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The present work is concerned with the study of the mechanical behavior of polytetra-
fluoroethylene (PTFE) in tensile tests performed under different strain rates using standard
specimens. The strains are measured through a non-contact video extensometer. This
procedure is particularly accurate since large deformations are involved. A mathematical
model is proposed to predict the mechanical behavior observed in the experiments. The
main goal is to predict the stress-strain curve under different strain rates using model
equations that combine enough mathematical simplicity to allow their use in engineering
problems with the capability of describing complex non-linear mechanical behaviour. The
material constants that appear in the model equations can be easily identified from only
three tests performed at different constant strain rates. Results from experimental tensile
testing were compared with the model predictions showing a good agreement.

� 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction temperature-dependent behavior of polymers has been
In recent years polytetrafluoroethylene (PTFE) has
received considerable attention due to its special physical
characteristics such as high melting point, very good resis-
tance against chemicals and extremely low friction. The
complex nonlinear behaviour of polytetrafluoroethylene
remains one of the most severe limitations for its evenwider
use in the chemical and petrochemical industries. PTFE
specimens have been tested in compression and tension at
differing strain rates and temperatures [1,2]. Experimental
tests of relaxation in tension of PTFE were developed and the
results comparedwith the prediction ofMaxwell’smodel [3].
Ratcheting behavior of PTFE has been investigated at room
and elevated temperatures [4,5]. A single specimen normali-
zation technique was employed to evaluate the J-integral
fracture toughness of PTFE for a range of temperatures and
loading rates [6]. Several constitutive models have been
proposed to predict the complex mechanical behavior of
thermoplastic and thermoset materials. Strain rate and
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described bymeans of constitutivemodels [7–13]. Also, some
studies were made to report deformation damage in solid
polymers [14–17]. The mechanical behavior of polymers
under high strain rates has been presented in the literature
[18–20]. Mechanical characterization of PTFE using a non-
contact and full-field optical method has been proposed [21].

The combined effect of rate dependency and very large
inelastic deformations can be extremely complex. The
mechanisms proposed so far to explain microscopically the
material behavior are not able to elucidate all aspects of these
coupledphenomena. In a certain sense, thematerial behavior
of PTFE can be considered superplastic. A wide class of
materials - metals, ceramics, intermetalics, nanocrystaline,
polymer, etc - show superplastic behavior under special
processing conditions. The most important characteristic of
a superplasticmaterial is its high strain rate sensitivityofflow
stress that confers a high resistance to neck development and
results in the high tensile elongations characteristic of
superplastic behavior. Superplastically deformed material in
tensile tests gets thinner in a very uniform manner, rather
than forming a ’neck’ (a local narrowing), which leads to
fracture [22].
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Fig. 2. Experimental non-contact arrangement.
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Although, up to now, there is no precise physical defini-
tion of superplasticity phenomenon in polymeric materials;
from a phenomenological point of view, superplasticity can
be defined as very high deformations prior to local failure. In
the case of tensile tests under controlled strain rate, this
means very high elongations of the specimens before
rupture. Despite the lack of definition of any fundamental
mechanism for superplastic behavior, the evaluation of the
influence of strain rate on superplastic properties of a poly-
mer sheet material is a basic requirement for its economical
use. Thisobjective is accomplishedby the executionof a set of
tensile tests at different rates.

The purpose of this work is to propose a mathematical
model for describingmechanical behavior of PTFE in tensile
loading under different strain rates. The (large) strain
measures obtained using a non-contact video extensometer
are used as input to the control system of the testing
machine. A theoretical model is proposed that is based on
classical saturation and power lawmodels. The main goal is
to predict the stress-strain curve under different strain rates
using model equations that combine enough mathematical
simplicity to allow their use in engineering problems with
the capability of describing complex non-linear mechanical
behavior. Also, the experimental identification of the
parameters that appear in the model must be as simple as
possible. The material constants that appear in the model
equations can be easily identified from only three tests
performed at different constant strain rates. It is interesting
to note that these model equations can be obtained within
a thermodynamic context similar to that done by Costa
Mattos et al. in [23–25] for different kinds of structure under
tensile loading. The main contribution of this work is to
present a simple but reliable alternative approach to predict
the mechanical behavior of PTFE at different strain rates.

It is also important to note that the present study is
mainly focused on the influence of the strain rate on the
material response in tensile tests performed at room
temperature and it is not the goal to discuss the micro-
scopic mechanisms involved.

2. Experimental

2.1. Material

The material used in this investigation is a commercially
available PTFE (DuPont Teflon�), which is characterized by
a density of 2.18 � 103 kg/m3 and a melting temperature
about 327 �C.

The standard tension test specimens were manufac-
tured from PTFE with shape and size specified by ASTM D-
638-08 (Type I) [26]. The initial gage length l0 and initial
cross section A0 are, respectively, 50 mm and 26 mm2

(13 mm � 2 mm) as illustrated in Fig. 1.
Fig. 1. Standard tension test specimen dimensions.
2.2. Tensile test procedure

Tensile tests were performed using an electro-
mechanical Shimadzu AG-X universal testing machine.
The gauge length elongation of PTFE specimens was
measured using an optical method. The experimental non-
contact method is based on two CCD cameras, as illus-
trated in Fig. 2. The video extensometers produce a real time
imageof the useful portionof the specimen,which is used to
measure the elongation of the gauge length. It is important
to emphasize that all experiments were carried out at room
temperature, i.e., 25 �C. The engineering strain rates
(6.0�10�4, 7.7�10�2, 9.2�10�2 and1.3�10�1 s�1, see next
section) were controlled by using the measured elongation
as input to the control system of the testing machine.

3. Results and discussion

3.1. True and engineering relationship definitions

Using prescribed elongation DlðtÞ and applied force F(t)
experimentally measured, in addition to the initial gage
length l0 and initial cross section A0, the engineering strain
e and the engineering stress s are given by
Fig. 3. Engineering stress-strain curve.



Fig. 4. True stress-strain curve.

Fig. 5. Schematic representation of stress-strain and slope curves: definition
of 3

� .

Fig. 6. Large deformations observation of th
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eðtÞ ¼ DlðtÞ
and sðtÞ ¼ FðtÞ

(1)

l0 A0

With constant volume, the true strain and true stress as
a function of e and s are defined as

3¼ lnð1þ eÞ and s ¼ sð1þ eÞ (2)

Figs. 3 and 4 illustrate engineering and true stress-strain
curves of PTFE for different constant engineering strain
rates: _e1 ¼ 6:0� 10�4, _e2 ¼ 7:7� 10�2, _e3 ¼ 9:2� 10�2,
_e4 ¼ 1:3� 10�1s�1. These results were obtained from
experimental data using Eqs. (1) and (2). The curves show
a strong strain rate dependency, in which the flow stress
increases with strain rate.

Disregarding the small strain region ( 3< 4%), for all
cases, the true stress-strain curve has three distinct
regions: (i) region I, initially v2s=v 32 is high, however it
gradually decreases; (ii) region II, where v2s=v 32 tends to

zero and (iii) region III,
v2s

v 32
increases again (see Fig. 5). Fig. 5

illustrates a schematic representation of the true
stress-strain curve and the slope of this curve, inwhich 3

�
is

defined as the strain value associated with the transition
between region II and region III. Experimentally, it is
observed that 3

�
is not very sensitive to the strain rate and,

thus, it can be assumed as a material constant.
One of the characteristics of PTFE is to present large

deformations under tension prior to local failure. Fig. 6
illustrates a sequence of images of a typical PTFE specimen
under monotonic loading until failure. Specimen deforma-
tion is very homogeneous. The high strain rate sensitivity of
flow stress confers a high resistance to neck development:
the specimen gets thinner in a very uniformmanner, rather
than forming a ’neck’. In general, failure is localized and
characterized by a crack perpendicular to the tensile axis.
3.2. Modeling

In this section, a phenomenological constitutive model
for polytetrafluoroethylene in tensile loading is introduced.
The proposed mathematical model is divided into two
parts: the first part is defined by a true strain range varying
e PTFE specimen under tensile loads.



Fig. 7. True stress-strain curves and slope for different engineering strain rates: (a) 6.0 � 10�4 s�1, (b) 7.7 � 10�2 s�1, (c) 9.2 � 10�2 s�1and (d) 1.3 � 10�1 s�1.
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from 0 to 3
� , while the second one is taken for true strain

value larger than 3
�
.

In order to find an adequate expression to model the
mechanical behavior of PTFE under tensile loading per-
formed at different strain rates, the followingmathematical
model is proposed,

s ¼
(
sf ð 3; _3Þf½1� expð�b 3Þ� þ KI 3ng 0 < 3� 3

�

s
�
f þ KIIð 3� 3

� Þm; 3> 3
� (3)

The first part of the mathematical model proposed is
based on a saturation model, where b is defined as a posi-
tive material constant. The rate dependency is described
Table 1
Results of first part for strain values less than 3

�
.

Engineering
strain-rate _e(s�1)

sf (MPa) b KI (MPa) n

6 � 10�4 9.6 160 2.83 1.247
7.7 � 10�2 12.38 320.8 3.056 1.427
9.2 � 10�2 12.88 542.9 3.223 1.403
1.3 � 10�1 14.78 243.2 3.018 1.413
through the flow stresssf , which is supposed to be given by
the following expression:

sf

�
_3; 3

� ¼ A_3expð 3Þ þ B (4)

where A and B are constants to be determined.
In addition to this expression, a power law is considered

with strength coefficient and strain-hardening exponent KI

and n, respectively. It is important to note that KI and n are
assumed to be associated with stretch of non-oriented
molecular chains. The second part of the mathematical
modeling proposed is defined by the strength coefficient KII

and the strain-hardening exponent m, in this case these
Table 2
Results of second part for strain values large than 3

�
.

Engineering
strain-rate _e(s�1)

sf *(MPa) KII (MPa) m

6 � 10�4 30.74 110.9 1.4
7.7 � 10�2 40.07
9.2 � 10�2 44
1.3 � 10�1 47.84



Fig. 8. Experimental and model true stress-strain curve for different strain
rates: (0 < 3� 3

� ).
Fig. 10. True flow stress as a function of engineering strain rate.
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two parameters are related to oriented molecular chains.
By definition, s

�
f ¼ sð 3

� Þ.

3.3. Parameters identification

As mentioned in the previous section, the proposed
model (see Eq. (3)), can be divided into two parts, where the
parameter 3

� must be determined first. For estimating this
parameter, the last transition point (transition between
region II and III) from the slope of true stress-strain curvewas
taken into account. Fig. 7(a–d) show the experimental data of
true stress-strain curves and the relative slopes for different
constant engineering strain rates. The value of 3

�
is assumed

approximately equal to 0.8 for all cases. Note that in Fig. 7(b)
and (c), the rupture occurs immediately after this value.

The next step is to estimate the parameters:
sf ; b;KI and n from the first part of Eq. (3) and s

�
f ;KII and m

from the second part for each engineering strain rate. In
order to do this, all parameters were estimated using the
Levenberg–Marquardt method [27–29], which is a well-
known and powerful iterative method for solving
Fig. 9. Experimental and model true stress-strain curve for different strain
rates: 3> 3

�

nonlinear least squares problems of parameter estimation.
These parameters, for different engineering strain rates, are
displayed in Tables 1 and 2.

Experimental data and the proposed model considering
all estimated parameters are plotted in Figs. 8 and 9.
However, it is suggested for practical purposes to consider
b, KI and n as material constants. For this reason, it is sug-
gested to consider the mean values of these parameters, i.e,
bm ¼ 317, KIm ¼ 3.12MPa, n ¼ 1.4.

The rate dependency is included in the modeling
through sf and using Eq. (4). It is important to observe that,
from Eq (2), the relation between engineering and true
strain rates is given by

_3¼ _e
1þ e

¼ _e
expð 3Þ or _e ¼ _3expð 3Þ (5)

Therefore, Eq. (4) can be rewritten in the form

s
�
_3; 3

� ¼ s
�
_e
� ¼ A _eþ B (6)
Fig. 11. Experimental and adjusted model true stress-strain curve for
different strain rates.
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Fig. 10 illustrates both experimental data and model
prediction, where it is found that A ¼ 39 MPas and
B ¼ 9.5 MPa.

3.4. Validation

In order to validate the proposed model, the experi-
mental data are compared with model predictions
considering bm ¼ 317, KIm ¼ 3.12MPa, n ¼ 1.4, A ¼ 39MPas
and B ¼ 9.5MPa. Four different strain rates are considered:
_e1 ¼ 6:0� 10�4, _e2 ¼ 7:7� 10�2, _e3 ¼ 9:2� 10�2,
_e4 ¼ 1:3� 10�1s�1.

Clearly, fromthe results shown in Fig.11, good agreement
can be seen between experimental data and the proposed
model using estimated parameters. The small discrepancy
can be attributed to material response, which is very
complex. Moreover, it is important to emphasize that with
only three tests, considering three different strain rates, are
sufficient to predict the mechanical behavior of the PTFE.

4. Conclusions

The strain rate dependency of polytetrafluoroethylene
(PTFE) specimens in tensile tests was analyzed. The large
deformations were measured using a non-contact optical
extensometer. Monotonic tests performed under controlled
engineering strain rates were performed. An alternative
mathematical model was proposed for predicting the
mechanicalbehavior. It is interesting tonote that thesemodel
equations can be obtained within a thermodynamic con-
text in a similarmanner to that done by CostaMattos et al. in
[22–25] for different mechanical applications. The proposed
model assumes that the material response can be split into
two parts. Only three tests performed with different
controlled strain rates are necessary to identify all material
constants that appear in the theory. The main goal is to use
the model to obtain the maximum information about the
macroscopic properties of polytetrafluoroethylene speci-
mens in tensile tests performed at room temperature with
different strain rates from aminimum set of laboratory tests,
saving time and reducing experimental costs.
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