\mathbf{A} + \mathbf{B}}{2}\) can not attain 0), and, in addition, \(\mathbf{a}^* = \mathbf{A} + \mathbf{B}\). This means that \(\mathbf{K}\) is central symmetric about \(\mathbf{a}^*\).

We may assume now that \(\mathbf{a}^* = \mathbf{0}\) and \(\mathbf{K}\) is symmetric about the origin.

Then \(\mathbf{z}_\mathbf{K}(t\mathbf{x}) = t\mathbf{z}_\mathbf{K}(\mathbf{x})\) whenever \(\mathbf{x} \in \mathbb{R}^d\) and \(t > 0\). The polynomial \(p^*_\mathbf{K}\) can be written as \(p^*_\mathbf{K}(\mathbf{x}) = \sum_{j=0}^{2n} h_j(\mathbf{x})\), where \(h_j\) is its \(j\)th homogeneous part, \(0 \leq j \leq 2n\). Furthermore \(T_{2n}(t) = \sum_{j=0}^{n} c_j t^{2j}\), where \(c_j \in \mathbb{R},\ 0 \leq j \leq n\). Then for every \(\mathbf{u} \in \mathbb{S}^{d-1}\) and \(t > 0\)

\[
p^*_\mathbf{K}(t\mathbf{u}) = \sum_{j=0}^{2n} h_j(t\mathbf{u}) = \sum_{j=0}^{2n} t^j h_j(\mathbf{u}),
\]

\[
T_{2n}(\mathbf{z}_\mathbf{K}(t\mathbf{u})) = T_{2n}(t\mathbf{z}_\mathbf{K}(\mathbf{u})) = \sum_{j=0}^{n} c_j t^{2j}(\mathbf{u})^2.
\]

Hence using (10) we obtain

\[
\sum_{j=0}^{2n} h_j(\mathbf{u}) t^j = \sum_{j=0}^{n} c_j \mathbf{z}_\mathbf{K}^2(\mathbf{u}) t^{2j}, \quad \mathbf{u} \in \mathbb{S}^{d-1}, \quad t > 0.
\]

This means that \(h_j(\mathbf{u}) = c_j \mathbf{z}_\mathbf{K}^2(\mathbf{u})\) for every \(\mathbf{u} \in \mathbb{S}^{d-1}\). In particular

\[
\mathbf{z}_\mathbf{K}^2(\mathbf{u}) = \frac{1}{c_1} h_1(\mathbf{u}) := H_2(\mathbf{u}), \quad \mathbf{u} \in \mathbb{S}^{d-1}.
\]

Evidently, \(H_2\) is a positive definite quadratic form, i.e.

\[K = \{ \mathbf{x} \in \mathbb{R}^d : \mathbf{z}_\mathbf{K}(\mathbf{x}) \leq 1 \} = \{ \mathbf{x} \in \mathbb{R}^d : H_2(\mathbf{x}) \leq 1 \}
\]

is an ellipsoid. In addition, by (10) the only possible majorants are \(\pm T_{2n}(\mathbf{z}_\mathbf{K}(\mathbf{x}))\).

Proof of Theorem 2. Let \(\mathbf{K} \subset \mathbb{R}^d\) be a polytope. Consider \(\mathbf{A}, \mathbf{B} \in \text{Bd} \mathbf{K}\) such that \(\mathbf{K}\) possesses parallel supporting hyperplanes \(\mathbf{H}_\mathbf{A}, \mathbf{H}_\mathbf{B}\) at \(\mathbf{A}\) and \(\mathbf{B}\), and denote by \(\mathcal{H}_{\mathbf{AB}}\) the set of normal vectors to such pairs of hyperplanes. Since \(\mathbf{K}\) is a polytope it is easy to see that for some \(\mathbf{u} \in \mathcal{H}_{\mathbf{AB}}\) the corresponding pair of hyperplanes \(\mathbf{H}_\mathbf{A}, \mathbf{H}_\mathbf{B}\) has the property that the faces \(\mathbf{F}_\mathbf{A} = \mathbf{K} \cap \mathbf{H}_\mathbf{A}\) and \(\mathbf{F}_\mathbf{B} = \mathbf{K} \cap \mathbf{H}_\mathbf{B}\) of the polytope \(\mathbf{K}\) contain a total of \(d-1\) linearly independent vectors. Let \(\mathcal{H}(\mathbf{K}) := \{ \mathbf{u}_1, \ldots, \mathbf{u}_N \} \subset \mathbb{S}^{d-1} := \{ \mathbf{y} = (y_1, \ldots, y_d) \in \mathbb{S}^{d-1} : y_1 \geq 0 \}\) be the set of normal vectors to pairs of hyperplanes with the
above properties. Since every \(u_j \in \mathcal{U}(K) \), \(1 \leq j \leq N \), is uniquely determined by the corresponding pair of faces of \(K \) specified above it follows that

\[
N \leq \frac{d}{2} \sum_{j=1}^{d-2} f_j(K) f_{d-j-1}(K) + f_{d-1}(K). \tag{12}
\]

Moreover, \(\mathcal{U}(K) \cap \mathcal{U}_{AB} \neq \emptyset \) whenever \(K \) possesses parallel supporting hyperplanes at \(A, B \in \text{Bd} \ K \). Furthermore, for every \(u_j \in \mathcal{U}(K) \) select some \(A_j, B_j \in \text{Bd} \ K \) such that \(u_j \in \mathcal{U}_{A_j B_j} \), \(1 \leq j \leq N \).

Finally, consider the polynomial \(\tilde{T}_{2n}(t) = (T_{2n}(t) + 1)/2 \in P^1 \). Obviously \(\tilde{T}_{2n} \geq 0 \) on \(\mathbb{R}^1 \), \(\tilde{T}_{2n} \leq 1 \) on \([-1, 1] \), and \(\tilde{T}_{2n} \equiv 2T_{2n} \) on \(\mathbb{R}^1 \setminus [-1, 1] \). Now we set

\[
p^*_2(x) = \frac{1}{N} \sum_{j=1}^{N} \tilde{T}_{2n} \left(\left\langle \frac{x - A_j + B_j}{2}, u_j \right\rangle \right). \tag{13}
\]

Clearly, \(p^*_2 \in P^d_{2n} \). Moreover, we claim that \(|p^*_2| \leq 1 \) on \(K \), i.e., \(p^*_2 \in B_{2n}(K) \). Indeed, since \(K \) possesses parallel supporting hyperplanes at \(A_j \) and \(B_j \) with normal \(u_j \) we have (assuming, for instance that \(\langle A_j, u_j \rangle < \langle B_j, u_j \rangle \)) \(\langle A_j, u_j \rangle \leq \langle x, u_j \rangle \leq \langle B_j, u_j \rangle \), \(x \in K \). This easily implies

\[
\left| \left\langle \frac{x - A_j + B_j}{2}, u_j \right\rangle \right| \leq \left| \left\langle \frac{A_j - B_j}{2}, u_j \right\rangle \right|, \quad x \in K.
\]

Since \(|\tilde{T}_{2n}| \leq 1 \) on \([-1, 1] \) we obtain by (13) that \(p^*_2 \in B_{2n}(K) \). Now we need to show that \(p^*_2 \) satisfies (1) with a proper \(\gamma \). Consider an arbitrary \(p_2 \in B_{2n}(K) \) and \(x^* \in \mathbb{R}^d \setminus K \). By Lemma 1 there exists a line \(L \) passing through \(x^* \) with \(K \cap L = [A^*, B^*] \) such that \(K \) possesses parallel supporting hyperplanes at \(A^*, B^* \in \text{Bd} \ K \). As it was observed above we can choose this pair of hyperplanes \(H_{A^*}, H_{B^*} \) (keeping \(A^*, B^* \) fixed) so that some \(u_j \in \mathcal{U}(K) \), \(1 \leq j \leq N \), is the normal to these hyperplanes. Then by (6) using that \(x^*, A^*, B^* \in L \)

\[
as_K(x^*) = \frac{|x^* - A^* + B^*|}{|A^* - B^*|} = \frac{\left| \left\langle \frac{x^* - A^* + B^*}{2}, u_j \right\rangle \right|}{\left| \left\langle \frac{A^* - B^*}{2}, u_j \right\rangle \right|}. \tag{14}
\]
Recall that earlier we have already chosen \(A_j, B_j \) from the pair of hyperplanes \(H_{A_j^*}, H_{B_j^*} \) (with normal \(u_j \)). Hence without loss of generality, \(A^*, A_j \in H_{A^*}, B^*, B_j \in H_{B^*} \), i.e., \(A^* - A_j \) and \(B^* - B_j \) are normal to \(u_j \). Thus using (5), (14) and (13) we have for \(p_{2n} \in B_{2n}(K) \)
\[
|p_{2n}(x^*)| \leq T_{2n}(\sigma_K(x^*)) \leq 2\tilde{T}_{2n}(\sigma_K(x^*))
= 2\tilde{T}_{2n}\left(\frac{x^* - A_j + B_j}{2}, u_j\right) \leq 2Np_{2n}(x^*).
\]

Finally by (12) we arrive at estimate (3).

If remains to verify the sharper bound \(\gamma_{2n}(K) \leq f_{d-1}(K) \) in case when \(K \) is a central symmetric polytope. Assume that \(0 \) is the center of symmetry of \(K \). Clearly, \(K \) has \(M := f_{d-1}(K)/2 \) pairs of parallel \((d - 1)\)-dimensional faces. Denote by \(o_j \), \(1 \leq j \leq M \), the normals to these pairs of hyperplanes, and select any segments \([-A_j, A_j]\), \(1 \leq j \leq M \) with endpoints in these pairs of faces. Finally, set
\[
\hat{\rho}_{2n}(x) = \frac{1}{M} \sum_{j=1}^{M} \tilde{T}_{2n} \left(\frac{\langle x, o_j \rangle}{\langle A_j, o_j \rangle} \right).
\]

As above, it follow that \(\hat{\rho}_{2n} \in B_{2n}(K) \). Now, for any \(x^* \in \mathbb{R}^d \setminus K \) the line \(L := \{tx^* : t \in \mathbb{R}\} \) intersects \(\partial K \) at some points \(\pm B \) which belong to a pair of parallel \((d - 1)\)-dimensional faces of \(K \) with normal \(o_k \) for some \(1 \leq k \leq M \). Then \(B - A_k \perp o_k \) and proceeding as above we can show that for any \(p_{2n} \in B_{2n}(K) \)
\[
|p_{2n}(x^*)| \leq f_{d-1}(K) \hat{\rho}_{2n}(x^*), \text{ i.e., } \gamma_{2n}(K) \leq f_{d-1}(K).
\]

Proofs of Theorems 3 and 4. Now we proceed to proving Theorems 3 and 4. Their proofs are based on the "polytopal" estimate (3) for \(\gamma_{2n}(K) \) on one side, and some known results on the rate of approximation of convex bodies by polytopes. One such result proved in [3] (see also [4]) asserts that for any convex body \(K \in \mathbb{R}^d \) \((d \geq 2)\) and \(N \in \mathbb{N} \) there exists a polytope \(D \) with \(f_0(D) = N \) vertices so that
\[
\phi(K, D) \leq \frac{c}{N^{d/(d-1)}}, \tag{15}
\]
with an absolute constant \(c > 0 \). (Here as above \(\phi(K, D) \) stands for the Hausdorff distance between corresponding sets.) The approximating polytope \(D \) is constructed in [3] to be circumscribed to \(K \), it can be modified in an obvious way to be inscribed into \(K \). Moreover it is shown
in [2] that if K is C^2 then for any $M \in \mathbb{N}$ there exists an inscribed polytope D with $\max_{0 \leq j \leq d-1} f_j(D) \leq M$ such that

$$g(K, D) \leq \frac{c_1}{M^{2d-1}} \tag{16}$$

with some $c_1 > 0$ depending on K. In principle, (16) provides a stronger bound than (15) since it is known (see e.g. [8, p. 257]) that for any polytope D

$$f_j(D) \leq \epsilon(D) f_0(D)^{\frac{d-2}{2}} \quad 1 \leq j \leq d-1, \tag{17}$$

with some $\epsilon(d)$ depending only on d.

We shall also need the following well known corollary of Chebyshev Inequality (2): if $p_n \in P_n^j$ is a univariate polynomial and $|p_n| \leq 1$ on $[-1, 1]$ then

$$|p_n(t)| \leq e^{\epsilon \sqrt{\delta}}, \quad |t| \leq 1+\delta \quad (0 < \delta < 1) \tag{18}$$

with some absolute constant $c_0 > 0$.

After these preliminaries we turn to the proof of Theorem 3. Consider an arbitrary convex body K in \mathbb{R}^d ($d \geq 2$), and let $D \subseteq K$ be an inscribed polytope with $f_0(D) = N$ vertices so that (15) holds.

By estimate (3) of Theorem 2 and (17) we have

$$\#2_n(D) \leq c_1(d) N^{d-1} \tag{19}$$

Since $|p^*_n| \leq 1$ on $D \subseteq K$ it follows by (15) and (18) that

$$\|p^*_n\|_{C(K)} \leq \exp[c_2 n^{N/(1-d)}] \tag{20}$$

with some $c_2 > 0$ depending on d and K. Hence setting $N := \lceil n^{d-1} \rceil + 1$ and $\tilde{p}_{2n} := e^{-c_2} p^*_n$ we obtain by (20) that $|\tilde{p}_{2n}| \leq 1$ on K, i.e., $\tilde{p}_{2n} \in B_{2n}(K)$. Moreover, using (19) we have for every $p_{2n} \in B_{2n}(K) \subseteq B_{2n}(D)$ and $x \in (\mathbb{R}^d \setminus K) \subseteq (\mathbb{R}^d \setminus D)$

$$|p_{2n}(x)| \leq c_1(d) e^{c_2 N^{d-1}} |\tilde{p}_{2n}(x)| \leq c_3 n^{d-1} |\tilde{p}_{2n}(x)|.$$

This verifies the upper bound (4) of Theorem 3.

The proof of Theorem 4 follows similarly by using estimate (16) with $M = \max_{0 \leq j \leq d-1} f_j(D)$ instead of (15). This together with (3) yields the bound $\gamma_{2n}(D) = O(M^2)$. Finally, setting $M := \lceil n^{d-1} \rceil + 1$ we arrive at $\gamma_{2n}(K) = O(n^{2d-1})$. This completes the proof of Theorems 3 and 4.

\[\Box\]
Remark. It can be shown that when K is central symmetric the approximating polytopes satisfying (15) and (16) can also be chosen to be central symmetric. Moreover, for central symmetric polytopes D by Theorem 2 the sharper estimate $\gamma_2(D) \leq f_{\rho_{d-1}}(D)$ holds. This bound leads to an improvement of the above estimates for $\gamma_2(K)$. Indeed similarly to the proofs of Theorems 3 and 4 we can verify that in this case $\gamma_2(K) = O(n^{d-1}/2)$, and $\gamma_2(K) = O(n^{d-1})$ if, in addition, K is also C^2.

Proof of Theorem 5. Consider an arbitrary point x^* on the boundary of convex body K. Let $p_{2n}^* \in B_{2d}(K)$ be a universal majorant in $B_{2d}(K)$. Then by Theorem 3

$$|p_{2n}(x)| \leq cn^{d(d-1)} |p_{2n}^*(x)|, \quad p_{2n} \in B_{2d}(K), \quad x \in \mathbb{R}^d \setminus K. \quad (21)$$

We claim that there exists a point $\xi \in \mathbb{R}^d$ with $|x^* - \xi| = O((\frac{1}{n^{d-1}})^2)$ such that $|p_{2n}^*(\xi)| = 1$. In order to show this assume that $|p_{2n}^*| \leq 1$ in some ball $B_d(x^*)$ with center at x^* and radius $\delta > 0$. Our claim will follow if we verify that such a δ must satisfy $\delta \leq c(\log n/n)^2$ for some $c > 0$ independent of n. There exists $y^* \in B_d K$ such that K possesses parallel supporting hyperplanes at x^* and y^* with a normal $u^* \in S^{d-1}$. Let L be the line through x^* and y^*. We may assume that $|x^* - y^*| = 2$. (Clearly, $|x^* - y^*| \geq o_d(K)$, where $o_d(K)$ is the minimal distance between parallel supporting hyperplanes to K. Moreover $|x^* - y^*| \leq d(K) := \max \{|x - y| : x, y \in K\}$.) Set now $x_j := (1 + j\delta/2) x^* - j\delta y^* / 2, \quad j = 1, 2$. Evidently, $x_1, x_2 \in L \setminus K$, $|x_1 - x^*| = \delta$, and $|x_2 - x^*| = 2\delta$.

Consider the polynomial

$$p_{2n}(x) := T_{2n} \left(\begin{array}{c} x \cdot \frac{x^* + y^*}{2}, u^* \end{array} \right).$$

As in the proof of Theorem 2 it can be shown that $|p_{2n}| \leq 1$ on K, i.e., $p_{2n} \in B_{2d}(K)$. Then by (21) for $x_j \in \mathbb{R}^d \setminus K$

$$|p_{2n}^*(x_j)| \geq \frac{|p_{2n}(x_j)|}{cn^{d(d-1)}} = \frac{T_{2n}(1 + 2\delta)}{cn^{d(d-1)}}. \quad (22)$$

On the other hand since $|x^* - x_j| = \delta$ and $|p_{2n}^*| \leq 1$ on $B_d(x^*) \cup K$, we obtain, in particular, that $|p_{2n}^*| \leq 1$ on $[y^*, x_1]$, where $|y^* - x_1| = (1 + \frac{\delta}{2}) |x^* - y^*| = 2 + \delta$. Recall, that $y^*, x_1, x_2 \in L$ where $|(y^* + x_1)/2 - x_2| = 1 + 3\delta/2$. Now, applying (2) to the univariate polynomial
\[
p^*_n(t(x_1 - y^*) + x_1) \in B_d([y^*, x_1]), \quad |x_1 - y^*| = 2 + \delta,
\]
at the point \(x_2 \) with \(|(x_1 + y^*)/2 - x_2| = 1 + 3\delta/2 \) yields
\[
|p^*_n(x_2)| \leq T_{2d}(1 + \delta).
\]
This together with (22) implies
\[
ct^{d-1}T_{2d}(1 + \delta) \geq T_{2d}(1 + 2\delta).
\] \hfill (23)
Furthermore, it is well known (see [1, p. 30]) that
\[
\frac{1}{2}(t + \sqrt{t^2 - 1})^n \leq T_{2d}(t) \leq (t + \sqrt{t^2 - 1})^n, \quad t > 1.
\]
This and (23) yield for \(0 < \delta \leq \delta_0 \)
\[
ct^{d-1}(1 + \sqrt{3\delta})^n \geq \frac{1}{2}(1 + 2\sqrt{\delta})^n.
\]
Hence
\[
1 + c_d \frac{\log n}{n} \geq (2ct^{d-1})^{1/2n} \geq \frac{1 + 2\sqrt{\delta}}{1 + \sqrt{3\delta}} \geq 1 + c_0 \sqrt{\delta},
\]
i.e. we obtain that \(\delta = O((\log n)^2) \). Thus since \(|p^*_n(x^*)| \leq 1 \) there exists \(\tilde{x} \) such that \(|x^* - \tilde{x}| = O((\log n/n)^2) \) and \(|p^*_n(\tilde{x})| = 1 \). Consider now the polynomial \(g_{4n} = (p^*_n)^2 - 1 \in P_{4n}^d \). As we have shown above for every \(x^* \in \text{Bd} K \) there exists an \(\tilde{x} \) such that \(g_{4n}(\tilde{x}) = 0 \) and \(|x^* - \tilde{x}| \leq c(\log n/n)^2 \). This concludes the proof.

SOME OPEN PROBLEMS

The results proved above provide some insight on the magnitude of \(\gamma_{2d}(K) \), but a number of questions remains open. Namely it would be interesting to determine for what convex bodies \(K \)
\[
\sup_{n \in \mathbb{N}} \gamma_{2d}(K) < \infty.
\] \hfill (24)
We have seen above that (24) holds for ellipsoids and polytopes. Using similar methods we can verify that (24) is true for finite intersections of central-symmetric polytopes and ellipsoids having the same center. This means that (24) holds not only for ellipsoids and polytopes. Is (24) true for
every convex body $K \subset \mathbb{R}^d$. Another open problem consists in characterizing those compact sets $K \subset \mathbb{R}^d$ for which $\gamma_{2n}(K)$ has subexponential growth, i.e.,

$$\limsup_{n \to \infty} \gamma_{2n}(K)^{1/n} = 1.$$ \hspace{1cm} (25)

Theorem 3 implies, in particular, that (25) holds for every convex body $K \subset \mathbb{R}^d$.

REFERENCES

2. K. Boróczky, Jr., Polytopal approximation bounding the number of k-faces, manuscript.