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Abstract

We formulate the infrared regularization of Becher and Leutwyler in a form analogous to our recently proposed e
on-mass-shell renormalization. In our formulation, IR regularization can be applied to multi-loop diagrams with an a
number of particles with arbitrary masses.
 2004 Published by Elsevier B.V.

PACS: 11.10.Gh; 12.39.Fe

1. Introduction

Starting with Weinberg’s fundamental work on phenomenological Lagrangians [1], it became poss
systematically calculate corrections to the soft-pion results obtained within the framework of current alge
The corresponding effective field theory (EFT)—chiral perturbation theory (ChPT)—has been very succe
describing the strong interactions at low energies (for a recent review see, e.g., Ref. [3]). In the mesonic se
combination of standard dimensional regularization (DR) and the modified minimal subtraction scheme o
(M̃S) led to a straightforward correspondence between the loop expansion and the chiral expansion in
momenta and quark masses at a fixed ratio [4,5]. The one-baryon sector proved to be more complicate
particular, using the same combination of DR and̃MS as in mesonic ChPT, higher-order loops contribute in lo
chiral orders and therefore the correspondence between the loop expansion and the chiral expansion seem
(see Fig. 2 of Ref. [6]). One solution to this power-counting problem was given in the framework of heavy-
chiral perturbation theory (HBChPT) [7], and most of the recent calculations have been performed with
approach [8,9]. While successful in many cases, HBChPT destroys the analytic structure in part of the low
region. Several methods have been suggested to reconcile power counting with the constraints of analyt
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manifestly relativistic approach [10–15]. The one most widely used is the infrared (IR) regularization of Re
by Becher and Leutwyler. A possible generalization to multi-loop diagrams has been suggested in Ref. [16

In the present Letter we provide a formulation of the IR regularization of Becher and Leutwyler in a
analogous to the extended on-mass-shell (EOMS) renormalization of Ref. [15]. As a result of the reform
IR regularization is applicable to multi-loop diagrams [17] as well as to diagrams involving several fermio
and/or resonances.

2. Comparison of IR regularization and EOMS renormalization

In order to reformulate the infrared regularization of Becher and Leutwyler [11] in a form analogous
EOMS renormalization of Ref. [15], we consider as an example the characteristic, dimensionally regulariz
loop integral of the fermion self-energy,

(1)INπ (−p,0)= i

∫
dnk

(2π)n
1

[(k − p)2 −m2 + i0+][k2 −M2 + i0+] ,

wheren denotes the number of space–time dimensions. The massesm andM refer to the nucleon mass in th
chiral limit and the lowest-order pion mass, respectively. Using the standard power counting of Refs. [18
assign the orderQn−3 to the integralINπ . Here,Q collectively denotes small expansion parameters such a
pion mass or small external momenta. (Note thatINπ satisfies power counting only after subtraction [11,15].)

To implement the IR regularization and to compare with the EOMS renormalization scheme we use the F
parametrization formula

(2)
1

ab
=

1∫
0

dz

[az+ b(1− z)]2 ,

with a = (k−p)2−m2+ i0+ andb = k2−M2+ i0+, interchange the order of integrations, perform the integra
over loop momentak, and obtain

(3)INπ (−p,0)= − 1

(4π)n/2
�(2 − n/2)

1∫
0

dz
[
A(z)

](n/2)−2
,

where

A(z)= −p2(1− z)z+m2z+M2(1− z)− i0+.

In the approach of Becher and Leutwyler, the integralINπ is divided into the IR singular partI and the remainde
R, INπ = I +R, defined as

(4)I = − 1

(4π)n/2
�(2 − n/2)

∞∫
0

dz
[
A(z)

](n/2)−2
,

(5)R = 1

(4π)n/2
�(2− n/2)

∞∫
1

dz
[
A(z)

](n/2)−2
.

In this decomposition, for nonintegern the integralI is proportional to a noninteger power of the pion m
(∼ Mn−3) and thus satisfies the power counting. On the other hand, the remainderR does not satisfy the powe
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counting but, for arbitraryn, contains non-negative powers of small parameters and is thus absorbed into an
number of counterterms. Divergent parts ofI are also absorbed in an infinite number of counterterms.

In Ref. [15] we have formulated the EOMS renormalization scheme using the dimensional counting
of Ref. [20], which can be considered as an intuitive version of the more rigorous “strategy of regions” (se
Ref. [21]). In our EOMS renormalization scheme [15] we apply a conventional renormalization prescription
allows us to identify the terms which we subtract from a given integral without calculating the integral befor
In essence we work with a modified integrand which is obtained from the original integrand by subtra
suitable number of counterterms. To find the subtraction terms we consider the series

∞∑
l,j=0

(p2 −m2)l(M2)j

l!j !
{(

1

2p2
pµ

∂

∂pµ

)l(
∂

∂M2

)j 1

[(k − p)2 −m2 + i0+][k2 −M2 + i0+]
}
p2=m2,M2=0

= 1

(k2 − 2k · p + i0+)(k2 + i0+)

∣∣∣∣
p2=m2

+ M2 1

(k2 − 2k · p + i0+)(k2 + i0+)2

∣∣∣∣
p2=m2

+ (
p2 −m2)[ 1

2m2

1

(k2 − 2k · p + i0+)2
− 1

2m2

1

(k2 − 2k · p + i0+)(k2 + i0+)

(6)− 1

(k2 − 2k · p + i0+)2(k2 + i0+)

]
p2=m2

+ · · · ,

where[. . .]p2=m2 means that we consider the coefficients of(p2 −m2)l(M2)j only for four-momentapµ which
satisfy the on-mass-shell condition. Although the coefficients still depend on the direction ofpµ, after integration
of this series with respect to the loop momentak and evaluation of the resulting coefficients forp2 = m2, the
integrated series is a function ofp2 only. We subtract from Eq. (1) those terms of the expansion of Eq
which violate the power counting. These terms are analytic in the small parameters and do not contain
divergences. For the given example we only need to subtract the first term of the expansion of Eq. (6).

We note that integrating Eq. (6) term by term reproduces the expansion ofR of Eq. (5) inM2 andp2 − m2.
This can be checked by explicitly integrating the first few coefficients of the expansion of Eq. (6); we inde
that they coincide with the coefficients of the expansion ofR of Ref. [11]:

(7)R = −mn−4�(2 − n/2)

(4π)n/2(n− 3)

[
1− p2 −m2

2m2 + (n− 6)(p2 −m2)2

4m4(n− 5)
+ (n− 3)M2

2m2(n− 5)
+ · · ·

]
.

A more straightforward and transparent way of obtaining the IR regular partR is to rewriteINπ using the Feynman
(or Schwinger) parameterization, integrate over loop momenta, expand the resulting integrand (of the int
over parameters) in a Taylor series of Lorentz-invariant small expansion parameters (small masses and
invariant combinations of external momenta and large masses), and, finally, interchange summation and int∫
dx
∑→∑∫

dx. As is shown in the next section, the above observation is correct in general, i.e., by exp
the integrand of any integral with an arbitrary number of nucleon and pion denominators in small parame
interchanging summation and integration, one reproduces the expansion of the IR regular part of the i2

In other words, the IR regular part corresponds to the analytic part of the dimensional counting method
equivalently, to the hard part of a given loop integral in the technique of the “strategy of regions” [21].

2 Note the important difference with Ref. [10], where the expansion of the integrand with subsequent interchange of integra
summation reproduces the chiral expansion of the power-counting preserving part. As shown in Ref. [11] this expansion does n
converge.
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Let us consider the general one-loop scalar integral corresponding to diagrams with one fermion line
arbitrary number of pion and fermion propagators:

(8)IN ···π ···(p1, . . . , q1, . . .)= i

∫
dnk

(2π)n
1

b1 · · ·bla1 · · ·am ,
where

bj = (k + pj )
2 −m2 + i0+, ai = (k + qi)

2 −M2 + i0+.
Tensor integrals are reduced to the scalar integrals of Eq. (8) in the standard fashion [22].

Following Ref. [11] we apply the infrared regularization to the integral of Eq. (8). We start by combinin
meson propagators using the formula

(9)
1

a1 · · ·am =
(

∂

∂M2

)(m−1) 1∫
0

dx1 · · ·
1∫

0

dxm−1
X

A
.

The numeratorX is given by

X =
{

1, for m= 2,

x2(x3)
2 · · · (xm−1)

m−2, for m> 2,

and the denominatorA is given by the recursive expression

A=Am,

A1 = a1,

Ap+1 = xpAp + (1− xp)ap+1 (p = 1, . . . ,m− 1).

The result forA is of the form

(10)A= (k + q̄)2 − Ā+ i0+,
where the constant term̄A is of orderQ2, andq̄ is a linear combination of external momenta and is of orderQ1.

Analogously we combine the nucleon propagators

(11)
1

b1 · · ·bl =
(

∂

∂m2

)(l−1) 1∫
0

dy1 · · ·
1∫

0

dyl−1
Y

B
.

The numeratorY is given by

Y =
{

1, for l = 2,

y2(y3)
2 · · · (yl−1)

l−2, for l > 2,

and the denominatorB is given by the recursive expression

B = Bl,

B1 = b1,

Bp+1 = ypBp + (1− yp)bp+1 (p = 1, . . . , l − 1).

The result forB reads

(12)B = (k + P̄ )2 − B̄ + i0+,
whereP̄ is a linear combination of external momenta,P̄ 2 =m2 +O(Q) andB̄ =m2 +O(Q).
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1

AB
=

1∫
0

dz

[(1− z)A+ zB]2

and obtain for the integral of Eq. (8)

(13)

i

(
∂

∂M2

)(m−1)(
∂

∂m2

)(l−1) 1∫
0

dz

1∫
0

dy1 · · ·
1∫

0

dyl−1

1∫
0

dx1 · · ·
1∫

0

dxm−1 YX

∫
dnk

(2π)n
1

[(1− z)A+ zB]2 .

SubstitutingA andB from Eqs. (10) and (12) in Eq. (13), evaluating the derivatives, and shiftingk → k − P̄ z−
q̄(1− z), we obtain

(14)i(l +m− 1)!
1∫

0

dz zl−1(1− z)m−1

1∫
0

dy1 · · ·
1∫

0

dxm−1YX

∫
dnk

(2π)n
1

[k2 − f (z)]l+m ,

where

f (z)= P̄ 2z2 − (
P̄ 2 − B̄

)
z+ Ā(1− z)− (

q̄2 − 2P̄ · q̄)z(1− z)− i0+.

Finally, the integration of Eq. (14) overk yields

(15)
(−1)1−l−m

(4π)n/2
�(l +m− n/2)

1∫
0

dz zl−1(1− z)m−1

1∫
0

dy1 · · ·
1∫

0

dxm−1YX
[
f (z)

](n/2)−l−m
.

To apply the IR regularization we rewrite thez integration as

1∫
0

dz · · · =
∞∫

0

dz · · · −
∞∫

1

dz · · · .

The result of the first integration is identified as the IR singular part and of the second as the IR regular
the IR regular part one can expand the integrand in small momenta and masses and interchange summ
integration [11]. This leads to integrals overz of the type

(16)Ii =
∞∫

1

dz zn+i ,

wherei is an integer number. TheseIi are multiplied by (further) integrals overxj andyk which do not depend
onn. The integrals of Eq. (16) are calculated by analytic continuation from the domain ofn in which they converge
i.e.,

(17)Ii = zn+i+1

n+ i + 1

∣∣∣∣∞
1

= − 1

n+ i + 1
.

On the other hand, if we expand the integrand in Eq. (15) in small momenta and masses and inte
summation and integration, we obtain exactly the same expansion as for the IR regular part of the IR regul
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with the only difference that instead of the integralsIi of Eq. (16) we now have3

(18)Ji = −
1∫

0

dz zn+i .

Calculating these integrals by analytical continuation from the domain ofn in which they converge, we obtain:

(19)Ji = − zn+i+1

n+ i + 1

∣∣∣∣1
0
= − 1

n+ i + 1
.

Comparing Eqs. (17) and (19) we see that the expansion of the integrand in Eq. (15) with subsequent inte
of summation and integration exactly reproduces the result of the IR regular part of the loop integral. N
observe that, if we expand the integrand of Eq. (14) in small parameters and interchange summation and in
over k, we obtain exactly the same result as by expanding the integrand in Eq. (15) in small paramete
subsequent interchange of summation and integration over Feynman parameters. We further note that
of the expansion of the integrand of Eq. (14) in small parameters with subsequent interchange of sum
and integration overk coincides with the series which is obtained when weformally expand the integrand of th
original integral in small parameters, using a formula analogous to Eq. (6), interchange summation and inte
and rewrite the integrals of the obtained series in Feynman parametrization. We thus conclude that the IR
part of the original integral can be obtained by expanding the integrand in small parameters and interc
summation and integration over loop momenta. In practical calculations of the IR regular parts of loop inte
is convenient to reduce the loop integrals to integrals over (Feynman/Schwinger) parameters, expand the
in Lorentz-invariant small expansion parameters (small masses and Lorentz-invariant combinations of
momenta and large masses), and interchange integration and summation.

4. Applications

As a check and application of our formulation of the IR regularization we have explicitly verified for all inte
of pion–nucleon scattering of Ref. [23] (to the order which is needed for the accuracy of calculations of tha
that, by expanding the integrands in small parameters and changing the order of summation and loop int
one reproduces the IR regular parts of these integrals. The IR regular parts as well as the IR singular parts s
contain additional divergences which are not present in the original integral. (In our expansion of the IR
parts these divergences occur as IR divergences.4) In the approach of Becher and Leutwyler these diverge
of both parts are absorbed in counterterms. (In fact they exactly cancel each other and hence do not
contributions in counterterms.) In our formulation the IR regularized integrals are obtained by subtracting
regular parts, from which the IR divergences are removed beforehand, from the full expressions of the in
Clearly our expressions of the IR regularized integrals coincide with the results of the Becher–Leutwyler ap

It is straightforward to apply our formulation of IR regularization to diagrams with multiple nucleon lines
have checked that our approach reproduces the results of Ref. [24] for diagrams with two nucleon propag
an illustration let us consider the following integral:5

(20)INNπ (P1,−P2,0)= i

∫
dnk

(2π)n
1

[(k + P1)2 −m2 + i0+][(k −P2)2 −m2 + i0+][k2 −M2 + i0+] .

3 The minus sign relative to Eq. (16) stems from the definition ofR as−∫∞
1 dz · · ·.

4 Note that, using dimensional regularization, IR divergences are also parametrized as 1/(n− 4) poles.
5 Our notations differ from those of Ref. [24].
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Using Feynman parametrization and performing loop momenta integration one can writeINNπ as [24]

(21)INNπ (P1,−P2,0)= 1

(4π)n/2
�(3− n/2)

2

1∫
0

dz z

1∫
−1

dw
[
C(w,z)− i0+](n/2)−3

,

where

C(w,z)= (1− z)M2 + zm2 − z2(1−w2) (P1 + P2)
2

4
− z(1− z)(P 2

1 + P 2
2 )

2
− wz(1− z)(P 2

1 − P 2
2 )

2
.

Following Ref. [24] we define the IR regular part of the integralINNπ (P1,−P2,0) as

(22)RNNπ (P1,−P2,0)= 1

(4π)n/2
�(3− n/2)

2

∞∫
1

dz z

( −1∫
−∞

dw+
∞∫

1

dw

)[
C(w,z)− i0+](n/2)−3

.

To calculateRNNπ we expand the integrand of Eq. (22) in powers ofM2, 4m2 − (P1 + P2)
2, P 2

1 − m2, and
P 2

2 −m2 and interchange integration and summation [24]. Doing so we obtain a series, the coefficients o
are proportional to the integrals

Iij =
∞∫

1

dz
(
z2)(n/2)−3

z1+i
( −1∫

−∞
dw +

∞∫
1

dw

)(
w2)(n/2)−3

wj ,

wherei andj are integers. Again, the integralsIij are calculated by analytical continuation from the domain on

in which they converge, leading to

(23)Iij = 1+ (−1)j

(n− 4+ i)(n− 5+ j)
.

On the other hand, in our approach we identify the IR regular part ofINNπ by expanding the integrand in Eq. (2
in powers of small parameters (M2, 4m2 − (P1 + P2)

2, P 2
1 − m2, andP 2

2 − m2) and interchanging summatio
and integration over Feynman parameters. This leads to exactly the same expansion that we obtained
RNNπ (P1,−P2,0), but instead of the integralsIij we now have

Jij =
1∫

0

dz
(
z2)(n/2)−3

z1+i
1∫

−1

dw
(
w2)(n/2)−3

wj ,

which we calculate by analytically continuing from the domain ofn in which they converge:

(24)Jij = 1+ (−1)j

(n− 4+ i)(n− 5+ j)
.

Clearly, in analogy to the one-nucleon sector our formulation of IR regularization reproduces the results of R
for diagrams involving two nucleon lines.

Recently, we have shown [25] that, within the EOMS renormalization scheme, one can set up a consiste
counting in the effective field theory with (axial) vector mesons included explicitly. Analogously we could app
IR regularization in our formulation. When treating vector mesons in the antisymmetric tensor field represe
and analyzing the diagrams contributing to the electromagnetic form factors of the nucleon up to and in
O(q4), we observe that in Ref. [26] all relevant loop diagrams have actually been taken into account. Thi
to the fact that the integrals involving only vector meson and nucleon propagators vanish in IR regularizati



M.R. Schindler et al. / Physics Letters B 586 (2004) 258–266 265

[27] in

ar part

sion

if one
actly

],

e altered.

ent
.
s
mposition

OMS
anding
inations
mmation.
Finally, we have also applied our formulation of the IR regularization to the integral considered in Ref.
the context of including the∆ resonance:

(25)I0π(−p,0)= i

∫
dnk

(2π)n
1

[(k − p)2 + i0+][k2 −M2 + i0+] .

Forp2 �M2 the chiral dimension of this integral should beQn−2 [27]. An explicit calculation of the integralI0π
results in

(26)I0π(−p,0)= − Mn−4

(4π)n/2
�(2− n/2)�(n/2 − 1)

�(n/2)
F

(
1,2− n/2;n/2; p

2 + i0+

M2

)
,

whereF(a, b; c; z) is the hypergeometric function [28]. Forp2 >M2 we rewrite Eq. (26) as

I0π(−p,0)= Mn−2

(4π)n/2
�(1 − n/2)

p2 F

(
1,2− n/2;n/2; M2

p2 + i0+

)
(27)− (−p2 − i0+)(n/2)−2

(4π)n/2
�(2− n/2)�(n/2 − 1)�(n/2− 1)

�(n− 2)

(
1− M2

p2 + i0+

)n−3

.

Analogously to Ref. [11] we identify the first term in Eq. (27), which, for noninteger values ofn, is proportional to
a noninteger power ofM, as the IR singular part and the second term as the IR regular part. The IR singul
satisfies the power counting and would generate an infinite number of terms if the function multiplyingMn−2 were
expanded in powers ofM2. This differs from the result of Ref. [27], where only the first term of such an expan
was identified as the IR singular part ofI0π(−p,0).

In analogy to the self-energy integral considered above, it is straightforward to check explicitly that,
expands the integrand of Eq. (25) in powers ofM2 and interchanges integration and summation, one ex
reproduces the expansion of the second (regular) term of Eq. (27) in powers ofM2/p2.

The integralI0π(−p,0) has an imaginary part forp2 >M2 which in both definitions, ours and that of Ref. [27
is included in the IR regular part.6 This imaginary part is given by

− 1

16π

(
1−M2/p2)

in n = 4 dimensions and violates the power counting. Therefore, although the regular part is analytic inM2 and
consequently its real part can be absorbed by counterterms of the Lagrangian, the imaginary part cannot b
As a result there exists no subtraction scheme within which the renormalized version ofI0π(−p,0) would satisfy
the power counting. However, from this observation one shouldnot draw the conclusion that there is no consist
power counting in a manifestly Lorentz-invariant formulation of BChPT with spin 3/2 particles included explicitly
Rather, as already pointed out in Ref. [27], the integralI0π(−p,0) occurs when the spin 3/2 particle propagator i
decomposed using projection operators and the apparent puzzle disappears once the results for this deco
are put together.

5. Summary and conclusions

We have reformulated the IR regularization of Becher and Leutwyler [11] in a form analogous to our E
renormalization scheme of Ref. [15]. Within this (new) formulation the subtraction terms are found by exp
the integrands of loop integrals in powers of small parameters (small masses and Lorentz-invariant comb
of external momenta and large masses) and subsequently exchanging the order of integration and su

6 In Ref. [27] the same boundary condition as in Eq. (25) has been assumed [29].
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Isolating the infrared divergences from these terms and subtracting them from the original relativistic loop
one obtains the IR regularized expression of the integral. One advantage of the new formulation of IR regula
is that it can be applied to diagrams with an arbitrary number of propagators with various masses (e.g., res
and/or diagrams with several fermion lines as well as to multi-loop diagrams [17].
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