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Abstract 

A classification scheme for regular languages or finite semigroups was proposed by Pin through 
tree hierarchies, a scheme related to the concatenation product, an operation on languages, and 
to the Schiitzenberger product, an operation on semigroups. Starting with a variety of finite 
semigroups (or pseudovariety of semigroups) V, a pseudovariety of semigroups V,,(V) is asso- 
ciated to each tree U. In this paper, starting with the congruence 11~ generating a locally finite 
pseudovariety of semigroups V for the finite alphabet A, we construct a congruence --u (?A) in 
such a way to generate O,(V) for A. We give partial results on the problem of comparing the 
congruences --u (?A) or the pseudovarieties O,(V). We also propose case studies of associating 
trees to semidirect or two-sided semidirect products of locally finite pseudovarieties. 0 1998 
Elsevier Science B.V. All rights reserved. 

1. Introduction 

A result of Kleene [lo] shows that the class of recognizable languages (that is, rec- 

ognized by finite automata) coincides with the class of regular or rational languages 

which can be obtained from finite languages by the boolean operations, the concate- 

nation product and the star. Star-free languages are those rational languages which 

can be obtained from finite languages by the boolean operations and the concatenation 

product only. Several classification schemes for the star-free languages were proposed 

based on the alternating use of the boolean operations and the concatenation product. 

This led to the natural notion of dot-depth. However, the first question related to this 

notion “given a star-free language, is there an algorithm for computing its dot-depth?” 

appears to be extremely difficult. 

A classification scheme for rational languages was proposed by Pin through tree 

hierarchies [13]. This classification scheme generalizes the above mentioned ones for 

star-free languages. Tree hierarchies are related to the concatenation product, an op- 

eration on languages and to the Schiitzenberger product, an operation on monoids or 

semigroups. 

‘E-mail: blanchetQisis.uncg.edu. 

0166-218X/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved. 

PII SO1 66-2 18X(98)00040-7 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82641828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


158 F. Blanchet-Sadril Discrete Applied Mathematics 86 (1998) 157-179 

In this paper, we give some results on Pin’s tree hierarchies. The notion of con- 

gruence plays a central role in our approach. For any finite alphabet A, denote by 

A* the free monoid generated by A. We say that a monoid S is A-generated if there 

exists a congruence y on A* such that S is isomorphic to A*/y. A pseudovariety of 

monoids V is locally jinite if for any A, there are finitely many A-generated monoids 

in V. Equivalently, there exists for each A, a congruence yA such that an A-generated 

monoid S is in V if and only if S is a morphic image of A*/~A. By Eilenberg’s one- 

to-one correspondence between the pseudovariety V and a *-variety of languages “Y-, 

a language L of A* is in A*“f if and only if L is a union of yA-classes. 

Starting with the congruence 1/A, we associate to each tree u a congruence & (yA) 

in such a way to generate the class A”% of recognizable languages of A* defined 

recursively as follows: If u is the tree reduced to a point, then A*% = A*V; if u = 

then A* ^I/;; is the boolean algebra generated by the languages Li,,alLi, . . . akLik, where 

O<iO<ir < ).. <ik<m, al,... , ak are letters of A and for each 0 <j d k, Li, is in 

A*$$?. Pin showed that the Schiitzenberger product is perfectly adapted to the oper- 

ation (Lo,...,Lk)HLOaiLi . . . akLk. This result allows to build, without reference to 

languages, hierarchies of pseudovarieties of monoids corresponding, via Eilenberg’s 

result, to the above-mentioned hierarchies of *-varieties of languages. In other 

words, starting with a pseudovariety V, a pseudovariety O,(V) is associated to each 

tree u. 

We first give partial results on the problem of comparing the congruences --u 

(ye ) (Section 3). Our congruence construction shows, in particular, that all the pseu- 

dovarieties of the hierarchy built from locally finite pseudovarieties are locally finite 

(Section 4). Case studies are proposed of associating trees to semidirect or two-sided 

semidirect products of locally finite pseudovarieties using our congruence construction 

(Section 5). Definitions and results are given for pseudovarieties of monoids. Up to the 

obvious changes, they hold also for pseudovarieties of semigroups. Unless otherwise 

specified, any congruence we discuss has finite index. 

2. Preliminaries 

This section is devoted to reviewing basic properties of finite monoids and recog- 

nizable languages. The reader is referred to the books of Almeida [2], Eilenberg [8] 

and Pin [ 121 for further definitions and background. 
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2.1. Monoids 

A semigroup is a set S together with an associative binary operation (generally 

denoted multiplicatively). If there is an element 1 of S such that 1s = sl = s for each 

s ES, then S is called a monoid and 1 is its unit. S is a group if S is a monoid and, for 

each s E S, there exists s’ E S such that ss’ = s’s = 1. A subset of S is a suhsemigroup 

(respectively submonoid, subgroup) of S if the induced binary operation makes it 

a semigroup (respectively monoid, group). 

Let S and T be monoids. A morphism q : S + T is a mapping such that cp(ss’) = cp(s) 

qn(s’) for all s, s’ E S and q( 1) = 1. We say that S divides T, and write S < T, if S is 

the image by a morphism of a submonoid of T. 

If A is a set, we let A+ be the free semigroup on A and A* be the jiee monoid 

on A. A+ is the set of all finite strings at . . . ai of elements of A and A* = A+ U {l}, 

where 1 is the empty string (when we write Uj we will always mean a letter in A). 

The operation in A* is the concatenation of these strings. 

2. I. 1. Varieties of jinite monoids 

A variety of monoids is a class of monoids that is closed under division and direct 

product. An M-variety is a class of finite monoids that is closed under division and 

finite direct product. M-varieties are also called pseudovarieties of monoids. Given 

a class C of finite monoids, the intersection of all M-varieties containing C is still an 

M-variety, called the M-variety generated by C. 

A (monoid) identity on a set A is a pair (x, y) of elements of A*, usually indicated 

by a formal equality x = y. We say that a monoid S satisfies an identity x = y (or that 

the identity x = y holds in S) and we write S b x = y if, for any morphism cp : A* + S, 

we have cp(x ) = c&y). For an identity x = y and an M-variety V, the notation V +x = y 

will abbreviate the fact that each S E V satisfies x = y. 

Work of Eilenberg and Schiitzenberger [9] showed that M-varieties are ultimately 

dejined by sequences of identities (that is, a monoid belongs to the given M-variety if 

and only if it satisfies all but finitely many of the identities in the sequence), and that 

finitely generated M-varieties are equational or defined by sequences of identities (that 

is, a monoid belongs to the given M-variety if and only if it satisfies all the identities 

in the sequence). 

We now list a few important M-varieties that we are going to use: 

l A is the M-variety of all finite aperiodic monoids (a monoid S is aperiodic if all 

groups in S are trivial). 

l I is the trivial M-variety consisting only of the l-element monoid. 

l Jr is the M-variety of all finite idempotent and commutative monoids (also called 

.semiluttices) defined by the identities x2 =x and xy = yx. 

l J is the M-variety of all finite f-trivial monoids. 

l M is the M-variety of all finite monoids. 

l R is the M-variety of all finite .%-trivial monoids. 

l G is the M-variety of all finite groups (any M-variety contained in G will be called 

a G-variety). 
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2.2. Languages 

Let A be a finite set. When we deal with languages, A is called an alphabet and its 

elements are called letters. The elements of A* are called words on A. A language on 

A is a subset L of A*. A language L in A * is said to be recognizable if there exists 

a finite monoid S and a morphism cp : A* +S such that L= cp-‘(q(L)), that is, if x E L 

and cp(x) = q(y), then y E L. This is also equivalent to saying that there is a subset 

X of S such that L = cp-l(X). In that case, we say that S (or cp) recognizes L. The 

notions of recognizable sets (by finite monoids and by finite automata) are equivalent. 

To each language L, we associate a congruence NL defined, for x, y E A*, by X-L y 

if and only if uxu and uyv are both in L or both in A*\L, for all u,v in A*. The 

congruence NL is called the syntactic congruence of L and the monoid M(L) =A*/ ML 
is called the syntactic monoid of L. A monoid recognizes L if and only if it is divided 

by M(L). 

2.2.1. Varieties of languages 
A *-variety Y is a family A’Yf of sets of recognizable languages of A* defined 

for all finite alphabets A and satisfying the following three conditions : 

1. A*Y is a boolean algebra, that is, if K and L are in A*%‘“, then so are KU L, K n L 
and A*\L. 

2. If (p:A*+B * is a morphism and L E B* “Y-, then q-‘(L) E A*Y. 
3. IfLEA*YandaEA,thenboth{xEA*IaxEL}and{xEA*IxaEL}areinA*~. 

Eilenberg [8] proved that M-varieties and *-varieties are in one-to-one correspon- 

dence, If V is an M-variety, then A* -Y = {L C A* 1 M(L) E V} defines the correspond- 

ing *-variety -Y. If Y is a *-variety, then the M-variety generated by (M(L) 1 L E A* Y 
for some A} defines the corresponding M-variety V. 

Let V be an M-variety generated by the monoids Sr , . . . , S,,,. Thus V is generated by 

s=s, x...xs,. Let Y’” be the *-variety associated to V. Then A*T is the boolean 

closure of the sets C+-](S) for all s E S and all morphisms cp: A* +S. Consequently, 

A*Y‘ is finite. 

We now list *-varieties of languages associated to some of the M-varieties listed 

previously: 

l A*& consists of the star-free languages of A* [ 161. 

l A*9 = (0, A*} where 0 denotes the empty set. 

l A*2 consists of the piecewise testable languages of A* [ 171. 

l A*& consists of the rational languages of A* [lo]. 

We end this section with a few examples of locally finite M-varieties. 

1. For any positive integer q and nonnegative integer m, Corn,, is the M-variety of 

all finite commutative monoids defined by the identities xmfq =x* and xy = yx (we 

adopt the convention that x0 = 1). For any word x on A and a E A, we denote by 

Jxlcr the number of occurrences of a in x. We define on A* the congruence flu,, by 

xflq,my if for all a E A, 1x1, = I yl,, or IxI,, lyla >m and 1x1, = I yl, mod q (Pi,0 will 
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often be abbreviated by w). An A-generated monoid S is in Comq,n if and only if 

S is a morphic image of A*/&,, (note that Coml,O = I). The M-variety Corn of 

all finite commutative monoids (which is the join Vq31,ma0 Corn,,) is not locally 

finite; the same is true for Corn n A which is the join V, >0 Corn,,,,, and Corn n G 

which is the join Vqa 1 Com,,o. 

2. A hierarchy was introduced by Straubing [21] for the star-free languages of A”: the 

set {@,A*} constitutes A*Y d; then, A*“+i is the boolean algebra generated by the 

languages of the form LOUI Ll . ..a.L,, where i>O, al ,..,, a,fA and Lo ,..., Lj~A* 

Pi- 1. Straubing’s hierarchy induces, by Eilenberg’s correspondence, a hierarchy of 

M-varieties: Vo C Vl C V2 (I which is known to be strict [23]. We have Vo = 1. 

Simon [17] proved that VI = J and hence VI is decidable. The problem remains 

open as to whether Vk is decidable for k 3 2. 

Straubing’s hierarchy can be refined as follows: for each k3 1, m 30, A*-ti.,, is the 

boolean algebra generated by the languages of the form Loal LI . . . aiLi, where 0 < i d m, 

al ,___, ai E A and Lo,. . ., L, t A*Yi- 1. Then, for each positive integer k, VX_ naturally 

contains a subhierarchy of M-varieties : VX,O C Vk. I (G Vk.2 C t . C Vk. 

A remarkable fact about these hierarchies is their connections with some hierarchies 

of formal logic [22, 23, 111. In particular, the congruences x(,,,,.. ,mj) defined below are 

intimately related to Straubing’s hierarchy, namely to its kth level. 

A word al . . . a, on A is a subword of a word z on A if there exist words 20,. . ,z, 

on A such that z =z~alzl aizi. For any nonnegative integer m and word z on A, 

we denote by x~,,,&z) the set of subwords of z of length less than or equal to m. We 

define the congruence ~l(~) on A* by xa(,)y if ~r~,,,(x-)=x~,,(y) (cY(~,=~I,, will often 

be abbreviated by x). An A-generated monoid S is in VI,,, or J,,, if and only if S is 

a morphic image of A*/z(~). 

We proceed with a generalization of LX(,) related to an Ehrenfeucht-Frai’ssl game. 

We identify any word x on A with a word model x = (%\, <“, (Qi)1,6,d) where the 

universe ,/I/, := { 1,. . . ,1x1} re p resents the set of positions of letters in the word x (1x1 

denotes the length of x), <’ denotes the usual order relation on ,I&~, and Qi is a unary 

relation on ?/Y containing the positions with letter a, for each a E A (we will often 

write Q,“p instead of p E Q,“). The game G&x, y), where #I = (ml,. , ml,) is a k-tuple 

of positive integers (k 20) and X, y are words on A, is played between two players 

I and II on the word models x and y. A play of the game consists of k moves. In 

the ith move, Player 1 chooses, in x or in y, a sequence of m, positions; then, Player 

II chooses, in the remaining word (y or x), also a sequence of mi positions. Before 

each move, Player I has to decide whether to choose his next elements from x or 

from y. After k moves, by concatenating the position sequences chosen from x and 

from y, two sequences ~1,. . , p,, from x and 41,. . , q,, from y have been formed 

where n=ml + ‘.. + mk. Player II has won the play if the following two conditions 

are satisfied: pi <‘p, if and only if q;< “4, for all I <i, j,<n, and Qdpi if and 

only if Qlq[ for all 1 <i <n and a E A. Equivalently, the two subwords in x and y 

given by the position sequences ~1,. . . , p,? and 41,. , qn should coincide. If there is 

a winning strategy for Player 11 in the game to win each play we say that Player II 
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wins G,s(x, y) and write XCY,Q. The special case Gi(x, y) where i denotes a k-tuple 

of l’s is the standard Ehrenfeucht-Frai’ssC game [7]. The relation c(~ naturally defines 

a finite-index congruence on A*. 

The congruences c(, can be defined inductively as follows: First, if x = at . . . a, is 

a word on A and 1 f i< j<n, then x[i, j], x(i, j), x(i, j] and x[i,j) denote the factors 

ai . . . aj, ai+l . ..a._l, a;+] . ..aj and ai . . . aj-1 respectively. Now, we have xa(,,,)y if 

and only if 

(a) For every PI,..., P,,,E%~ (pl<...<pm), there exist ql,..., qrnEey (qL<... 

6 qm ) such that 

(i) pi<“pj if and only if qi<J’qj for all l<i, j<m, 

(ii) Q,“pi if and only if Qiqi for all 1 6 i <m and a E A, 

(iii) x[l, PI )kM,ql), 

(iv) X(Pi,pi+l)%,Y(qi,qi+l) for all 1 Gi<m, 

(v) x(pm, Ixllasy(qm, 1~11, and 
(b) For every ql,...,qmE%$ (q1<...6qm), there exist pl,...,pm~%x (PI<... 

<p,) such that (i)-(v) hold. 

For fixed #z, we define the M-variety V, as follows: an A-generated monoid S is 

in V, if and only if S is a morphic image of A*/crc. Note that the equality V,,,,, = J, 
holds. The M-variety vk = VC, ,,,,,, mk) Vc, ,,._., mk) is not locally finite. 

3. For any words x,z on A with z = al . . .ai, the binomial coefficient (z) is defined 

as the number of distinct factorizations of the form x = xoalxl . . aixi with words 

x0,. . . ,Xi on A. For any prime number p and nonnegative integer m, we define on 

A* the congruence S,,, by x&,,y if c) = (z) mod p whenever IzI dm. We define 

the M-variety Hp,m as follows: an A-generated monoid S is in HP,,, if and only 

if S is a morphic image of A*/&,,. The M-variety G, = Urna H,, of all finite 

p-groups is not locally finite. 

3. Congruences associated to trees 

We denote by P the set of trees on the alphabet {c,C}. Formally, P is the set of 

words in {c, C}* congruent to 1 in the congruence generated by the relation cE = 1. 

Intuitively, the words of P are obtained as follows: Given a tree, and starting from the 

root we encode c for going down and C for going up. For example, 
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_ _ __- - 
is encoded by ccCccccccccccc. The number of leaves of a non-empty word u on {c,C}, 

denoted by I(U), is the number of occurrences of the factor cF in u (we define the 

number of leaves of the empty word, I( 1 ), by 1). The following two properties of trees 

are satisfied: 

a Each non-empty tree u can be written uniquely as u = cuaC. . . cu,C where m 3 0 and 

~0,. . . ,u, E P. We have l(u) = COGrGrn l(ui). 

l If u = cuaCr.. . cu,C and u = VI CV~CZ’~ where ~2 E P, then the tree CVZC is factor of 

some cuiC. 

Definition 3.1. Let A be a finite alphabet, u be a tree and 71,. . . , yicu) be equivalence 

relations on A*. We define an equivalence relation z,, (71,. . , ?I(~)) on A* as follows : 

l -_I (y) = y for each equivalence relation y on A*. 

l If u=cuoC where ua E P, q, (~1,. ..J!(~))= +, (~1,. . .,Y,cuoj). 

0 If u=cuoc . . . cu,C where m 3 1 and us,. . . ,u, E P, q, (YI,. . . , Yrcu)) is the equiva- 

lence relation on A* where x --u (~1,. , ylcul)y if and only if 

x-u, (Y/(u”)+...+l(u,-,)+1,~~~, Y~(~~)+...+r(~,))y for all 06i<m, 

(note that when i = 0, this means x Ed,, (y,, . , ylcuoj)y) and 

1. For every pl , . . . , pm E “U, (PI d . . d p,), there exist ql,. ,q,,, E @? (q, d . . 

6 qm ) such that 

(a) pi <“pi if and only if qi <J’qj for all 1 <i, j <m, 

(b) Q,“p; if and only if @qi for all 1 <i <m and a E A, 

Cc) X[l> Pi+1 > -24 (Yl(uo)+...+/(u,~,)+I ~...,Y/(u”)+~~~+r(U,)>Y[l,qi+l) for all O<i<m, 

Cd) X(Pi, Pi+l) E-u, (Y/(u~)+..,+&u,_, )+I ,...,Y~(uo)+..~+~(u,))Y(gi,qi+l) for all ldi<m, 

(e) x(P~, lb4 s, (3(uu)+...+4u,_ ,)+I ,...,;‘/(uo)+...+/(U,))y(qi, lyll for all Ocibm, 
and 

2. For every ql,..., qm E”& (ql d ... Gq,,,), there exist pl,. ..,pm E %.y (p, < . . 

<pm) such that (a)-(e) hold. 

Ify,=...:=‘ii=y for 1 <i <j d I(u), then we will abbreviate zU (y,, . . . , ylcuj) by 

-u (Yl,...,Yi-l,Yj-;+‘,Y;+,,...,Y~(~)). 

We will abbreviate E, (y’(‘)) by --u (y). A consequence of Definition 3.1 is that if 

u=cuac... czc,C with ~0,. , u, E P, then we have 

% (Yl> . 3 Y!(u)) = E_tf2p+l ( s-u0 (?I,. , Y~(Q j), . . . , 

54, (Yl(uo)+-+l(u,_, )+I,. . . , l’r(u,)+...+r@,))). 

Let ti = (ml,. . . ,q.) be a k-tuple of positive integers (k 20). We have that fUni 

(w)= MG where the tree urn is defined, by induction on k, as follows: if k = 0, then 

ufi= 1; then, for m=(m,ml,..., mk), u,ji=(cq, ,,.,,, ml~C)m+l. 
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Lemma 3.1. Let A be a finite alphabet, u be a tree and ~1,. . . , y/(U) be jnite-index con- 
gruences on A*. The equivalence relation E, (71,. . . , yl(,,)) is a finite-index congruence 

on A*. 

Proof. The proof is by induction on u. If u = 1, we have -1 (y) = y. Otherwise, we 

factorize u as u = CZQF.. . cu,C with ~0,. . . , urn E P. We have the following two cases: 

Case 1 (m = 0) and Case 2 (m > 1). 

Case 1. We have sU (~1,. . . , yjcu)) = q. (~1,. . . ,y~(~~)) and the result follows by the 

inductive hypothesis on UO. 

Case 2. Let XE, (rt,. . ,ylcu))y and x’ s-U (yi,. . . ,~l(~))y’. We want to show that 

XX’ -,, (VI,. . . , y~))yy’. First, xx’ s, CYQ,,)+...+K~,-, )+I,, . . , Y~(~~)+...+I(~,))~Y’ for all OGi 
<m by the inductive hypothesis on Ui. Second, let ~1,. . . , pm E 3& (~1 < . ’ . d p,,) 
(the proof is similar if starting with 41,. . . , qm E 4&/). Say ~1,. . . , p,, 6 1x1 and pn+l,. . . , 

p,>IxI for some 06nbm. We treat the case 0 <n <m (the other cases are 

simpler). Put pi = pn+l - 1x1,. . . , pk_, = pm - 1x1. From x =U (~1,. . . ,~+))y, there 

exist ql,..., qnEBy (q1< ... 6qn) satisfying (a)-(e) (here, we let ~1,. . ., pn, 
pn,. . , p,,~ 42, for a total of m positions), and from x’ --u (yi,. . . ,ylcu))y’, there exist 

4; ,...,4;-nEU&~ (4; d . . <qk_,) satisfying (a)-(e) (here, we let pi,. . ,p{, pi,. . , 

pi_,,@& for a total of m positions). Put q,+l =q{ + jy[,...,qm=qh_, + lyl. The 

positions 41, . , qm E %yy~ are such that ql d . . d q,,,, and we have 

X(Pn, 1x11 -IL, (“Jl(rro)+...+l(u._,)+I,. . . > Y/(uo)+...+,(u,))Y(qn, lVll> 

a, P’,> =u, (Yl(uo)+...+l(u”_,)+l,‘.~, Yl(uo)+...+~(u,))y’[l,,4:), 

and by the inductive hypothesis on u, we get 

XX’(Pn, Pn+l) =u, (Y/(uo)+...+/(u._,)+I,. . . T l’/(u,,)+...+l(u,))yy’(9n,qn+lk 

Condition (d) easily follows. Conditions (a)-(c) and (e) are simpler. The relation 

=u (Yl,..., Y,(~)) is hence a congruence on A*. This obviously is finite-index since 

YI,...,Y~(~) are. q 

3.1. Inclusion results 

This section is concerned with comparing the equivalence relations + (~1,. . . , Y[(~)). 

Proposition 3.1, Theorem 3.1, Corollary 3.1 and Theorem 3.2 are adaptations of results 

of [13]. 

Proposition 3.1. Let A be a jinite alphabet, u be a tree and ~1,. , . , y/(U) be congruences 
on A*. We have 

-u (Yl,..., Y/(u)) = =cuc (Yl, . . . ,Y@)) = -cc c-u (Yl,. ..,Yl(u))). 

Proof. This is an immediate consequence of Definition 3.1. •1 
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Theorem 3.1. Let A be a Jinite alphabet, u = V~CV~EV~ be a tree as well as 02 and 
‘~1,. . . , yl(,,) be congruences on A*. We have 

Proof. The proof is by induction on u. If u = cF, we have --c~ (y) = --c~ (-1 (y)). Oth- 

erwise, we factorize u as u = cuaZ.. . cu,C with ~0,. . . , u, E P. We have the following 

two cases: Case 1 (m = 0) and Case 2 (m > 1). 

Case 1. If vl v3 = 1, we get v2 = u. and by Proposition 3.1, we have s,, (~1,. . . , ye) 
= q.5 (=,I, bl, . . 3 YQ~;~)))_ Otherwise, we have ui = cvi, 213 = u:C and hence uo = V{CVZ 

FUG. The result follows by Proposition 3.1 and the inductive hypothesis on ~0. 

Case 2. Then some cu;C has cv2C as factor. We put cuiC= v’cv~Evt’ and by using 

Proposition 3.1 and the inductive hypothesis, we get --cU,~ (?I,. . . ,Y,(~,)) = 

--u,(y1,. . . , Yl(u,)) ==l!‘cw(YI,~~~, Y/(d), =LQ(YI(L”)+I,~~~ > Y~(v’)+l(o~)),Y/(c’)+l(u*)+l,~~~ 3 ‘1&L,)). 
The result follows from --u (yi,. . . ,yl(u~)=~(cc)m+~ (zuo (~1,. . . ,Y/(~~)),. . ., -u, 

(Y/(uo)+...+r(u,_,)+l,...,Yl(u))). 0 

Corollary 3.1. Let A be a Jinite alphabet, u = V~CCV~EV~ be a tree as we12 as v2 and 

~1,. . ,y~,,) be congruences on A*. We have E,, (>I,,. . . , ylcu)) = -~,caz~~j (71,. . . , Al. 

Proof. By Proposition 3.1 and Theorem 3.1. 0 

Corollary 3.1 enables us to restrict ourselves to the set P’ of trees in which each 

node is either a leaf or has a number of children greater than 1. 

If u is a tree and u = vi cv& is a factorization of u, then we say that the occurrences 

of c and C defined by this factorization are related if 19 is a tree. Each occurrence of c 

in u is related to a unique occurrence of F in U. If u and v are trees, then we say that 

u is extracted from v if u can be obtained from v by removing in v a certain number 

of related occurrences of c and C. 

Theorem 3.2. Let A be a Jinite alphabet, u and D be trees, u be extracted from v and 

y be a congruence on A*. We have 3, (y) C -,, (y). 

Proof. We treat the case where v = vicv~Cv~ with vx E P and u = ~1~2~3. The proof 

is by induction on v. If G’ = CC, then u= 1 and the result is obvious. Otherwise, we 

factorize v as tj = CWOC.. . cw,C with wg,. . . , w, E P. We have the following two cases: 

Case 1 (m=O) and Case 2 (m31). 

Case 1. If cl v3 = 1, we get v2 = w. = u and the result follows. Otherwise, we have 

vl = cv{ and 03 = ~$5 and the equality wo = V~CV~CV~ results. By using the inductive 

hypothesis on wo, we deduce 

3, (11) = q$$ (y) c --l.;t’*t’; (y) = --c”;a*o;E (Y> = =u (Y). 
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Case 2. Then some cwiC has cv2C as factor. We put cwiC= V’CV~CV” and cw:C 

= v’v*v”. By using the inductive hypothesis Ed, (y) & zw: (y), we get 

E-L’ (y) = %(,,),+I (Ew, (y), . . . ) SW, (y)) 

c z(c~)m+l (q (y),. . . ,+f (y),. . .,+, (y))= zu (y). q 

Let m be a positive integer. We now define the (m) positions in a word x that will 

lead to an inclusion result useful for our purposes. These positions were defined in 

some of our earlier papers (like [4]) but they are needed to understand the proofs of 

our new results. So we repeat their definition for the sake of completeness. 

Let x be a word on a finite alphabet A. To find the positions that spell the first 

occurrences of every subword of length dm of x (or the (m) jirst positions in x), 

proceed inductively as follows : 

l Let x1 denote the smallest prefix of x such that c((xi) = E(X) (call pt the last position 

of Xl ), 
l Let Xi+1 denote the smallest prefix of x(pj, [xl] such that a(xi+i) = M(x(P~, IX\]) (call 

pii-1 the last position of xi+l) for 16 i < m. 
If la(x)\ = 1 (la(x)\ denotes the cardinality of (x(x)), the positions pi,. . . , pm are the 

ones we are looking for and the procedure terminates. If ia( > 1, the positions 

PI,..., pm are among the ones we are looking for. To find the others, repeat the 

process to find the (m) first positions in x[l, ~1) and the (m - i) first positions in 

X(pi, pi+l) for 1 <i<m. 
We can define similarly the positions that spell the last occurrences of every subword 

of length <m of x (or the (m) last positions in x). The (m) first and the (m) last 

positions in x are called the (m) positions in x. 

Consider the following example: Let A = {a, b} and 

x=aaaaaabababbbbbbababaaabbabbaaa&i&iZ. -- 

The underlined (respectively overlined) positions of x are the (3) first (respectively 

last) positions in x. 

The following lemmas give necessary and sufficient conditions for s(,_~)“+I (a(,), 

w ‘-l, a(,))-equivalence, as well as +~)z (EC,), y)- and ~(~~~2 (y, a(,))-equivalences. 

Lemma 3.2. Let A be a jinite alphabet, x and y be words on A and m, n be positive irz- 
tegers. Letpl,...,p,E~~(pl<..‘<p,)(respectivelyql,...,qrE~~~(ql<.’.<q,)) 
be the (m) positions in x (respectively y). We have x s(~~~+I (a(,), co”-‘, a(,,)~ if and 

only if the following three conditions are satis$ed. 
1. s=t. 

2. Q,“pi if and only if Qiqi for all 1 <i 6s and a E A. 

3. X(Pi, Pi+l b(,)Y(qi,qi+l) for all 1 Gi<s. 

Proof. Assume that Conditions (l)-(3) hold. First, the a(,)-equivalence of x and y 

follows from (1) and (2). Second, let p{, . , pk E qX (pi < . . . d pi> (the proof is 

similar when starting with positions in eY). 
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Case 1. If some of the p$‘s are among ~1,. . . , pS, then for each such p:, there exists 

1 < ij <s such that p) = pi,. Since (1) holds, we may consider qi = qi,. Condition (2) 

implies that Q,Xp: if and only if Qa’qi for a E A. 
Case 2. If pJ ,..., p$, E ~?Q~,,~,+,~ for some ldi<s, lGj<... dj’dn, then from 

(3) there exist q:,. .4$ E %Q,,q,+,) (4: 6 . <qi,) such that pk <“p: if and only 

if q; < Yq; for all j <k, G <j’, and Q,“pi if and only if Qiqi for all j6d < j’ and 

aEA. 

The positions q/1, . . . , q: E v<,, are such that qi < . <qL and satisfy 

l ~,<~p,i if and only if q(<J’qj for all l<i,j<n, 

l Q,“pi if and only if Qiq( for all 1 <i<n and acA, 

. x[l, P;)%l)y[l,q;)> 

. x(P;, Ikll~(m,YMI~ Ml. 
Conversely, assume x E(~_)“+I (cY(,), w”-‘, ~(~))y. Conditions (1) and (2) hold by 

considering each of the (m) positions in turn. To see that Condition (3) holds, let 

P’l*. . .) Pl, E %P,,P,+, 1 (P’, < . < p: ) (the proof is similar when starting with posi- 

tions in %Y(y,,yI+, j). There exist suitable positions q/1,. . . , q; E “u, (qi < . 6qL). The 

facts that x[l, p~)a(,)y[l,q{) and x(pL, Ixl]cc(,)y(qL, lyl] guarantee the membership of 

q{,...,qL in Q4,.4,+,). q 

Lemma 3.13. Let A be a jinite alphabet, x and y be words on A, y be a congruence 

on A” and m be a positive integer. Let pI , . . . , p, E 42X (PI < . < ps) (respectively 

41,. , q, E 9’& (41 < . . . <qr)) be the (m) jirst positions in x (respectively y). We have 

x s(~~)z (XC,,,), 7)~ if and only if the following jive conditions are sutisfied: 
1. s = t. 

2. Qip; if and only if Qiqi for all 1 <i <s and a E A. 

3. X(pi, IXllYY(qi, lyl] for all 1 Gib.7. 

4. For all 1 6i <s andfor every p E 4&,,,p,+,) (respectively q E aY(q,,q,+,,), there exists 

q E JtiY(4,,4,-,) (respectively p E %X(x(p,,p,+,)) such that 
(a) Q,“p zj’and only if Qiq for UEA, 

(b) X(P> Ib4l~y(q~ lull. 
5. For every p E 4&, lx11 (respectively q E %$.(4T, all,), there exists q E 4&$, ,Y,l 

(respectively p E ~zl,cpS,~X~l) such that (a)-(b) hold. 
A similar statement is valid for the (m) last positions and -_(ccjz (y, u(,,,))-equivalence. 

Proof. Assume that Conditions (l)-(5) hold. First, the cr(,)-equivalence of x and y 

follows from (1) and (2), and their y-equivalence from (2) and (3) (with i = 1) and 

the fact that PI = q1 = 1. Second, let p be a position in ‘GYX (the proof is similar when 

starting with a position in “aY). Assume Q,“p. 

Cuse 1. p = pi for some 1 d i d s. Since (1) holds, we may consider q = qi. Condition 

(2) implies that Qlq. 

Case 2. p E O@X~p,,pz+,) for some 1 <i <s. From (4), there exists q E 0BY(yI,4,+, ) such 

that Qiq. 

Cuse 3. p E ~@X~x(pT,~xll. From (5), there exists q E 42!vcy,,lvll such that Qa’q. 
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In all cases, (l)-(5) and the choice of q imply that x[l,p)a(,)y[l,q) and x(p, lxl] 

YY(q, IYII~ 
Conversely, assume x ~(~~~2 (xcm~,~)y. Conditions (l)-(3) hold by considering each 

of the (m) first positions in turn. To see that Condition (4) holds, let p be in %I~P8,P,+,j 

(the proof is similar when starting with q in @Y(4,,41+11). Assume Q,“p. Hence there 

exists q in %Y such that Qiq, x[l,p)a(,jy[l,q) and x(p, Ix/]yy(q, Iyl]. Assume that 

q $ 4?YCq,,y,+, ). Hence q E %Y[~,,,l or q E %Y[y,+,,~J.~~. From the choice of the pi’s and 

the qJ’s, we get a contradiction with either q E Qz or x[ 1, p)a(,,y[ 1, q). Condition (5) 

follows similarly. 0 

Note that in the case where y = w, Conditions (3)-(5) can be replaced by 

Theorem 3.3. Let A be u Jinite alphabet, y be a congruence on A* und m be a positive 

integer. We huve 

--c&“(c”)m+l~ (y, um+‘) = -(c~c)m+l~m+i (y, um+‘). 

Proof. The inclusion +-m(~~c)-(O) CE(,,),+I (0) is clear from Theorem 3.2. 

so G c”+‘(~&)m+’ (Wm+’ ) y) = E-(&)2 (+l(~c~)-(w), y) c -(cc)2 (--(cy(o), y) = --c(cc)“+l 

FCF( Urn+’ , y) by Theorem 3.1. For the reverse inclusion, let us assume that x, y are such 

that x z c(cc)m+‘Fcc w ( m+l, y)y or x --(Cc)2 (01 cm), g)y. We want to show that x -+I(~~_)~+ 

(a”+’ , y)y or X fc(cm(~~~)m)ccr(O”+‘, y)y. By Definition 3.1, we need to show that x 

--cm(ccc)m (a)~, VY and 
l For every p E ex, there exists q E “gY such that 

(a) Q,“p if and only if Q{q for a E A, 

(b) x[l, p) --cm(ccc)m (m)y[l,q), 

(c) X(P, Ixll~y(q, IYII~ and 
l For every q E %YY, there exists p E aI such that (a)-(c) hold. 

Under our assumption, this is equivalent to showing that xyy and 

l For every p E 42,, there exists q E gZJJ such that (a)-(c) hold, and 

l For every q E eY, there exists p E %d, such that (a)-(c) hold. 

To see this, we proceed by induction on m. We have x --cm(~~~)m (w)y if and only if 

x= _-(.(Cm-~(CCC)m~,)CCC(~)y if and only if x-,+I(~~~)~-I (w)y and 

l For every p E o&I, there exists q E %.V such that 

(d) Q,“p if and only if Qiq for a E A, 

(e) x[l,p)-,,.-I(,;,.,),-I (o)y[l,q), and 

l For every q E g2Y, there exists p E “1G, such that (d)-(e) hold. 

For m = 1, x --cm(,r)mz (w)y if and only if nay (which is part of our assumption). The 

result follows since cI(,) 2 c+-, j and --cm(~~cE)m (0) C ~~~~~~~~~~~~~ (w). 
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Now, the y-equivalence of x and y is part of our assumption. Next, since x z-(~~)? 

(z(,,~,,;‘)Y, the (m) first positions in x and _v satisfy (l)-(5) of Lemma 3.13. So let 

p E ,?&.x (the proof is similar if starting with q E ‘a,.). Assume Qip. 

Cuse 1. p := p; for some 1 6 i < s. Since ( 1) holds, we may consider q = q,. Condi- 

tions (2) and (3) imply that &‘q and x(p, Ixl];,y(q, ].vl]. 

Cuse 2. P t ‘fix(p,,p,+, ) for some 1 6 i <s. From (4), there exists q E J2YCy,,q, r, ) such 

that Piq and x-(P, I4l~y(q, Ivll. 
c&e 3. YE ‘&(pJrl]. From (5), there exists q E @,jvcq,.l, 1, such that QLq and 

X(P> IWY(% lull. 
In all cases, (l)-(5) and the choice of q imply that ~[l,p)-~~~(~~~)~ (o),v[l,q). 

This is done by induction on m. For m = 1, x[ 1, p) +.Rz((.(.~)m (co)y[ 1,q) if and only if 

x[l, p)xy[l,q). For m> 1, we will show that x[l,p)~,..,(,:,.,)~ (o)y[l,q) by showing 

that x[ 1, p) -~.~c~~l~l~c~(w)y[ I ,q) or x[ I, p) -(L.C)~ ( cx(,_. 11, to)y[ 1, q) (using the inductive 

hypothesis). We treat Case 2 (Case I and Case 3 are handled similarly). 

We need to show that x[ 1, ~)a(,,- 1 ,y[ 1, q) (which is obvious) and 

0 For every p’ E 4Yx[~.pj, there exists q’ E JOI,~.q, such that 

(f) Qtp’ if and only if Qiq’ for h E A, 

(g) x[l,p’)a(,,-l,y[l,q’), and 

l For every q’ E ‘&Y[l.y), there exists p’ E +/,[I,,) such that (f)-(g) hold. 

So let p’ E %/.,[l,pI (the proof is similar if starting with q’ E &y,I,qj). Assume Qip’. 

C’usr 2.1. p’EJI//x[,,p,). If p’ = pi for some 1 <j <i, consider q’ = q,i which satis- 

fies Qis’. If P’ E %(,,,, P, /, ) for some 1 <j <i, then from (4), consider q’ E gkF(y,,y,+, ) 

satisfying QXq’. 

(‘use 2.2. p’ = pi. Consider q’ = qj satisfying Qiq’. 

<‘use 2.3. p’ E ~1;.~(/,,,,,. Here, let p, be the last of the (m - 1) first positions in 

x[ 1, p;) (p, exists, otherwise x( p,, p,+~ ) = 1). Consider q’ to be the first occurrence of 

h in ‘& >(4,.Y,l. 
In Cases 2.1-2.3, we see that x[l,p’)a~,~_~~_~[l,q’). 0 

We end this section with a lemma similar to Lemma 3.2 involving the congruence 

/I I.~, instead of a(,,,). 

Lemma 3.4. Let A be u finite alphabet, x and y be word.s on A und m, n be positive in- 

tegers. Let pl,...,pSE4Yx (pj < ... <pS) (respectivelyq~,...,q,E!?/~ (41 < ... <q,)) 

be the positions that spell the first m and the lust m occurrences of every letter qf 
x (respectively y). We have x E-(~~,,. / ([)I,,,,, cd-‘, Ijl,,,,),v f and only if the ,jollowiny 

three conditions ure satisfied: 

1. s=t. 

2. Qip; if und only if’ Qiq, for ull 1 <i ,< s und u E A. 

3. X(pi>pi+l )a(,)y(ql,qi+l) .fbr all 1 bi<s. 

Proof. The proof is similar to that of Lemma 3.2. 17 
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4. Pseudovarieties associated to trees 

We are now going to review a few facts about the Schiitzenberger product. A first 

version of this product was introduced in [16], and it was generalized in [20]. 

Let m be a positive integer and Si,. . . , S, be finite monoids. We define the 

Schiitzenberger product of Si, . . . , S,,,, denoted by O,(Si, . . . , S,), to be the submonoid 

of m x m matrices with the usual multiplication of matrices, of the form x = (xv), 1 < i, 

j d m, in which the (i,j)-entry is a subset of Si x . . . x S, and satisfying the following 

three conditions: 

1. If i>j, then x,=8. 

2. If i=j, then xii={(l)..., l,si,l,...) l)} for some si E Si (here, si is the ith compo- 

nent in the m-tuple). 

3. If i<j, then xij’{(si ,...) s,)ES* X”‘XS~IS~=..‘=Si-~=l=Sj+~=“‘=S,} 

(here, 1 is the unit of Si,. . . ,S,). 

Note that these matrices are exactly the upper-triangular matrices whose ith diagonal 

entry corresponds to a singleton of S, and whose (i,j)-entry (if i<j) to a subset of 

Si X ’ ’ ’ xS~. Ifs=(Si,...,Sj)ESi~...xSj andS’=(sl,,...,s~,)ESi, X...XSjf, then 

sS’=(Si ,..., Sj-l,SjSiI,S:f+l ,..., Sir) if j=i’, and is undefined otherwise. This multipli- 

cation is extended to sets in the usual fashion; addition is given by set union. It is 

easy to check that O,(Si, . . . , S,,,) is a monoid. 

IfW,W ,,..., W, are M-varieties, O,(Wi, . . . , W,,,) denotes the M-variety generated 

by the products of the form O,(Si, . . , S,,,) with Si E Wi for all 1 <i 6 m. Also, we 

write O,(W) for O,(W,. . . , W) and 0 (W) = Urn al O,(W). It is not difficult to see 

that O,(W) C Om+, (W) and that 0 (W) is an M-variety. 

The algebraic operation on monoids that corresponds to the concatenation of lan- 

guages was identified to be the Schiitzenberger product. 

Proposition 4.1 (Pin [13], Reutenauer [14], Straubing [20]). Let m be a positive inte- 

ger. Let WO,. .., W;, be *-varieties and WO,.. ., W, be the associated M-varieties. If 

W is the *-variety associated to O,+l(Wo, . . . , W,,,), then for each jinite alphabet A, 
A* W is the boolean algebra generated by the languages of the form Li,,alLi, . . . akLit, 
where O<io<il<... <ik<m, al,..., ak EA and Li, EA*Wi, for all Odjdk. 

The following definition associates pseudovarieties to trees. 

Definition 4.1 (Pin [ 131). Let u be a tree and WI,. . . , Wfcu, be M-varieties. We define 

an M-variety O,(Wi, . . . , Wlc,,) as follows: 

l O,(W)= W for each M-variety W. 
l If u = CUOC, where uo E P, O,(Wl,. . , Wl(,)) = O,, (WI,. . . , WQ,,)). 
0 If u=cuac... cu,C where m> 1 and ~0,. . ., u, E P, O,(Wl,. . . , W,,,,) is the M- 

variety generated by the Schiitzenberger products of the form O,+i(Sa,. . . ,S,), 

where 

So E OU, (WI,.. .,W,(,,)),.. .,S, E OU, (W~(uo)+...+l(u,~,)+l,.. .,W/(u,)+...+@,)), 
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If-W,=... = Wj = W for 1 <i < j < I(u), then we will abbreviate O,(Wl,. . . , WQ,,) 

by 

O~(W~,...,W~-~,W’-‘+‘,W/+I,...,W~(U)). 

We will abbreviate O,(W’(“)) by O,(W). More generally, if L C: P, we denote by 

OL(W) the join VuEL O,(W). A consequence of Definition 4.1 is that if u = CUOC.. . 

cu,F with MO,. . . , u, E P, then we have 

O~(wl,...,w/(~)) = O~,r)m+l(O,,(Wl,...,W~(,,)), 

. . . ) Ou,(W/(uo)+...+l(u,_,)+l,. . . >wl(u”)+...+l(u,))). 

The following theorem together with Proposition 4.1 describe, for each tree U, the 

*-variety of languages associated to the M-variety O,(WI, . . . , WICK,). 

Theorem 4.1 (Pin [13]). Zf m is a positive integer and WO,. . . , W,,, are M-varieties, 
then 

o(c~)m+‘(wo,. . .) Wm)= Om+l Wo,...,wn). 

Now, let u be a tree and WI,..., Wlcu, be locally finite M-varieties. The following 

proposition shows that O,(W,, . . , WI(,)) is also locally finite. 

Proposition 4.2. Let A be a jnite alphabet, u be a tree and WI,. . . , Wlc,,, be locally 
jinite M-varieties. For 1 <i < l(u), let yi be the congruence generating Wi for A. Then, 
an A-generated monoid S belongs to O,(Wl,. . . , W,c,,) if and only if S is a morphic 

image ofA*/=, (YI,...,YW). 

Proof. Let ^y; be the *-variety of languages associated to O,(Wl, . . . , Wlc,,). We want 

to show that A*“fu = YEu(, ,,.._, y,C,,,J where _YSU(, ,,...,.,,, (,,I denotes the set of languages 

on A that are unions of classes of +, (rt,. . . ,ylcu,). The proof is by induction on 

U. If u = 1 and y is the congruence generating W for A, then O,(W) = W and -_I 

(7) = y. Otherwise, we factorize u as u =cuoE.. .cu,C with us,. . . ,u, E P. If m =O, 

then O,(W,...,W(,))= O,, (WI,...,W(~~)),-~ (?I,. ..,I+))= q, (?I,.. .,w~)) and 
the result follows by the inductive hypothesis on ~a. If m 3 1, then from 

O,Wl,~~~ > W/(u)) = o(,,)m+l(O,,(WI,..,,W~(,,)>, 

. ..) Ou,(W/(uo)+...+/(u,-,)t-l,~~~ ~W(uo)+...+l(um)))~ 

using the inductive hypothesis, Proposition 4.1 and Theorem 4.1, we can conclude that 

A*Vu is the boolean algebra generated by the languages of the form Li,atLi, . . . akLi,, 
whereO<io<il<~~.<ik<m,al,...,akEAandLi,EY, “,, (T/cuo)i +0,,_, )+I ,...? i’/CuO,+ +,wr, 1) 

for all 0 <j < k. The result follows since each +, (~1,. . , y/c,))-class is a boolean com- 

bination of sets of the form Li,,alLi, . . . a,+L&, where 0 d io <iI < . . ’ < ik <m, al,. . . , 

ak EA and each Li, is a %, (YI(~,~)+...+/(~~,-,)+I, . . . , Y/(~~)+...+~(~,, J)-class (this comes 
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directly from Definition 3.1 where the sets _&al&, . . . , ak&, are induced by the cor- 

responding positions pl, . . . , pm (PI < . . d pm) (a total of k different positions) and 

ql, . . . , qm (q, 6 . . 6qm) (a total of k different positions)). 0 

5. Semidirect products 

We are now going to review a few facts about semidirect products. 

Let S and T be monoids. For the sake of clarity, when semidirect products are 

considered, we will usually express the operation of S additively (without assuming 

commutativity) and T multiplicatively. We will let 0 denote the unit of S and 1 the 

unit of T. A left unitary action of T on S is a map (t,s)H ts from 7’ x S into S sat- 

isfying (tt’)s = t(t’s), t(s + s’) = ts + ts’, t0 = 0 and 1s =s for all s,s’ ES and t, t’ E 7’; 

a right unitary action of T on S is a map (t,s) H st from T x S into S satisfying 

s(tt’)=(st)t’, (s+s’)t=st+s’t, Ot=O and sl =s for all s,s’ES and t,t’E T. If a left 

unitary action of T on S is given, the semidirect product S * T is the set S x T with 

operation (s, t)(s’, t’) = (s + ts’, tt’). If commuting left and right unitary actions of T on 

S are given (that is, t(d) = (t.s)t’ for all s E S and t, t’ E T), the two-sided semidirect 

product S * * T is the set S x T with operation (s, t)(s’, t’) = (st’ + ts’, tt’). Properties 

of the semidirect product are studied in [8] and properties of the two-sided semidirect 

product are found in [ 151. Semidirect products are special cases of two-sided semidirect 

products. 

Two-sided semidirect products induce an operation on M-varieties. Let V and W be 

M-varieties. We define V * * W to be the M-variety generated by the products S * * T 

with S EV and T E W. We have SE V * * W if and only if S divides some product 

S * * T with S E V and T E W. The definition of the M-variety V * W is similar. Note 

that * is associative on M-varieties and that * * is not. Neither * nor * * is associative 

on monoids. The operation * behaves well with respect to directed unions [8, 151. 

Straubing has given a general construction to describe the languages recognized by 

the semidirect product of two finite monoids (“principle of the semidirect product”) 

[19]. Weil has given such a construction for two-sided products [24]. The following 

results are consequences of their constructions and the equality R = Urna Jy where 

Jy denotes J1 * ... *JI (J, appears m times) [18]. 

Proposition 5.1 (Pin [13]). Let Y‘ be u *-vuriety and V be the associuted M-vuriety. 

If Y4” is the *-variety ussociuted to JI *V, then for each jnite ulphabet A, A*W is 

the boolean ulgebra generuted by the languuges of the form L or LaA*, where a E A 

and LEA*V. In other words, J1 *V= Vcccy (V,I). Zf W’ is the *-variety associ- 

ated to R * V, then for each finite alphabet A, A* W’ is the smullest boolean ulgebru 

containing A* Y‘ and closed for the operafions L H LaA* where a E A. 

Proposition 5.2 (Weil [24]). Let ^Y‘ he a *-vuriety und V be the associated M- 

variety. Zf W is the a-variety associuted to JI **V, then for each jinite alphabet 
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A, A* %’ is the boolean algebra generated by the languages of the form L or LaL’, 

where a E A and L,L’ E A* ‘/ . . In other words, JI * *V = Otc.c,~ (V). 

The following representations of free objects for V * W and V * * W were obtained 

by Almeida and Weil. The free object on the alphabet A in the variety generated by 

a pseudovariety V is represented by F”(A). In general, Fv(A) does not lie in V. We 

have Fv(A) E V if and only if Fv(A) is finite. In case V is M, Fv(A) is A*. 

Proposition 5.3 (Almeida and Weil [l]). Let V and W be M-varieties such that 

Fv(A) E V and Fw(A) E W for all jinite alphabets A. Then so is V * W. 

Moreover, ,for a jinite alphabet A, let T = Fw(A) and S = Fv( T x A). Consider: 

1. The left unitary action of’ T on S dejined by, t(tl, a) = (ttl, a) ,jor all t, tl E T und 

NEA. 

2. The ussociated semidirect product S * T. 

Then there e_uists a one-to-one morphism jrom Fv*w(A) into S * T that mups a into 

((l,a),a). 

Proposition 5.4 (Almeida and Weil [3]). Let V and W be M-varieties such that 

Fv(A) E V and Fw(A) E W jor all finite alphabets A. Then so is V * * W. 
,Moreover, for a jinite alphabet A, let T = Fw(A) und S = Fv(T x A x T). Consider: 

1. The left unitary action of T on S defined by t(tl,a,t2)=(ttl,a,t2) for all t,tl,t2 E T 

and aEA. 

2. The right unitary action of T on S dejined by (tl,a,t?)t =(tl,a,t2t),for all t,tl,t2 E T 

und a E A. 

3. The associated two-sided semidirect product S * * T. 

Then there exists a one-to-one morphism ,from Fv*,w(A) into S * * T thut mups a 

into ((l,a, l).a). 

5.1. Congruences associated to semidirect products 

In this section, we associate congruences to semidirect and two-sided semidirect 

products of locally finite M-varieties. 

Let A be a finite alphabet. Let W be a locally finite M-variety and YA be the finite- 

index congruence on A* such that an A-generated monoid S belongs to W if and only 

if S is a morphic image of A*ljA. The free object Fly(A) is isomorphic to A*/?;A. The 

pseudovariety W is such that Fw(A) E W. We denote by rr;.,,, the projection from A* 

into Fw(A) that maps a to the generator a of Fw(A). If x, y EA*, then z.,(x) = rci,(,v) 

if and only if x;lA y. 

Definition 5.1. Let B = Fw(A) x A and z be a word on A. Let o;,< : A* + B* be defined 

by C?,(I)= 1 and 

o;I<a, . ..ai)=(71Y.(z),al)(n,,(za~),a2)...(n~.,,(za~ . ..a._l),aj). 

We often denote O;<(X) simply by (T;,,(X). 
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Definition 5.2. Let B = Fw(A) x A x Fw(A) and z,z’ be words on A. Let r;;” : A* + B* 

be defined by r;f’( 1) = 1 and 

z;;* ‘(al . ..%I = (~,,(z),a~,~,,(a:!...aiz'))(~,,(za~),az,71y,(a~...aiZ')) 

. (nyA(zal .Ui_l),ai, 71?,(2’)). 

We often denote r;;‘(x) simply by rpA(x). 

Fix two locally finite M-varieties V and W. Let /?A (respectively ?A) be the finite- 

index congruence generating V (respectively W) for the finite alphabet A. 

5.i.i. The case V * W 

Let A be a finite alphabet and B = Fw(A) x A. We define an equivalence relation 

-be,Ya on A* as follows: 

x -bB,ya y if and only if rrYA (x)jea,, (y) and xy~ y. 

Proposition 5.5. The equivalence relation ~b~,?~ is a finite-index congruence 
on A*. 

Proof. We will abbreviate j?~ by /I and ?A by y throughout the proof. Assume x NB,~ y 

and x’ -b,? y’. We have 

Gx)B@v) and VY 

and similarly with x and y replaced by x’ and y’. Since y is a congruence we have 

xx’yyy’. The above, the fact that rc?(x)= rcJy), and the fact that fl is a congruence 

imply that 

O&XX’) = cr,(x)c$(x’) = Cr,<x>~;<x’>p~,< y)a,Y(y’> = Cy( yy’). 

Thus xx’-~,~ yy’ showing that ~p,~ is a congruence. This obviously is a finite-index 

congruence since /I and y are. 0 

Proposition 5.6. Let V and W be locally finite M-varieties. Let ?A (respectively /?B) 
be the jinite-index congruence generating W (respectively V) for the finite alphabet 
A (respectively, B = Fw(A) x A). Then, an A-generated monoid S belongs to V * W 
if and only if S is a morphic image of A*/N~~,~~. 

Proof. We will abbreviate /?e by b and yA by y throughout the proof. Let x = y be 

an identity on A, say x=al . ..ai and y=b, . . . bj. Then x = y holds in V * W if and 

only if x and y represent the same element of Fv,w(A). By Proposition 5.3, this is 

equivalent to x and y having the same image under the one-to-one morphism from 

Fv*w(A) into Fv(B)*Fw(A) defined by a H (( 1, a), a) and where the left unitary action 
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of Fw(A) on F’“(B) is given by t(tt, a) = (~1, a). The above morphism maps x to 

((l,at) t(Ul,U2)+ “. +(a1 ...Ui-l3a,),Ul ...Ui), (1) 

and y to 

((l,hl) t(bl,h)+ .'. +(bl . ..bj-l.bj),bl . ..bj). (2) 

(here, Fv(B) is written additively). The identity x = y holds in FV *w(A) if and only if 

corresponding components of the pairs (1) and (2) coincide. Denote by x’ (respectively 

y’) the first component of (1) (respectively (2)). Then, FV ic w(A) b x = y is equivalent 

to the two conditions F+(B) /=x’ = y’ and Fw(A) k-r = y, or al.(x)/?o,(.y) and x;‘)‘. 0 

5.1.2. The case V * * W 

Let A be a finite alphabet and B = Fw(A) x A x Fw(A). We define an equivalence 

relation ~fl~,;‘~ on A* as follows: 

x =:pBIY,( y if and only if r;,,(x)/?~r~~(y) and riAy. 

Proposition 5.7. The equivalence relation =bB,;., is a finite-index congruence on A”. 

Proof. Using the notation in the proof of Proposition 5.5, assuming x z/i,: y and 

x’ zpy y’, the result follows from 

r&Y’) I= r.;,.X’(x)r:.l(x’) = r:.?‘(X)r)‘.‘(X’)B~f,‘,‘(y)Z~‘(y’) = r;.(yy’). 0 

Proposition 5.8. Let V and W be locally finite M-varieties. Let YA (respectively BB) 

be the finite-index congruence generating W (respectively V) for the finite alphabet 
A (respectively B = Fw(A) x A x Fw(A)). Then, an A-generated monoid S belongs to 

V * * W if und only if S is a morphic image of A* l~~~B.:14. 

Proof. The proof is similar to that of Proposition 5.6 using Proposition 5.4 instead of 

Proposition 5.3. 0 

5.2. Trees associated to semidirect products 

In this section, we associate trees to some semidirect and two-sided semidirect prod- 

ucts of locally finite M-varieties. 

The following theorem provides equalities which relate with Propositions 5.1 and 5.2. 

Let y be the finite-index congruence generating a locally finite M-variety V for the finite 

alphabet A. By Proposition 5.6 (respectively 5.8), the congruence -a,7 (respectively 

Ed,?) generates Jl * V (respectively Jt t *V) for A. By Proposition 4.2, G(~~)z(Y, O) 

(respectively -(,,)2(y)) generates O,,,,Z(V, I) (respectively 0ccc)2(V)) for A. 

Theorem 5.1. Let A be u finite alphabet and 7 be u congruence on A*. We have 
WI.. = .! qCc‘)z (7,~) and Ed.., = E((.~)z (7). 
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Proof. We have x ~(~~~2 (y, w) y if and only if xyy and 

1. For every p E ‘Ex, there exists q E 4Yy such that 

(a) Q,“p if and only if Qiq for a EA, 

(b) x[l~p)~~[l~q)~ and 
2. For every q E 4&, there exists p E 92, such that (a) and (b) hold. 

It is easy to see that x E(~~)z (y,w)y if and only if oy(x)aoY(y) and xyy. 

We have x-(,,-)Z (y)y if and only if xyy and 

1. For every p E ex, there exists q E 6&Y such that 

(a) Q,“p if and only if Q;1’q for a E A, 

(b) xLp)wLq), 

(c) X(P, Ixll~y(q~ Ml, and 
2. For every q E 4$,, there exists p E 42x such that (a)-(c) hold. 

It is easy to see that x E-(~~)Z (y)y if and only if ty(x)ctzr(y) and xyy. 0 

Corollary 5.1. Let yi be the sequence of congruences dejined by y1 = c( and yi+l = 

E(~C)Z (yi). The equality yi = +, (w) = xi, holds where ii is a sequence of i 1’s. 

Theorem 5.2. Let m be a positive integer, H be a locally jinite G-variety and y be the 

congruence generating H for theJnite alphabet A. Then -aC,j,y =M,(~,,~=-(~F)~+I (7). 

Proof. We have x~(,~)~+l (y) y if and only if xyy and 

1. For every p1,...,pm~9Yix (p~d...<p,), there exist ql,...,q,,,Eey (q,<... 
<q,,,) such that 

(a) pi<‘pj if and only if qi<J’qj for all l,<i,j<m, 

(b) Q,“pi if and only if Q{qi for all 1 <i <m and a E A, 

(C) x[19Pi+l)y_Y[l,qi+l) for all 06i<m, 

(d) x(pi,pi+l)Yy(qi~qi+l) for all 1 <i<m, 
(e) X(pi, Ixllyy(qi, lyll for all O<idm, and 

2. For every ql,...,q,,,E%+ (ql<...dq,), there exist pl,...,pm~Gx (pl<... 
<pm) such that (a)-(e) hold. 

We have x -OLC,),‘I y if and only if a,(x)a(,)o,(y) and xyy. This is equivalent to saying 

that x -r(,),y Y if and only if xyy and 

1. For every p],..., p,~4Y~ (pld...dp,,,), there exist ql,...,qmEay (ql<... 
6qm) such that (a)-(c) hold, and 

2. For every ql,...,qmEaY (ql<.“<q,,,), there exist P~,...,P~E%?!~ (p,< 
... <pm) such that (a)-(c) hold. 

We have x M~(,),~ y if and only if z~(x)c+~z~(Y) and xyy. This is equivalent to saying 

that x ++,J,y Y if and only if xyy and 

I. For every p~,...,p~~%~ (p~<...<p~), there exist ql,...,qmEey (ql<... 
6qm) such that (a)-(c) and (e) hold, and 

2. For every ql,...,qmEeY (ql<...dq,), there exist P,,...,P~E@~ (p,~... 
<pm) such that (a)-(c) and (e) hold. 
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Since H is a G-variety and y generates H for A (y is a group congruence), the 

conditions xyy and (a)-(c) imply (d) and (e). We conclude that x ~~~~~~~~ (y)y if and 

only if x N~(,,),~ y if and only if x M,,,,,~ y. 0 

Theorem 5.3. Let A be a finite alphabet and m,n be positive integers. We have 

F=z %Il?~i~l = =(,,-)n+l (a(,), w”-‘, M(~)). 

Consequently, J, * *J, = Occry+l (J,,I”-I, J,) = 0 - c(cc)m+‘~(cc~-lc(cc)m+lc (1). 

Proof. By Lemma 3.2, we have x E(,,-)~+I (a(,),&-‘, acm))y if and only if r,,,,,,(x)a(,, 

G+,,(Y) and xa(m)y. 0 

Theorem 5.4. Let A be a ,jnite alphabet and m,n be positive integers. We have 

M Z(,l,Bl.rn = Z(cc).+l (Pl.mJ@,Bl,m>. 

Consequently, J, * * Corn],, = OcrryfI (Corn,,,, In--l, Corn,,,). 

Proof. By Lemma 3.4, we have x z-(~~~+I (/3i,m,~“-‘,fjl,m)y if and only if ~~,,,,(x)a(~~ 

V,.,(Y) and ~BI,~Y. 0 

We end this section with a few results on a conjecture of Pin. It was conjectured 

in [13] that if U, v E P’, then O,(I) C: 0, (I) (in other words, --v (0) C =U (0)) if and 

only if u is extracted from U. The following two results give counterexamples. 

Theorem 5.5 (Blanchet-Sadri [5]). rf m > 1, then 

m+l _ J, - O,m+~~rcc~ns+~ (I) = Occcrjm+,ccc (I) = J, *J,. 

Proof. By Theorem 5.1, if 7, is the sequence of congruences defined by yi = -a,l 

and y;+l = -(CC)2 (yi,o), then the equality yi = +,+I(~~~~+I (w) holds. Also, we have 

the equality -,++) = -tCc)z (a(,,,,,o) by Theorem 5.1. The result then follows from 

Theorem 3.3 with y = co. 0 

Theorem 5.6. Zf m > 1, then 

Proof. The equality Oc-+IcCCCjm+l(I) = OcccEjm+tL;cc (I) holds by Theorem 5.5. But the lat- 

ter is included in 0 CCC ,+1,,,(1) since E(~(~?)~+I~)~ (o)C ~~~~~~~~~~~~ (0) by 

Theorem 3.2. We have \k(k ) - m+1E)2 =~ti,~) and (cc&?~)*+’ =z+J). The result then 

follows from the inclusion -,+,, (o)=a(,,i) Ca(l,,,,)= +,,,,) (0) from [6]. 0 

Theorem 5.6 answers a statement at the end of Section 3 of [ 131. But Pin’s conjecture 

was shown to be true in an important special case. 
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Theorem 5.7 (Blanchet-Sadri [6]). Let P” be the set of trees u, where rii is a tuple of 

positive integers either of length 1 or of the form (ml,. . . ,ink, 1) for some ml,. . . ,rnk. 

If u, v E P”, then V,(I) C 0, (I) if and only if u is extracted from v. 
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