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Abstract

We formulate the infrared regularization of Becher and Leutwyler in a form analogous to our recently proposed extended
on-mass-shell renormalization. In our formulation, IR regularization can be applied to multi-loop diagrams with an arbitrary
number of particles with arbitrary masses.
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1. Introduction

Starting with Weinberg’s fundamental work on phenomenological Lagrangians [1], it became possible to
systematically calculate corrections to the soft-pion results obtained within the framework of current algebra [2].
The corresponding effective field theory (EFT)—chiral perturbation theory (ChPT)—has been very successful in
describing the strong interactions at low energies (for a recent review see, e.g., Ref. [3]). In the mesonic sector, the
combination of standard dimensional regularization (DR) and the modified minimal subtraction scheme of ChPT
(MS) led to a straightforward correspondence between the loop expansion and the chiral expansion in terms of
momenta and quark masses at a fixed ratio [4,5]. The one-baryon sector proved to be more complicated [6]. In
particular, using the same combination of DR &8 as in mesonic ChPT, higher-order loops contribute in lower
chiral orders and therefore the correspondence between the loop expansion and the chiral expansion seems to be lo:
(see Fig. 2 of Ref. [6]). One solution to this power-counting problem was given in the framework of heavy-baryon
chiral perturbation theory (HBChPT) [7], and most of the recent calculations have been performed within this
approach [8,9]. While successful in many cases, HBChPT destroys the analytic structure in part of the low-energy
region. Several methods have been suggested to reconcile power counting with the constraints of analyticity in a
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manifestly relativistic approach [10—15]. The one most widely used is the infrared (IR) regularization of Ref. [11]
by Becher and Leutwyler. A possible generalization to multi-loop diagrams has been suggested in Ref. [16].

In the present Letter we provide a formulation of the IR regularization of Becher and Leutwyler in a form
analogous to the extended on-mass-shell (EOMS) renormalization of Ref. [15]. As a result of the reformulation,
IR regularization is applicable to multi-loop diagrams [17] as well as to diagrams involving several fermion lines
and/or resonances.

2. Comparison of IR regularization and EOM Srenormalization

In order to reformulate the infrared regularization of Becher and Leutwyler [11] in a form analogous to the
EOMS renormalization of Ref. [15], we consider as an example the characteristic, dimensionally regularized, one-
loop integral of the fermion self-energy,

1
2m)" [(k — p)2 —m2 4 i0+][k2 — M2 +i0+]’

wheren denotes the number of space—time dimensions. The massesl M refer to the nucleon mass in the
chiral limit and the lowest-order pion mass, respectively. Using the standard power counting of Refs. [18,19] we
assign the orde@” 2 to the integrally, . Here,Q collectively denotes small expansion parameters such as the
pion mass or small external momenta. (Note thgt satisfies power counting only after subtraction [11,15].)

To implementthe IR regularization and to compare with the EOMS renormalization scheme we use the Feynman
parametrization formula
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with a = (k — p)2—m?+i0t andb = k2 — M?+i0%, interchange the order of integrations, perform the integration
over loop momenta, and obtain

(n/2)—2

1
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where

A(R) = —p2(1 — 2)z + m?z + M2(1 - z) —iO*.

In the approach of Becher and Leutwyler, the intedggl is divided into the IR singular paitand the remainder
R, Iy =1 + R, defined as

1 n —
1=— n )n/zF(Z n/Z)/dZ Az ) ( /2) 2’ .
= Gmyzl @=1/2) / dz[A@)]"272 .

In this decomposition, for noninteger the integral/ is proportional to a noninteger power of the pion mass
(~ M"—3) and thus satisfies the power counting. On the other hand, the rema&ritses not satisfy the power
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counting but, for arbitraryt, contains non-negative powers of small parameters and is thus absorbed into an infinite
number of counterterms. Divergent parts/adre also absorbed in an infinite number of counterterms.

In Ref. [15] we have formulated the EOMS renormalization scheme using the dimensional counting method
of Ref. [20], which can be considered as an intuitive version of the more rigorous “strategy of regions” (see, e.g.,
Ref. [21]). In our EOMS renormalization scheme [15] we apply a conventional renormalization prescription which
allows us to identify the terms which we subtract from a given integral without calculating the integral beforehand.
In essence we work with a modified integrand which is obtained from the original integrand by subtracting a
suitable number of counterterms. To find the subtraction terms we consider the series

e
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where[.. ] 2_,2 means that we consider the coefficients pf — m?)! (M?)7 only for four-momentap* which

satisfy the on-mass-shell condition. Although the coefficients still depend on the directidin after integration

of this series with respect to the loop momehtand evaluation of the resulting coefficients fot = m?2, the

integrated series is a function @f only. We subtract from Eq. (1) those terms of the expansion of Eq. (6)

which violate the power counting. These terms are analytic in the small parameters and do not contain infrared

divergences. For the given example we only need to subtract the first term of the expansion of Eq. (6).
We note that integrating Eq. (6) term by term reproduces the expansiBrobEq. (5) in M2 and p2 — m?2.

This can be checked by explicitly integrating the first few coefficients of the expansion of Eq. (6); we indeed see

that they coincide with the coefficients of the expansio® aff Ref. [11]:

R =
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A more straightforward and transparent way of obtaining the IR regulaiiarto rewritel, using the Feynman

(or Schwinger) parameterization, integrate over loop momenta, expand the resulting integrand (of the integration
over parameters) in a Taylor series of Lorentz-invariant small expansion parameters (small masses and Lorentz-
invariant combinations of external momenta and large masses), and, finally, interchange summation and integration:
[dx>" — Y [dx.Asis shown in the next section, the above observation is correct in general, i.e., by expanding
the integrand of any integral with an arbitrary number of nucleon and pion denominators in small parameters and
interchanging summation and integration, one reproduces the expansion of the IR regular part of the?integral.
In other words, the IR regular part corresponds to the analytic part of the dimensional counting method [20] or,
equivalently, to the hard part of a given loop integral in the technique of the “strategy of regions” [21].

2 Note the important difference with Ref. [10], where the expansion of the integrand with subsequent interchange of integration and
summation reproduces the chiral expansion of the power-counting preserving part. As shown in Ref. [11] this expansion does not always
converge.
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3. General case

Let us consider the general one-loop scalar integral corresponding to diagrams with one fermion line and an
arbitrary number of pion and fermion propagators:

I ( ) =i I :
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where
bj=k+p)2—m2+i0t, @ =(k+qg)?—M2+i0".

Tensor integrals are reduced to the scalar integrals of Eq. (8) in the standard fashion [22].
Following Ref. [11] we apply the infrared regularization to the integral of Eq. (8). We start by combining all
meson propagators using the formula

1 g\ 7 7 X
a1 =<8M2> /dxl"'/dx’"*lﬁ' ©
0 0
The numeratoX is given by
1, form =2,
- {xz(X3)2 o Gome)™2, form > 2,
and the denominatof is given by the recursive expression
A=Apn,
Ar1=a,

Apri=xpAp+A—xp)apy1 (p=1....m—=1).
The result forA is of the form
A=(k+q)°>—A+i0T, (10)
where the constant tereh is of orderQ?, andg is a linear combination of external momenta and is of oxdér
Analogously we combine the nucleon propagators
1

1
1 9\ Y
=|— dyr--- | dyj—1—. 11
b1 D (8m2> fyl /yl 15 (11)
0
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The numeratol is given by
1, forl =2,
- {yz(ys)zm(yll)lz, forl> 2,
and the denominata® is given by the recursive expression
B =By,
B1=b;,
Bpr1=ypBp+ A —yp)bp+1 (p=1,....1-1).
The result forB reads
B=(k+ P)>— B+i0", (12)
whereP is a linear combination of external momenf& = m2 + O(Q) andB = m? + O(Q).
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Next we combine the denominatatsand B using

1
1 _/ dz
AB_O [(1—2)A +zB)?
and obtain for the integral of Eq. (8)
5 \mD /5 \(-D . ! : ; ; d"k 1
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(13)

SubstitutingA and B from Egs. (10) and (12) in Eq. (13), evaluating the derivatives, and shiftirgk — Pz —
q(1— z), we obtain

1 1 1
idl+m— 1)'fdzz’*1(1—z)’"*lfdyl.-.fdx 1YX d"k 1 (14)
' " @) [k2 — f ()1
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where

f(2)=P%%— (P2 B)z+A(l—2) — (§2—2P - §)z(1—2) —i0".
Finally, the integration of Eq. (14) ovéryields

( 1)l—l—m 1 1 1

~G@oyz TU+m—n/2) / dzg L1 -yt / dyp - / dxp-1 Y X[ f(] "7, (15)

0 0 0

To apply the IR regularization we rewrite théntegration as

1 00 00
0 0 1

The result of the first integration is identified as the IR singular part and of the second as the IR regular part. In
the IR regular part one can expand the integrand in small momenta and masses and interchange summation anc
integration [11]. This leads to integrals oveof the type

o0
I; =/dzz”+i, (16)
1

wherei is an integer number. Thedgare multiplied by (further) integrals over; andy, which do not depend
onn. The integrals of Eq. (16) are calculated by analytic continuation from the domaime¥hich they converge,
ie.,

n+i+1 |0 1

L il

Z

[, =—— 17
"Tan+i+1 (17)

On the other hand, if we expand the integrand in Eq. (15) in small momenta and masses and interchange
summation and integration, we obtain exactly the same expansion as for the IR regular part of the IR regularization
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with the only difference that instead of the integral®f Eq. (16) we now havk

1

Ji = —/dzz"+i. (18)
0
Calculating these integrals by analytical continuation from the domainifvhich they converge, we obtain:

n+i+1 |1 1

— Z _—
o n+i+l

Cn+i+1

Comparing Egs. (17) and (19) we see that the expansion of the integrand in Eq. (15) with subsequent interchange
of summation and integration exactly reproduces the result of the IR regular part of the loop integral. Next we
observe that, if we expand the integrand of Eq. (14) in small parameters and interchange summation and integration
over k, we obtain exactly the same result as by expanding the integrand in Eq. (15) in small parameters with
subsequent interchange of summation and integration over Feynman parameters. We further note that the result
of the expansion of the integrand of Eq. (14) in small parameters with subsequent interchange of summation
and integration ovet coincides with the series which is obtained whenfarenally expand the integrand of the
original integral in small parameters, using a formula analogous to Eq. (6), interchange summation and integration,
and rewrite the integrals of the obtained series in Feynman parametrization. We thus conclude that the IR regular
part of the original integral can be obtained by expanding the integrand in small parameters and interchanging
summation and integration over loop momenta. In practical calculations of the IR regular parts of loop integrals it

is convenient to reduce the loop integrals to integrals over (Feynman/Schwinger) parameters, expand the integrand
in Lorentz-invariant small expansion parameters (small masses and Lorentz-invariant combinations of external
momenta and large masses), and interchange integration and summation.

(19)

Ji

4. Applications

As a check and application of our formulation of the IR regularization we have explicitly verified for all integrals
of pion—nucleon scattering of Ref. [23] (to the order which is needed for the accuracy of calculations of that work)
that, by expanding the integrands in small parameters and changing the order of summation and loop integration,
one reproduces the IR regular parts of these integrals. The IR regular parts as well as the IR singular parts separately
contain additional divergences which are not present in the original integral. (In our expansion of the IR regular
parts these divergences occur as IR divergefics.the approach of Becher and Leutwyler these divergences
of both parts are absorbed in counterterms. (In fact they exactly cancel each other and hence do not give any
contributions in counterterms.) In our formulation the IR regularized integrals are obtained by subtracting the IR
regular parts, from which the IR divergences are removed beforehand, from the full expressions of the integrals.
Clearly our expressions of the IR regularized integrals coincide with the results of the Becher—Leutwyler approach.

It is straightforward to apply our formulation of IR regularization to diagrams with multiple nucleon lines. We
have checked that our approach reproduces the results of Ref. [24] for diagrams with two nucleon propagators. As
an illustration let us consider the following integral:

d"k 1

Iynn (PL, — P>, 0) =i .
NNm (P —F2, 0) =1 1)" [(k + P02 — m2 +i0F][(k — P2)2 — m2 + i0T|[k2 — M2+ i0"]

(20)

3 The minus sign relative to Eq. (16) stems from the definition}?(zﬁsfflC>o dz---.
4 Note that, using dimensional regularization, IR divergences are also parametriz&d as4} poles.
5 Our notations differ from those of Ref. [24].
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Using Feynman parametrization and performing loop momenta integration one camwyiiteas [24]

1 1

1 I'B—n/2 n/2)—
INN7 (P1, —P2,0) = @2 ( 2n/ )/dzz/dw [Cw,z) —i0T]"?73, (21)

0 -1
where

(P14 P)? z(1—-2)(P?2+P2) wz(l-2)(PZ— PP
4 2 2 '
Following Ref. [24] we define the IR regular part of the integhal; (P1, — P2, 0) as

C(w,2) = (1 —)M*+zm* — 22(1— w?)

00 -1 00
1 T@—n/2 02—
Ruwz (P —P2.0) = oo ( 2”/ )fdzz< f dw+fdw)[C(w,z)—io+]< /23 (22)
1 —00 1

To calculateRyy, we expand the integrand of Eq. (22) in powerstsf, 4m? — (P1 + P»)?, P? — m?, and
P22 — m? and interchange integration and summation [24]. Doing so we obtain a series, the coefficients of which
are proportional to the integrals

o0

-1 [ee)
I;j =/dz (ZZ)(WZ)_SZlH( / dw—l—/dw) (wz)(”/z)_swj,
—0 1

1

wherei andj are integers. Again, the integralg are calculated by analytical continuation from the domain of
in which they converge, leading to

o 1+ (-1)/

YT n—4+i)(n—5+))
On the other hand, in our approach we identify the IR regular pali{f; by expanding the integrand in Eq. (21)
in powers of small parameter$/@, 4m? — (P1 + P»)?, P — m?, and P7 — m?) and interchanging summation
and integration over Feynman parameters. This leads to exactly the same expansion that we obtained above for
Rnnr (P1, — P2, 0), butinstead of the integralg; we now have

(23)

1 1
Jij — / dz (ZZ)(Vl/z)*3zl+i / dw (w2)(n/2)73wj’
0 -1

which we calculate by analytically continuing from the domaimaf which they converge:

1+ (-1’
J,‘j = ; .
m—4+i)(n—5+j)
Clearly, in analogy to the one-nucleon sector our formulation of IR regularization reproduces the results of Ref. [24]
for diagrams involving two nucleon lines.
Recently, we have shown [25] that, within the EOMS renormalization scheme, one can set up a consistent power
counting in the effective field theory with (axial) vector mesons included explicitly. Analogously we could apply the
IR regularization in our formulation. When treating vector mesons in the antisymmetric tensor field representation
and analyzing the diagrams contributing to the electromagnetic form factors of the nucleon up to and including
O(g%), we observe that in Ref. [26] all relevant loop diagrams have actually been taken into account. This is due
to the fact that the integrals involving only vector meson and nucleon propagators vanish in IR regularization.

(24)
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Finally, we have also applied our formulation of the IR regularization to the integral considered in Ref. [27] in
the context of including thet resonance:

/ d"k 1
"] @) [k = p)2 +i0T k2 — M2 1 i0+]"

For p? > M? the chiral dimension of this integral should &2 [27]. An explicit calculation of the integrab,,
results in

lox (—p,0) =

(25)

M" 4 T2-n/2T(n/2-1) o p%4i0f
whereF (a, b; ¢; z) is the hypergeometric function [28]. Fpf > M2 we rewrite Eq. (26) as
M"2 T(1-n/2) M?
Ton (—p. 0) = Fl1,2-n/2n/2; ———
07'[( p’o) (47_’:)"/2 p2 ( ’ Vl/ an/ ’p2+10+>
(—p2—i0HW/2D-212 - n/2T(n/2—VIr'(n/2—1) M2 \"3 27)
(4m)n/? C'(n—2) p2+i0t

Analogously to Ref. [11] we identify the first term in Eq. (27), which, for noninteger valuesisfproportional to

a noninteger power a¥/, as the IR singular part and the second term as the IR regular part. The IR singular part
satisfies the power counting and would generate an infinite number of terms if the function multigi/ifgvere
expanded in powers dif2. This differs from the result of Ref. [27], where only the first term of such an expansion
was identified as the IR singular part &f; (—p, 0).

In analogy to the self-energy integral considered above, it is straightforward to check explicitly that, if one
expands the integrand of Eq. (25) in powersMf and interchanges integration and summation, one exactly
reproduces the expansion of the second (regular) term of Eq. (27) in powe&/of.

The integrallo; (— p, 0) has an imaginary part fgr? > M2 which in both definitions, ours and that of Ref. [27],
is included in the IR regular paftThis imaginary part is given by

1 2,2
1671’(1 M/p )

in n = 4 dimensions and violates the power counting. Therefore, although the regular part is analyfiaird
consequently its real part can be absorbed by counterterms of the Lagrangian, the imaginary part cannot be altered
As a result there exists no subtraction scheme within which the renormalized versigii-ep, 0) would satisfy

the power counting. However, from this observation one shooildiraw the conclusion that there is no consistent
power counting in a manifestly Lorentz-invariant formulation of BChPT with spgihfarticles included explicitly.

Rather, as already pointed out in Ref. [27], the intedgal— p, 0) occurs when the spin/2 particle propagator is
decomposed using projection operators and the apparent puzzle disappears once the results for this decompositio
are put together.

5. Summary and conclusions

We have reformulated the IR regularization of Becher and Leutwyler [11] in a form analogous to our EOMS
renormalization scheme of Ref. [15]. Within this (new) formulation the subtraction terms are found by expanding
the integrands of loop integrals in powers of small parameters (small masses and Lorentz-invariant combinations
of external momenta and large masses) and subsequently exchanging the order of integration and summation.

6 In Ref. [27] the same boundary condition as in Eq. (25) has been assumed [29].
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Isolating the infrared divergences from these terms and subtracting them from the original relativistic loop integral
one obtains the IR regularized expression of the integral. One advantage of the new formulation of IR regularization
is that it can be applied to diagrams with an arbitrary number of propagators with various masses (e.g., resonances)
and/or diagrams with several fermion lines as well as to multi-loop diagrams [17].
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