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ABSTRACT Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength
may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of
the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor
pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force
cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original
analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first
time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing
the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending
elastic regime in both hyper- and hypotonic conditions.
INTRODUCTION
A plant cell wall is a composite polymeric structure made of
very stiff and high-persistence-length cellulose microfibrils
coated with heteroglycans (hemicelluloses such as xyloglu-
can), which are themselves embedded in a dense, hydrated
matrix of various neutral and acidic polysaccharides with
protein scaffolds. This maintains the cell wall’s cohesion
(1–3). Although mammalian cells also have a cross-linked
actin network cortex that coats the internal plasma mem-
brane and acts as a physical barrier for the penetration of
sharp cantilevers, a much wider variety of mechanical prop-
erties can be achieved by plant cells as related to the tissue
function and its environment. For instance, creep, stress
relaxation, and hysteresis of load-retract curves all reflect
the complex viscoelastic behavior of plant cell walls, apart
from the fact that this property may also gradually change
from inside to outside, depending on the aging of the cell
(4). The morphology and growth behavior of a plant cell
is driven by the hydrostatic turgor pressure that pushes
and stretches the wall by way of its cellulosic matrix relax-
ation. Typical turgor pressures in plants are ~0.3–1.0 MPa,
which is a range that translates to between 10 and 100
MPa of tensile stress in the walls (5). This tensile stress
within the wall is a function of the cell curvature, the wall
thickness Hw, and the pressure drop across the wall (6).
Different methods have been designed over the past decades
to characterize the single-cell-wall elastic modulus through
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global compression (7,8) or bending strain (9) experiments.
The mechanical properties of single plant cells were also
tracked down locally, with nanotipped indentation systems
provided by an atomic force microscope (AFM) (10–17)
or by cellular force microscopes (18,19).

The mechanical characterization of a single plant cell
with an AFM cantilever depends on the tip shape. As for an-
imal cells, large spherical indenters are better suited to cap-
ture the internal pressure of the cell, whereas sharp conical
or pyramidal tips are more appropriate for characterizing the
local mechanics of the wall (15,17). This latter tip geometry
has been chosen in this work to study single-cell-wall
mechanics from Arabidopsis thaliana root calli. Working
with single plant cells of small size makes AFM measure-
ments trickier for two reasons (15): the first one is due to
the very low adhesion and spreading of these cells on solid
surfaces traditionally used for animal cells. The second one
is the lack of knowledge of both cell-wall thickness and
tension in single cells. Moreover, classical analysis of
AFM force curves requires a good determination of the con-
tact point at the surface of the cell—not always easy to
achieve. To help solving these issues, we develop here an
original wavelet-based analysis of the force-indentation
curves that reveals a succession of power-law mechanical
responses encountered by the AFM cantilever during the
cell penetration by the cantilever tip. These power-law
responses include an intermediate regime of interest that
accounts for the wall stretching and/or bending from which
we can extract information about cell-wall thickness and
tension. We show that this wavelet-based analysis does
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FIGURE 1 (a) Bright-field microscopy of a single cell from A. thaliana

root callus; the scale bar is 25 mm. (b) Untreated force curves recorded in

liquid on the bottom of a petri dish (black line) and on a single cell:

(blue line) loading force curve; (red) unloading curve. The slope of the

black line corresponds to the cantilever spring constant k; this slope k

is used to correct the force curves (see text). To see this figure in color,

go online.
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not need the knowledge of the contact point to efficiently
capture nonlinear departures from the expected linear
behavior for an elastic shell of a turgescent cell. Beyond
investigating the statistical distributions of the cell-wall
effective tension and maximum sustainable stress upon
penetration, we also develop a much deeper insight on the
mechanics of single plant cells, comparing turgescent cells
with hypo- and hyperosmotic culture media cells. It appears
from these experiments that when the turgor pressure is
reduced (hypertonic medium), the wall tension decreases
and even if the whole cell shape seems to be conserved,
the cell-wall mechanics is damaged. When increasing the
turgor pressure (hypotonic medium), the stretching of the
cell wall also changes its viscoelastic response, splitting
the mechanical response into two new regimes, below and
above the original scaling regime that was observed with
turgescent cells. Both hyper- and hypotonic media produce
a decrease of single-cell effective tension. We further show
that the cell-wall mechanical responses vary dramatically
from cell to cell and from point to point on single cells,
and we illustrate this inhomogeneous distribution on the
surface of these cells by cellulose fluorescence staining.
MATERIALS AND METHODS

Single cell preparation

Single cells were separated from undifferentiated calli derived from

A. thaliana Wassilewskija (WS-2) 35S GFP-MBD (green fluorescent

protein microtubule binding domain marker) plants (14,20). Calli were

grown on 4.4 g/L of MSARI-modified medium (Murashige & Skoog media

with vitamins, Cat. No. M0222), 30 g/L of sucrose (Cat. No. S08069),

KOH, and plant agar (Cat. No. P1001) from Duchefa Biochemie,

Amsterdam, The Netherlands; and 500 mg/L of MES (Cat. No. M8250),

0.5 mg/L of 2,4D (Cat. No. D7299), 2 mg/L of IAA (Cat. No. I2886),

and 7 g/L 2iPRiboside (Cat. No. D7257) from Sigma-Aldrich (Saint-Quen-

tin Fallavier, France), pH 5.8 at 25�C and transferred every 15–20 days.

Three-to-four callus pieces were placed in MS solution containing 4.4 g/L

of Murashige & Skoog media with vitamins (Cat. No. M0222) and 30 g/L

sucrose (Cat. No. S0809) from Duchefa Biochemie (Haarlem, The

Netherlands), and 500 mg/L of MES (Cat. No. M8250; Sigma-Aldrich),

pH 5.8 with KOH. After 4 h of constant agitation at 200 rpm, the cells

were filtered with a 100-mm nylon mesh. The cells in MS solution were

then allowed to settle down on petri dishes precoated with poly-L-lysine

(50 mg/mL) and placed under the AFM microscope. Once isolated from

their tissues, these cells acquire different morphologies, transitioning

from spherical to tubular shapes. For the purpose of analysis, we preferen-

tially selected cells with spherical shapes (Fig. 1 a) and performed the

force-indentation experiments at the cell centers to prevent a lateral slipping

while indenting. To generate hyperosmotic stress, 1 mL of a 1 mol/L

mannitol solution was added to 5 mL of MS solution containing the cells

to produce the cell plasmolysis. On the opposite, hypoosmotic stress was

generated by the addition of 2 mL water to 5 mL of MS solution containing

the cells.
Atomic force microscopy

Force curves on isolated cells were recorded with two different systems: a

Bioscope Catalyst (Bruker, Palaiseau, France and Coventry, UK) mounted

on a fluorescent macroscope and a CellHesion 15–200-mm motorized stage
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(JPK Instruments, Berlin, Germany) mounted on an inverted microscope in

contact mode. We used model No. MPP-12220 triangular shape cantilevers

with a nominal spring constant of k ¼ 5 N/m (Bruker) with a sweeping

velocity of 1 mm/s. Force curves recorded on the bottom of a petri dish con-

taining the MS solution were used to calibrate the deflection sensitivity of

the cantilever in liquid. The effective spring constant k of these cantilevers

was estimated in between 2 and 3 N/m by directly recording their free fluc-

tuations in MS solution, computing their power spectrum distribution, and

fitting these curves with Lorentzian distributions (21–23).

Force-displacement curves were reconstructed from AFM cantilever

deflection signals recorded during the decrease of the vertical position Zk
of the cantilever with respect to the sample surface Zs. When the tip of

the cantilever comes precisely into cell contact without being deflected

(zero contact force), Zk ¼ Zk0. Once the cell is deformed by the cantilever

Zk< Zk0, the difference DZk¼ Zk0 – Zk is given by the sum of the cell defor-

mation dC ¼ hC0 – hC and the ratio of the force F over the cantilever spring

constant k (24) as

Zk0 � Zk ¼ hC0
� hC þ F=k: (1)
in red) is shown in Fig. 1 b. On the right side of these curves, the canti-

lever is not yet in contact with the cell, so the force F does not change.
A typical set of force curves (approach curve in blue and retraction curve

When the cantilever comes into contact with the cell surface, the force

curve abruptly changes its curvature and increases progressively as the

cell is deformed by the penetration of the cantilever tip. The nominal

spring constant of the cantilever (k ¼ 5 nN/nm) was chosen large enough

for the cantilever deflection to be small compared to the cell deformation.

This is illustrated by the black force curve in Fig. 1 b recorded on a stiff

glass coverslip, it corresponds to the correction term dk ¼ F/k in Eq. 1.

The loading (blue) and unloading (red) force curves do not overlap in

Fig. 1 b, suggesting a partial viscous-loss during this single cell indenta-

tion (12,13,25). This slight discrepancy of loading and unloading force

curves has been observed in all experiments performed in this work. In

the sequel of this article, we will exclusively focus on the loading force

curves.

We collected 3457 force curves from 92 A. thaliana cells in three

different media (60 cells in MS solution, 20 cells in MS solutionþmannitol

and 12 cells in MS solution þ water). We checked that the cantilever

stiffness was chosen adequately to be much larger (at least three times)

than the cell rigidity. All the curves were corrected, taking into account

the cantilever stiffness. When the range of the indentation length (Zk) was

<150 nm, we kept the force curves with a large enough (>0.3 in log10su0)

scaling domain for the computation of the b-exponent (obtained by plotting

Tg(2)[F](ZkM, S) along the WT maxima line ZkM(s), as described below).
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Confocal microscopy

Single cells in MS solution were stained using Pontamine Fast Scarlet 4B

(Aldrich Rare Chemicals Library S479896; Sigma-Aldrich,) according

to Anderson et al. (4). GFP and Pontamine Fast Scarlet 4B signals were

detected using a model No. LSM700 confocal microscope (Zeiss, Jena,

Germany) equipped with a 488-nm laser (to detect GFP signal) and a

555-nm laser (to detect Pontamine fast scarlet signal). Z-confocal series

were recorded using a 40� water immersion objective and a 500-nm

step size. The images and the three-dimensional z-stack projection were

analyzed using the software IMAGEJ (National Institutes of Health,

Bethesda, MD).
a b

c d

FIGURE 2 Computation of the first and second derivatives of a piece-

wise linear function using the WT method with a Gaussian function

(sw0 ¼ 10 nm). (a) The original force curve. (b) Tg(0)[F](Zk – Zk0, s ¼ 1),
RESULTS

A wavelet-based method to analyze
force-indentation curves

The continuous wavelet transform (WT) is a mathematical
technique introduced in signal analysis in the 1980s (26).
Since then, it has been the subject of considerable theoret-
ical developments and practical applications in many do-
mains (27–31). In particular in the context of this study,
the WT has been applied to characterize AFM images of
rough surfaces (32) and to image living cells via diffraction
phase microscopy (33). It has proved very efficient to esti-
mate scaling exponents and multifractal spectra (34–38).
Within the norm L1, the one-dimensional WT of a signal
F(x) reads

Wj½F�ðb; sÞ ¼ 1

s

Z N

�N

FðxÞj�
�
x � b

s

�
dx; (2)

where b is a position and s (>0) is a scale parameter (see the
Supporting Material for further explanation).

The interest of the WT method is twofold. The first
advantage is to use the same smoothing function to filter
out the experimental background noise and to compute
first- and second-order derivatives with the same smoothing
characteristic scale. The second advantage relies on the
powerfulness of the WT to detect singularities in a signal
(29,30,34,35) and to quantify their force via the estimate
of the local Hölder exponent from the behavior across scales
of the WT modulus maxima (WTMM) (29–31,34–38). If
the wavelet has a compact support, it is straightforward to
show that the WT of F, Wj[F](x0, s), depends upon the
values of F(x) in a neighborhood of x0 of size proportional
to the scale s. More generally, for any admissible analyzing
wavelet j, one can show that if F(x) behaves as (x – x0)

h in
the neighborhood of x0, then the WT of F behaves as a
power law of the scale with the exponent h (34,35):

��Wj½F�ðx0; sÞjfAsh: (3)

This relation defines how jWj [F](x0, s)j decays when the
where Zk0 corresponds to Tcontact ¼ 10�4 nN/nm (see text). (c) Tg(1)[F]

(Zk – Zk0, s ¼ 1) in nN/nm. (d) Tg(2)[F](Zk – Zk0, s ¼ 1) in MPa. To see

this figure in color, go online.
scale s goes to zero. From the WT, we can therefore recover
the local Hölder exponent of the function F, via a simple
linear regression fit in a logarithmic representation.
In this study, we use modified versions of the definition
(Eq. 2) of the WT that give directly a measure of F in nano-
Newtons, dF/dZ in nN/nm and d2F/dZ2 in Pascal, once
smoothed by a Gaussian window (g(0) (x)) of width s,

Tgð0Þ ½F�ðb; sÞ ¼ Wgð0Þ ½F�ðb; sÞ; (4)

T ð1Þ ½F�ðb; sÞ ¼ 1
W ð1Þ ½F�ðb; sÞ; (5)
g s g

T ð2Þ ½F�ðb; sÞ ¼ 1
W ð2Þ ½F�ðb; sÞ; (6)
g s2 g

where g(1)(x) and g(2)(x) are the first- and second-order
(0)
derivatives of g (x) (Supporting Material). Then the local

power-law exponent extracted from the WT (Eq. 3) is
shifted by �1 or �2, for the first- and second-order deriva-
tives, respectively:

TgðiÞ ½F�ðx0; sÞfAsh�i: (7)

For illustration, let us consider a piecewise linear function

F (Fig. 2 a):

FðZkÞ ¼ aZk for Zk<Z0;
FðZkÞ ¼ 0 for ZkRZ0;

(8)

with a > 0. This function is continuous, but its first deriva-

tive is discontinuous (jumping from a to 0) at Zk¼ Z0 and its
second derivative is a Dirac delta distribution. In Fig. 2 are
Biophysical Journal 108(9) 2235–2248
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illustrated the twoWTs of F computed at the scale s¼ 1 in a
w0 ¼ 10 nm unit, using Eqs. 5 (Fig. 2 c) and 6 (Fig. 2 d),
respectively. The value w0 is a constant value that corre-
sponds to the minimum wavelet size used in this study
(s ¼ 1). The jump in the first derivative of F and the sharp
peak (Dirac) in the second derivative of F at Zk ¼ Z0 are
smoothed by the Gaussian of width sw0 ¼ 10 nm. In this
theoretical example, we perfectly know the contact point
Zk0 ¼ Z0, which is a crucial issue in experimental situations.
Indeed the determination of Zk0 is a major limitation that
groups working on AFM have been facing for more than
a decade in their interpretations of experimental noisy
force-indentation curves (14,15,39–43). The wavelet-based
analysis that we propose here allows us to overcome this
difficulty, by simultaneous smoothing out the noise and
thresholding the force curve slope Tg(1)[F](Z, s ¼ 1) at the
value Tcontact beyond the contact defined at Zk0:

Tgð1Þ ½F�ðZk0; s ¼ 1Þ ¼ Tcontact: (9)

For the piecewise linear model in Fig. 2, we used
�4
Tconnect ¼ �10 nN/nm, leading to a value of Zk0 slightly

above Z0 because the center of the jump in Tg(1)[F] in
Fig. 2 c and the position of the peak in Tg(2)[F] in Fig. 2 d
are slightly shifted toward negative Zk � Zk0 values.

To estimate the Hölder exponent of F at the discontinuity
point Zk0 of dF/dZ, we simply need to plot Tg(2)[F](ZkM, s)
along the WT maxima line ZkM(s) (Fig. 3). Fig. 3 a
shows the color-coded image of Tg(2)[F](b,s) in the
(b,s) half-plane, together with the so-called maxima line
(plotted in red) defined by the WTMM obtained at each
scale s (34,35). Along the maxima line, we should recover
the predicted scaling law Tg(2)[F](ZkM, s) f sb with b ¼
h – 2¼�1 (Eq. 7). This is verified in Fig. 3 c, when plotting
Tg(2)[F](ZkM, s) versus sw0 in a logarithmic representation
where, by linear regression fit, we get an estimate of the
exponent b ¼ �1.002 5 0.005, consistent with the theoret-
ical prediction for a Dirac delta distribution. The scaling law
Tg(2)[F](ZkM, s) f s�1 is actually observed over the whole
range of scales 10 < sw0 < 800 nm. Let us point out
that when fitting instead log10Tg(0)[F](Zk0 – Zk) versus
log10[Zk0 – Zk] as commonly performed in the literature
(39,41), we do not recover correctly a slope h ¼ þ1 due
Biophysical Journal 108(9) 2235–2248
to the sensitivity of this curve to the choice of the contact
point Zk0. For instance, taking Zk0 such that jTg(1)[F]
(Zk0, s ¼ 1)¼ �10�4j nN/nm (Fig. 3 b), we do not get
nice scaling and the expected h ¼ þ1 exponent is only
guessed at very large indentations. Because the WTMM
method amounts to tracing the local singularity across
scales without a priori knowledge of the contact point Zk0,
where the maxima line is expected to converge in the
limit s / 0þ, and without any need of precisely defining
this contact point, it proves to be very efficient to estimate
quantitatively the local Hölder exponent h ¼ b þ 2 ¼ 1
(Fig. 3 c).
WTMM characterization of force-indentation
curve models

Description of typical AFM force curves

Four force curves captured with the AFM on single plant
cells isolated from A. thaliana calli are shown in Fig. 4 a.
In this example, we have selected four different responses
taken from two cells (green and red) at two different posi-
tions (continuous and dotted-dashed lines) to underline the
inter- and intracellular variability that we have commonly
observed in our single plant cell experiments. Similarly to
the piecewise linear model in Fig. 2 c, when increasing
indentation, the first derivative of these force curves
(Fig. 4 c), computed with Eq. 5 for sw0 ¼ 10 nm, decreases
sharply from zero to reach a plateau. The flatter this plateau,
the closer the Hölder exponent to 1. The occurrence of a
plateau means that there is a whole range of Z values where
F(Z) behaves linearly. When this plateau occurs, its value
Tg(1)[F] ¼ �kE provides an estimate of an effective tension
of the cell wall in nN/nm (the dimension of a surface stress)
at the measurement point. However, for most cells, there is
not a strictly constant plateau of Tg(1)[F], so we have used
instead the second derivative of F to compute an effective
stiffness parameter for these cells. Within the linear
response theory, kE is proportional to E (the wall Young
modulus) times the wall thickness Hw. The width and the
height of the jump from zero to this plateau varies from
cell to cell but also with the position of the indentation point
on a given cell. The widening of the jump in Tg(1)[F] is
FIGURE 3 (a) WT representation Tg(2)[F] of

the piecewise linear function shown in Fig. 2 a.

The color map is chosen from 0 (dark blue) to

2 MPa (dark red). (Red line) WT modulus

maxima. (b) Log10Tg(0)[F](Zk0 – Zk) versus log10
[Zk – Zk0]. (Dashed line) Slope h ¼ þ1. (c)

Plot of log10Tg(2)[F](ZkM, s) versus log10(sw0),

on the WT modulus maxima line. (Dashed line)

Slope b ¼ h – 2 ¼ �1. To see this figure in color,

go online.
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FIGURE 4 Experimental force curves (approach) collected on two

different cells. (a) Force-indentation curves. (b) Plot of Tg(0)[F] versus

Zk – Zk0. The value Zk0 corresponds to Tcontact ¼ �10�3 nN/nm (Eq. 9).

(c) Plot of Tg(1)[F] versus Zk – Zk0. (d) Plot of Tg(2)[F] versus Zk – Zk0.

(Continuous and dotted-dashed red curves, continuous and dotted-dash

green curves, respectively) The same cell, but taken with the AFM tip at

different positions. The smoothing scale is s ¼ 1 (sw0 ¼ 10 nm). To see

this figure in color, go online.

FIGURE 5 Sketch of the indentation of the cell wall by a pyramidal

shape tip. (a) The tip penetrates the wall without noticeably changing its

curvature (Regime A). (b) For a deeper indentation, the wall curvature is

modified by the pyramidal tip (Regime B). To see this figure in color,

go online.
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correlated to the penetrability of the cell wall by the tip. It
can be quantified by looking at Tg(2)[F] versus Zk – Zk0
(Eq. 6) (Fig. 2 d), which displays a peak positioned at the
contact point whose (half) width gives an indication of
the thickness of the cell wall and its height quantifies the
maximum sustainable pressure upon penetration of the
wall by the cantilever tip. We can therefore recover an effec-
tive wall stiffness with the product of the local maxima of
Tg(2)[F] times the scale at which it is estimated. Because
the wall has a finite thickness, and because its mechanical
strength may vary during its indentation, following this
peak along the WTMM maxima line from large to small
scales (Fig. 3 a) will allow us to evidence and quantify
locally changes in the wall effective stiffness kE. According
to the wall thickness, the range of indentations of the wall
will be smaller or larger and the maximum sustainable
wall indentation will be attained earlier or later. From
Fig. 4, c and d, we therefore conclude that the wall of the
cell coded in dotted-dashed green is softer than the one of
the cell coded in dotted-dashed red, and the continuous
green curve suggests that the wall thickness penetrated by
the tip is ~100 nm (half the width of the jump).

Models of mechanical responses of a walled-cell

During its progression into the cell, the sharp pyramidal tip
of the AFM cantilever penetrates first into the cell wall with
a minor modification of its curvature (Regime A, Fig. 5 a)
and then bends the cell wall, acting on a thin viscoelastic
shell (Regime B, Fig. 5 b). For a given deflection of the
cantilever (the contact force), the total displacement of
the AFM piezo transducer is the sum of the cantilever
deflection dk ¼ F/k, the depth of penetration of the tip inside
the wall dp, and the deformation (change of curvature) of
the wall db. We use the first derivative of the force curve,
computed with the wavelet transform and Eq. 1, to subtract
the cantilever deflection term and recover a simple equation
for the total indentation dC of the cell:

dCðFÞ ¼ ½Zk0 � Zk�corr ¼ dpðFÞ þ dbðFÞ: (10)

Regime A: penetration of the cantilever tip inside the cell
wall (shallow indentations). The relation dp(F) depends on
the shape of the cantilever tip. With the pyramidal shape
cantilevers used in this work, we must consider two regimes
for the tip penetration inside the wall because the tip is not
infinitely sharp and has a finite curvature radius rt. Roughly
speaking, when the indentation is limited to dp ( rt, the
shape of the tip can be approximated by a hemisphere and
when the indentation increases beyond rt (dp T rt), the
cantilever must rather be considered as a square pyramid.
These two geometries give force-indentation power laws
known, respectively, as Hertz (44) and Sneddon (45)
equations.

For dp ( rt (Hertz),

F
�
dp
� ¼

�
4E

ffiffiffi
rt

p
3ð1� n2Þ

	
d3=2p : (11)

In the limit dp >> rt (Sneddon), and assuming that dp < Hw," #

F
�
dp
� ¼ tanðqÞEffiffiffi

2
p ð1� n2Þ d2p; (12)

where E is the Young modulus of the wall, n is the Poisson
ratio, and q is half the tip angle. These formulae predict

that if the wall is soft enough for being penetrated by the
cantilever tip, we should first observe a power lawd3/2

followed by a power law d2, assuming that the wall is thick
enough (Hw >> rt). A complete solution of the transition
from sphere to pyramid has already been reported in
Biophysical Journal 108(9) 2235–2248
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Rico et al. (46). Because the wall has a finite thickness Hw,
the first power law F(dp) ~ dp

3/2 is more likely observed in
the experiments.

Regime B: global deformation of the cell wall (stretching
and bending). Assuming that the wall thickness is<1/10 the
cell radius, the theory of spherical shells predicts a linear
behavior for F(db), when the wall Young modulus can be
considered as homogeneous in space and invariant during
the deformation (47–49). Here we will consider a more gen-
eral form for F(db) with a nonlinearity exponent h that will
generalize these linear response models to strain-hardening
(h > 1) or strain-softening (h < 1) systems,

FðdbÞ ¼ kE d
h
b; (13)

where kE can be considered as an effective tension of the
wall.
FIGURE 6 Computation of the first and second derivatives of the

nonlinear force-curve model (Eq. 14) using theWTmethod with a Gaussian

function (sw0 ¼ 1 nm with w0 ¼ 1 nm). (Green, red, and brown curves)

Hölder exponents h ¼ 1.2, 1, and 0.8, respectively. (a) The original

force curves. (b) Tg(0)[F](Zk – Zk0, s ¼ 1), Zk0 corresponds to Tcontact ¼
�10�4 nN/nm (see text). (c) Tg(1)[F](Zk – Zk0, s ¼ 1) in nN/nm. (d) Tg(2)
[F](Zk – Zk0, s ¼ 1) in MPa. To see this figure in color, go online.
Piecewise nonlinear model mimicking a force-indenta-
tion curve. To guide the interpretation of the experimental
force curves, we have generalized the piecewise model dis-
cussed above (Eq. 8), to a nonlinear model including a first
local penetration regime (F(dp) f dp

3/2) and a large-scale
deformation regime (F(db) f dp

h):

FðZkÞ ¼ 0 for ZkRZ0;

FðZkÞ ¼ AðZk � Z0Þ3=2 for Z1<Zk<Z0 : Regime A;
FðZkÞ ¼ kEðZk � Z�Þh for Zk<Z1 : Regime B :

(14)

The values of A, Z*, and F(Z1) are determined as functions
of the parameters k (effective wall tension or stiffness) and
E

Z1 – Z0 (wall thickness), by fulfilling the continuity of F and
of its first derivative at Z0 and Z1. In consistency with the
values measured in the experiments reported in Fig. 4, we
set kE ¼ 0.1 nN/nm and Z0 – Z1 ¼ 100 nm. We show in
Fig. 6 the three (orders 0, 1, and 2) derivatives of F
computed with a smoothing Gaussian wavelet at the scale
s ¼ 1 with w0 ¼ 10 nm, for three Hölder exponent values:
h ¼ 1.2 (green curve), 1 (red curve), and 0.8 (brown curve).
The occurrence of a plateau in Tg(1)[F] (red curve in Fig. 6 c)
at large indentations means that the bending deformation db
of the cell wall prevails over the wall tip penetration length
dp. The curves corresponding to other Hölder exponents
differ only in the deformation regime B, because we keep
the same term for the penetration regime A (�100 nm <
Zk – Zk0 < 0). The first-order derivative of F is continuous
at Zk ¼ Z1 but its second-order derivative is discontinuous;
the smaller the exponent h, the larger the jump in Tg(2)[F]
at this transition point Z1. For h < 1, this second derivative
abruptly changes its sign when crossing Z1. Even if the
experimental force curves shown in Fig. 4 were selected
among the h > 1 class responses, we have also observed
many cell responses corresponding to h < 1.

In this ad hoc model (Eq. 14), we have assumed that the
wall deformation is nonlinear for large indentations, which
includes the possibility of changes of the cell-wall tension
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during its deformation. Fitting the force curves to recover
the underlying scaling laws is again sensitive to the choice
of the contact point. As shown in Fig. 7 b for the two
force curves of Fig. 6 a corresponding to h ¼ 1 (red curve)
and h ¼ 1.2 (green curve), depending on our choice of
the contact point Zk0, the representation of the force curve
function in logarithmic scales may be more or less
convincing. We choose two different origins Zk0 to compute
the variable d¼ jZk� Zk0j to illustrate the high sensitivity of
the reconstruction of these curves (corresponding, respec-
tively, to Tcontact ¼ �10�4 nN/nm for the solid curves and
Tcontact ¼ �10�3 nN/nm for the dashed curves). We note
that the exponents h¼ 1 and 1.2 can be recognized for inden-
tation d¼ Zk0¼ Zk larger than 100 nm, whereas the penetra-
tion regime (d3/2) (Eq. 14) is also visible over a decade d %
100 nm. However, decreasing slightly the contact point Zk0
shortens dramatically the range of indentation values where
the 3/2 exponent can be estimated. With this noiseless theo-
retical case, we realize that if, for instance, the threshold
criteria on Tcontact were relaxed further, the shape of the
log10Tg(0)[F](Zk – Zk0, s ¼ 1) curve beyond Z1 would no
longer be fittable by a straight line, meaning that the esti-
mation of the exponent h would become intractable.

Wavelet-based multiscale analysis of theoretical force curves

For comparison, Fig. 7, a and c, show the color-coded space-
scale (b,s) representation of Tg(2)[F](Zk – Zk0, s) computed
from the same two theoretical force signals in Fig. 6 a



FIGURE 7 Wavelet-based analysis of two theoretical forces curves.

(a and c) Color-coded representation (from 0, dark blue to 2 MPa, red)

of Tg(2)[F](Zk – Zk0, s) computed from two of the force curves in Fig. 6

a, corresponding to the Hölder exponents h ¼ 1 (a) and h ¼ 1.2 (c). The

WTMM line is coded with the same color as the original force curve. (b)

Log10Tg(0)[F](Zk – Zk0, s ¼ 1) versus log(d) ¼ log(Zk0 – Zk) with Tcontact ¼
�10�4 nN/nm (solid curves) and Tconnect ¼ �10�3 nN/nm (dashed curves).

(Black-dashed, dashed-dotted, and dotted straight lines) Slopes 1, 1.2, and

3/2 corresponding to the scaling behavior F f d, F f d1.2, and F f d3/2,

respectively. (d) Logarithmic representation of Tg(2)[F] versus scale sw0

along the WT maxima lines shown in (a) and (c). (Black dashed,

dotted-dashed, and dotted straight lines) Scaling behavior of Tg(2)[F]

f s�1, s�0.8, and s�1/2, respectively. To see this figure in color, go online.

FIGURE 8 Wavelet-based analysis of two experimental force curves.

(a and c) Color-coded representation (from 0, dark blue to red, 500 kPa (a)

and 150 kPa (c)) of Tg(2)[F](b,s) computed from two force curves of Fig. 4

a with the same color and line coding. (b) Log(d) ¼ log10Tg(0)[F](Zk – Zk0,

s¼ 1) versus log(d)¼ log(Zk0 – Zk) with Tcontact¼�5.510�3 nN/nm. (Black

dashed, dashed-dotted, and dotted straight lines) Slopes 1.1, 1.2, and 3/2

corresponding to the scalingbehaviorFf d1.1,Ff d1.2, andFf d3/2, respec-

tively. (d) Logarithmic representation of Tg(2)[F] versus scale sw0 along

the WTMM lines shown in (a) and (c). (Black dashed, dotted-dashed, and

dotted straight lines) Scaling behavior: Tg(2)[F] f s�0.9, s�0.8, and s�1/2,

respectively. To see this figure in color, go online.
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corresponding to the exponent values h ¼1 (red curve) and
h ¼ 1.2 (green curve). The local maxima line of Tg(2)
[F](Zk0 – Zk, s) points toward the point ZkM of maximum
stress of the tip of the cantilever with the shell cortex
when the scale sw0 tends to 1 nm (in the experiments we
cannot afford such a small scale, and we will limit our scale
analysis to 10 nm). The color code is the same in Fig. 7, a
and c; the larger the h, the larger the force for a given defor-
mation and the weaker the divergence of Tg(2)[F](Zk0 – Zk, s)
when s tends to zero. As shown in Fig. 7 d, not only are
the large-scale power laws expected from the deformation
regimes B (Tg(2)[F] f s�1 (and s�0.8) well recognized
now, but also the scaling regime (s�1/2) at low scales. This
new wavelet-based approach allows us to recover not only
the correct scaling exponents but also the whole interval
of scales where these scaling laws are expected to be
fulfilled. This gives us confidence in the chance to resolve
these two scaling domains s�1/2 and sb with b ¼ h – 2
(Eq. 7) in experimental situations.
Wavelet-based multiscale analysis of
experimental force-indentation curves

Turgescent cells

As a first experimental application of our wavelet-based
methodology, we report in Fig. 8 the results of a similar
analysis of two force curves shown in Fig. 4. Note that the
color-coding range of Tg(2)[F](b,s) in Fig. 8 a is 3.3 times
larger than in Fig. 8 c because the latter cell (green line)
is softer than the former (red line). Similarly to the theo-
retical case discussed just above, we can detect a WTMM
line (coded with the same color as the force curve) pointing
to the maximum stress at ZkM when sw0/ 10 nm. We again
compare in Fig. 8, b and d, the scaling behavior of the force-
indentation curves and of the WTMM along the maxima
lines, respectively. The affordable scaling regime B of Tg(0)
[F](Zk � Zk0, s ¼ 1) in Fig. 8 b is shifted toward larger
indentations (>400 nm) for the green curve and is barely
identifiable in the red curve. This distortion of the curve is
typically what we anticipated in the theoretical modeling.
Enhanced by the presence of noise, the practical incapacity
to have a precise estimation of Zk0 impairs the characteriza-
tion of the power-law regime. At low indentations, the shape
of the red force-indentation curve misses completely the
first penetration regime, and we cannot therefore have any
estimation of the cross-over scale in between the low and
large indentation regimes (Eq. 14). The green curve seems
more favorable, because we can delineate a low indentation
range with the scaling law F f d3/2, although it is hindered
by the experimental noise. Even though we suspect that this
green curve behaves with a power law F f d1/2 at larger
indentations, it is again impossible to trust the cross-over
indentation scale (~400 nm) where this power-law seems
to arise. The analysis with the WTMM lines (Fig. 8 d) gives
Biophysical Journal 108(9) 2235–2248



2242 Digiuni et al.
a much clearer picture of the two indentation regimes
involved in these two force curves. We have plotted dashed
and dotted-dashed straight lines with slopes b ¼ �0.9 (red
curve) and b ¼ �0.8 (green curve) to highlight the range
of scales sw0 where these power-law behavior values of
h ¼ b þ 2 ¼ 1.1 and 1.2 appear, respectively. At scales
sw0 > 100 nm (respectively, 65 nm) for the green (respec-
tively, red) curve, the maxima line enters a power-law
regime outlined with a dashed line in Fig. 8 d. The minimum
scale where this scaling law occurs (noted as min(sw0) in the
following figures) is very important for this study, because it
provides an estimate of how far the cell wall is penetrated
by the tip, i.e., a measure of its softness. The experimental
examples reported in Fig. 8 confirm that the WTMM
method is very efficient to 1) reveal and delimit the range
of scales over which scaling operates and 2) estimate the
corresponding power-law exponents with good accuracy.

Practically, to compute the exponent b ¼ h � 2 from the
WTMM curves versus sw0, we do not take a fixed range
of scales. For each force curve, we first detect the largest
scale range where log10[max(Tg(2)[F])1 versus log10(sw0)
can be fitted with a linear function within 1% error. Because
our experimental force curves are limited in indentation
depth, we restrict this scale range from above to the maxi-
mum scale sw0 < 400 nm to avoid finite-size effects in
the WTMM computation.

Fig. 9 a represents the range of sw0 values where a linear
behavior (fixed b) has been detected from a sample of single
a b

c d

FIGURE 9 Statistical analysis of the mechanical properties of turgescent

A. thaliana cell walls (2,111 force curves captured on 60 cells). (a) b-expo-

nents plotted versus the range of scales sw0 (in log scale). (b) Histogram

of b-values. Two intervals of b-values are distinguished with different

color codings (b > �1 (h > 1) in blue, b < �1 (h < 1) in red). (c) Stacked

histograms of the minimum scale sw0 (in log10) delimiting the scaling

range from below. (d) Stacked histograms of effective stiffness kE
coefficient. To see this figure in color, go online.
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A. thaliana turgescent cells. The corresponding histogram of
b-values shown in Fig. 9 b is broadly distributed around a
mean value ~�0.9. We did not expect such a result because
we thought that when working on single cells extracted from
an undifferentiated tissue, the mechanical response would
be more homogeneous, and that, for instance, the distribu-
tion of b-values would be peaked at ~�1 (corresponding
to h ¼ 1). Another important observation is the variability
of the range of scales and more importantly of the minimum
scale min(sw0) where a power-law behavior of the WTMM
can be extracted along the maxima lines (Fig. 9 c). Note that
when b is <�1, the scaling range seriously shrinks down to
half a decade, meaning that there is probably not really a
scaling law in that case, but instead a global crossover
from a first-penetration regime A that extends to larger
depths, to a larger-scale regime B that cannot be attained
because we are limited in scales. These b < �1 scaling
responses correspond to h < 1 (Eq. 13), which is precisely
to strain-softening wall domains, where the cell wall may
lack cohesion in the cellulose architecture.

This large variability of the mechanical parameters of
A. thaliana single cells led us to perform confocal fluores-
cence microscopy to image the distribution of cellulose on
the cell cortex (Fig. 10). Fig. 10 a is obtained from a
confocal section and shows the boundary distribution of
cellulose and microtubules underneath. Fig. 10 b illustrates
the whole surface of the cell, observed from above, where
we clearly notice a nonhomogeneous distribution of cellu-
lose. The white arrow points to a hole of cellulose, and
the yellow arrows point to external cellulose deposits. If
we correlate the mechanical properties of the cell wall
to its cellulose content, this image conforms to the wide
distribution of b-exponents measured on turgescent cells
(Fig. 9 b). We also remark in Fig. 10 a that the microtubules
FIGURE 10 Confocal images of turgescent single A. thaliana cells. (a)

Middle section of a cell expressing 35S:GFP-MBD (green) that marks

microtubules, and stained with Pontamine Fast Scarlet 4B (red) that marks

cellulose. (b) Three-dimensional z-stack projection (IMAGEJ software;

National Institutes of Health) of a half cell stained with Pontamine Fast

Scarlet 4B (gray). (White arrow) Region with less cellulose; (yellow

arrows) irregularities of the cell wall. Scale bar, 20 mm. To see this figure

in color, go online.



FIGURE 11 Two-dimensional maps of the three quantities h¼ 2þ b (b),

minimum scale sw0 (in log10) delimiting the scaling regime sb of the

WTMM along the maxima line (c) and the effective wall stiffness kE
(in nN/nm) (d) captured from a single turgescent cell shown in (a). One-

hundred force curves were recorded from a 10 � 10 mm2 grid, superim-

posed to the bright-field microscopy image of this cell in (a). Scale bar,

10 mm. To see this figure in color, go online.
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are not distributed over the periphery of this cell wall but,
instead, strictly confined to it bottom part. These fluo-
rescence images (Fig. 10) corroborate our suspicion con-
cerning the heterogeneity in mechanical properties of
turgescent plant cells.

We choose two-color-coding in Fig. 9, a and b, to distin-
guish b-exponents below (in red) and above (in blue) �1,
and trace to which effective wall stiffness these part
of the b-histograms (Fig. 9 b) correspond. The histograms
of the effective stiffness kE in Fig. 9 d show that the
force curves of turgescent cells with b-exponents smaller
than �1 (h < 1) are stiffer than those with b-exponents
larger than �1 (h > 1). The value kE is computed for each
force curve from the second derivative modulus maximum
Tg(2) where the scaling law with exponent b is detected;
this wavelet maximum modulus is then multiplied by the
wavelet width at this scale to get an effective stiffness in
nN/nm. Fig. 9 d shows that the distribution of kE values
is limited to a bounded interval, kE < 0.2 nN/nm. Clearly,
the upper bound of this interval of kE values is far below
the nominal spring constant of the cantilever (~5 nN/nm),
suggesting that this maximum effective wall tension is
a characteristic of our 60-cell sample, including eight
different pools of cells. The observed variability of kE is a
strong characteristic of these cells. It results not only from
variations in the Young modulus, but also from the thickness
of their walls. Again the fluorescence images in Fig. 10 sup-
port this observation and suggest that the coefficient kE
commonly used to quantify the cell-wall rigidity is not
the most appropriate parameter to separate the different
cell domains corresponding to strain-hardening (b > �1,
h > 1), neutral (b ¼ �1, h ¼ 1), and strain-softening
(b < �1, h < 1) situations. Computing a standard deviation
on kE is not relevant either, because we do not have a
Gaussian distribution for kE (Fig. 9 d). The b-distribution
above �1 bears a stronger resemblance to a Gaussian distri-
bution (Fig. 9 b), which suggests that whatever the stiffness
of the different wall domains may be, the ability of the cell
to change its strain response during indentation (strain-
softening, neutral or strain-hardening) is a better indicator
of healthy turgescent cells when combined with their effec-
tive stiffness.

The histogram of b-values in Fig. 9 b led us to the con-
clusion that these single turgescent cells extracted from
A. thaliana calli respond to a mechanical stress through
a great variability of strain functions. Direct evidence on
how these mechanical properties are distributed in space
are obtained by mapping the cell by a grid of force curves,
as shown in Fig. 11. We captured 10 � 10 ¼ 100 force
curves on a 10 � 10 mm2 grid from a single turgescent
cell (Fig. 11 a) and we reconstructed in Fig. 11, b–d, the
maps of the three quantities—the Hölder exponent h,
the minimum scale sw0 delimiting the scaling range of the
WTMM line from below, and the effective stiffness kE,
respectively. The map of Hölder exponents in Fig. 11 b
shows that this cell wall has a strong heterogeneity of strain
responses, from h ¼ 0.8 to h ¼ 1.3, with the upper-left
corner behaving rather like a strain-stiffening domain (red
and dark red squares), and the diagonal of the map and
the lower-right corner behaving rather like strain-softening
zones (blue squares). In between these domains, we also
have neutral strain responses (light-green squares). This
strong variability is not reflected on the minimum scale
sw0 that serves to delimit the WTMM scaling range
(Fig. 11 c), suggesting that the tip penetration does not
change much in this example as an indication that the thick-
ness of the wall does not vary significantly. The map of
effective stiffness kE shows two patches with higher stiffness
(dark red > 0.2 nN/nm) separated by a diagonal line (light
green-blue) corresponding to kE values at ~0.18 nN/nm. The
spatial distribution of kE correlates quite well to h, large kE
values corresponding to large h values, meaning that the
regions where the cell wall is stiff also have the propensity
to stiffen even further upon deformation (strain-stiffening
regions). On the opposite, the softer regions would have
less ability to sustain the deformation (strain-softening
regions). The corresponding histograms obtained from these
100 force curves can be found in Fig. S2 in the Supporting
Material. From the histogram of b-values (Fig. S2 b), we see
that this cell has a range of Hölder exponents centered
at h x 1.1 (b x �0.9), with a narrower distribution than
the one previously obtained in Fig. 9 b. The peak in the
histogram of min(sw0) in Fig. S2 c is much finer than in
Fig. 9 c, and confirms that the penetration of this cell is
not changing much over the considered grid surface. Finally,
the distribution of wall tension kE values is globally shifted
Biophysical Journal 108(9) 2235–2248
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FIGURE 12 Statistical analysis of the mechanical properties of

A. thaliana single cell walls under hypertonic conditions (900 force curves

captured on 20 cells; for details, see Materials and Methods). (a) b-expo-

nents plotted versus the range of scales sw0 (in log scale). (b) Histogram

of b-values. Two intervals of b-values have been distinguished with

different color codings as in Fig. 9. (c) Stacked histograms of the minimum

scale sw0 (in log10) delimiting the scaling range from below. (d) Stacked

histograms of effective stiffness kE coefficient. To see this figure in color,

go online.
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to higher values, and somewhat peaked in the interval 0.18–
0.20 nN/nm. As already visible in Fig. 11 d, the variability
of kE can be considered negligible as compared to the
variability of the Hölder exponent. This observation indeed
makes sense because the shape of a turgescent cell is
completely determined by the mechanical property of its
wall. If this shape does not change rapidly in time (which
is actually what we observe on the systems we are consid-
ering in this study), the wall should be locally at equilibrium
and its tension should not change dramatically on the cell
surface. The variability of these cell responses comes from
the richness of their strain responses that ultimately would
maintain a stability of the wall tension despite some local
variations of the wall’s Young modulus. This Young
modulus would be directly proportional to the tightness
and compactness of the network of cellulose fibrils.

This variability cannot be explained solely by the separa-
tion process of the tissue into single cells, performed by a
gentle and smooth agitation. Fig. S3 shows a three-dimen-
sional reconstructed confocal image of the cellulose patches
of a piece of A. thaliana root callus. This image shows that
the calli are constituted by a disorganized agglomeration of
cells with a cellulose-rich matrix surrounding them. This
staining confirms that, at this stage, there are already patches
of cell walls with highly variable cellulose contents. This
strongly suggests that the inhomogeneity of the cell wall
cellulose fibrils is an intrinsic property of these undifferen-
tiated cells, which is maintained during the cell separation
process. The inhomogeneity of this living tissue makes a
direct estimation of the wall thickness by electron micro-
scopy a difficult task. Nevertheless, we succeeded in
capturing scanning electron microscopy images on frozen
root callus samples, untreated and unstained to avoid any
alteration of their wall structure. Fig. S4 brings additional
evidence of the strong variability of the wall thickness
(highlighted with colored stars). From both these character-
izing methods, we can only conclude that the wall thickness
of root callus ranges in between 100 and 1000 nm. However,
this estimation cannot be extrapolated to the single cells
isolated from the callus tissue.

Plasmolyzed cells

To push further the mechanical characterization of these
single plant cells, we have tested two different media—
one with a higher osmotic pressure (addition of a polyol:
mannitol) and the other with a lower osmotic pressure
(dilution with water). The characterization of hyperosmotic
cells is reported in Fig. 12. The range of scales where the
exponent b can be retrieved with 1% error is dramatically
reduced (Fig. 12 a). The difference with turgescent
cells is impressive; the b-exponent distribution is shifted
to higher b-values with a small percentage of b-values
<�0.9 (Fig. 12 b). The b < �1 responses have completely
disappeared. The fact that b is increasing beyond �0.9 is a
strong indication of strain-hardening responses. Indeed the
Biophysical Journal 108(9) 2235–2248
plasmolysis of the cells changes drastically the way they
adapt to a mechanical stress. The minimum scale values
sw0 are now grouped at ~100 nm (Fig. 12 c). The effective
tension coefficient kE is globally decreased (Fig. 12 d),
meaning that these cells behave as softer cells. Thus, if
the thickness of the wall penetrable by the tip increases,
its Young modulus must decrease—likely resulting in a
decrease of kE. But this variation of kE is not very large,
and cannot be used as a good criteria for comparing turges-
cent from plasmolyzed cells. A more discriminating criteria
turns out to be the b-exponent and the range of scales where
it can be detected, which, a posteriori, contributes to validate
the multiscale analysis performed with the WTMMmethod.

Cytolyzed cells

Finally, the characterization of cells in hypoosmotic media
(Fig. 13) is also very instructive. We may consider that
this hypoosmotic media pushes the internal turgor pressure
to higher values, and thus increases the tension of their
walls or destabilizes them if there is a local rupture.
The WTMM scaling analysis brings into light an amazing
result: b-values ~�0.9 (mild strain-hardening responses)
are diminished whereas the probability of neutral and
strain-softening responses (b ˛[�1.2;1]) is increased
(Fig. 13 b). The range of b-values is actually split in two
separate b-ranges, which can be made visible on the surface
of these cytolyzed cells with fluorescence staining of
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FIGURE 13 Statistical analysis of the mechanical properties of cyto-

lyzed A. thaliana cell walls (446 force curves captured on 12 cells; for

details, see Materials and Methods). (a) b-exponents plotted versus the

range of scales sw0 (in log scale). (b) Histogram of b-values. Two intervals

of b-values have been distinguished with different color codings as in

Fig. 9. (c) Stacked histograms of the minimum scale sw0 (in log10) delimit-

ing the scaling range from below. (d) Stacked histograms of effective

stiffness kE coefficient. To see this figure in color, go online.
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cellulose (Fig. S5). On the one hand, there may be a
reinforcement of stronger, strain-hardening domains; on
the other hand, an enlargement of the weaker strain-
softening domains may result from stretching-induced
damage. The variability of the minimum of sw0 for the
strain-softening domains is actually wider than for turges-
cent cells (Fig. 13 c). The histogram of effective tensions
kE (Fig. 13 d) shows a global decrease, with a mean value
~0.03 nN/nm, with the smaller kE values corresponding
to smaller b-exponent values (strain-softening domains).
DISCUSSION

The walls of plant cells vary dramatically in their cellulose
fiber composition with plant type. More recently the hierar-
chical structure of plant materials (3,50–52) has raised
increasing interest among botanists and biologists to explain
the wide range of their mechanical properties. In this article,
we show that on a single plant cell, we have already a whole
variety of mechanical behavior that will likely be used
by the plant for further development. This high variability
requires a broader view of the mechanics of shells. Let us
review the energy terms involved in a shell indentation by
a sharp cantilever. At shallow indentations (Regime A),
the models of Hertz (Eq. 11) and Sneddon (Eq. 12) are
frequently used to extrapolate the Young’s modulus to
characterize cell-wall stiffness in plant cells (14,15,17,53).
When the tip of the cantilever penetrates further into the
cell wall, a larger deformation occurs that may stretch and
bend the wall on larger scales (Regime B) (Fig. 5). The
stretching energy per unit surface for a homogeneous expan-
sion of a sphere of radius R reads (54)

EstretchfKS

�
d

R

�2

; (15)

where A is the stretched surface, d is the displacement of
an elementary surface, and KS is the stretching modulus,

KS ¼ EHw/(1 – n2). The bending energy per unit surface is
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where KB is the bending modulus,
KB ¼ 1
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The ratio of the stretching over the bending energies scales
therefore as
Estretch

Ebend

f

�
R

Hw

�2

: (18)

When the local radius of curvature R is less than the
wall thickness H , the bending energy is not negligible as
w

compared to the stretching energy. We can therefore suspect
that both these energies will impact the wall response. If the
cell wall is very stiff (large Young modulus E), the tip of
the cantilever will not penetrate very far inside the wall
and the wall will instead flatten and curve on large radius
R (Fig. 5 b), because it will cost much less to bend (Ebend

f EHw/R
2 � H2

w/R
2) than to stretch (Estretch f EHw/R

2)
the wall. The first regime A will therefore be very short
in penetration length, and the range of scales sw0 for
computing b will be larger. It is typically what is observed
for b-exponents larger than �1 for the turgescent cells.
For this set of responses, h > 1 means that the force implied
for the cell deformation increases faster than expected for a
linear response, and the deformation of the cell wall is less
and less easy (strain-hardening). This may be explained by
the fact that the wall texture and mechanics is not constant
over its thickness, with two (or more) layers of different
mechanical responses; to prevent wall deformations that
are too large, the inner layer could be stiffer than the outer
layer (15,50). On the other hand, if the wall Young modulus
is comparatively low, the cantilever tip will penetrate deeper
inside the wall, and the energy cost for bending it will be
much higher than for stretching. The range of scale sw0

where the WTMM behaves as a power law will be shifted
to larger scales, and it will be more difficult to have a correct
estimation of the scaling exponent b. There is a set of re-
sponses of turgescent cells that give a b-exponent smaller
than �1 (h < 1), where the range of sw0 is markedly dimin-
ished (both from below and above) (Fig. 9 b). The wall do-
mains corresponding to these responses are probably much
Biophysical Journal 108(9) 2235–2248
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softer, and their penetration by the tip is easier than expected
for a linear regime; we can call them ‘‘strain-softening’’
domains.

Note that although the heterogeneity of the mechanical
properties of plant cell walls was guessed in previous works
(14,15), the presence of strain-hardening and strain-soft-
ening domains, to our knowledge, has never been remarked
upon before. From the histogram of kE values and the range
of sw0, we can give an estimation of an effective cell wall
Young’s modulus E ~ k1/hsw0i: E ~ 0.49 5 0.25 MPa for
the turgescent cells, E ~ 0.325 0.18 MPa for the hypertonic
cells, and E ~ 0.16 5 0.12 MPa for the hypotonic cells.
These estimations of E are in quite good agreement with
other AFM force curve studies on isolated single cells
with sharp pyramidal tips (15,17). However, they are three
orders-of-magnitude lower than those obtained from whole
tissues such as leaves, for instance (7,16,19,53), suggesting
either that the cell wall structure is very different or that
beyond the wall of each cell, there are additional layers
that reinforce the whole tissue to maintain its cohesion.
We must also remark that the sharp tip indenter used
in this work allows very local measurements that do not
modify the cellulose fiber network over long distances.
This can therefore explain why this local perturbation leads
to much lower elastic modulus estimations. Note also that
we are working with undifferentiated call cells that have
not yet achieved the rigidity required by a whole tissue.

The loss of a wide b-scaling range is observed in plasmo-
lyzed cells (hypertonic mannitol medium) (Fig. 12). These
cells lose their wall bendability and elasticity, typically as
inflated balls (Fig. S5, a and b). The effective tension kE,
which is related to EHw in that case, is comparatively lower
in plasmolyzed cells than in turgescent cells. If one keep
computing the exponent b on a very narrow range of scales,
despite the lack of convincing scaling law, its shift to larger
values (closer to zero) is the signature of some further in-
crease of the h exponent, revealing again a strain-hardening
of these cells and the inhomogeneity of their wall. It is also
important to note that the plasmolyzed cells lack completely
the original b ¼ �1 (h ¼ 1) behavior of the turgescent cells,
confirming a strong modification of their bending elasticity.
Finally, when the cells are submitted to a hypotonic media
(Figs. 13 and S5, c and d), their internal water pressure is
increased, which strongly modifies their normal turgescent
response and likely destabilizes the wall mechanics. The
fact that we recover a scaling range that extends to values
<100 nm (compared to plasmolyzed cells) means that these
cells keep their ability to bend on large domains (as long as
such large homogeneous domains exist). However, they lose
the range of b-exponents in between �1 and �0.9, to keep
only the strain-hardening (b>�0.8, h> 1.2) and the strain-
softening (b < �1, h < 0.9) responses. Is it precisely the in-
termediate regime of b-values close to �0.9 (only observed
in turgescent cells) that would be the most active and the
easiest to remodel upon a mechanical stress? We note also
Biophysical Journal 108(9) 2235–2248
in Fig. 13 b that, contrarily to turgescent cells, a nonnegli-
gible fraction of cytolyzed cells behave as purely elastic
shells (b ¼ �1). Finally, the collapse of the effective stiff-
ness kE of cytolyzed cells could point out their progressive
destabilization under higher internal turgor pressure.
CONCLUSION

We have elaborated on an original approach to study the
mechanics of single plant cells, based on a multiscale
decomposition of force-indentation curves collected from
an atomic-force microscope. We have shown that the me-
chanical characteristics of living cells usually embodied
in their Young moduli are not sufficient to capture the
complexity of deformation response of walled-cells. It is
therefore necessary to develop new methods that help
understanding of the nonlinearities of these responses. The
wavelet transform modulus maxima method has been adapt-
ed here to quantify these nonlinearities on single cells,
isolated from A. thaliana calli, and examined in iso-,
hyper-, or hypotonic conditions. We have shown that the
well-known elastic response of plant cell walls is strongly
challenged by our methodology, which reveals that only a
finite percentage of cytolyzed cells can behave as purely
elastic shells (bending elasticity). This study also illumi-
nates the necessity of considering their nonlinear response
via the computation of the nonlinear exponent h, providing
additional information to the commonly used Young’s
modulus estimation. This could also help in distinguishing
cell domains that have stronger remodeling ability under a
mechanical stress.
SUPPORTING MATERIAL

Supporting Materials and Methods and five figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(15)00221-0.
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