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Abstract

A classification scheme for regular languages or finite semigroups was proposed by Pin through
tree hierarchies, a scheme related to the concatenation product, an operation on languages, and
to the Schiitzenberger product, an operation on semigroups. Starting with a variety of finite
semigroups (or pseudovariety of semigroups) V, a pseudovariety of semigroups <O,(V) is asso-
ciated to each tree u. In this paper, starting with the congruence y, generating a locally finite
pseudovariety of semigroups V for the finite alphabet 4, we construct a congruence =, (y4) in
such a way to generate O,(V) for A. We give partial results on the problem of comparing the
congruences =, (y4) or the pseudovarieties O,(V). We also propose case studies of associating
trees to semidirect or two-sided semidirect products of locally finite pseudovarieties. © 1998
Elsevier Science B.V. All rights reserved.

1. Introduction

A result of Kleene [10] shows that the class of recognizable languages (that is, rec-
ognized by finite automata) coincides with the class of regular or rational languages
which can be obtained from finite languages by the boolean operations, the concate-
nation product and the star. Star-free languages are those rational languages which
can be obtained from finite languages by the boolean operations and the concatenation
product only. Several classification schemes for the star-free languages were proposed
based on the alternating use of the boolean operations and the concatenation product.
This led to the natural notion of dot-depth. However, the first question related to this
notion “given a star-free language, is there an algorithm for computing its dot-depth?”
appears to be extremely difficult.

A classification scheme for rational languages was proposed by Pin through tree
hierarchies [13]. This classification scheme generalizes the above mentioned ones for
star-free languages. Tree hierarchies are related to the concatenation product, an op-
eration on languages and to the Schiitzenberger product, an operation on monoids or
semigroups.
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In this paper, we give some results on Pin’s tree hierarchies. The notion of con-
gruence plays a central role in our approach. For any finite alphabet 4, denote by
A* the free monoid generated by 4. We say that a monoid S is A-generated if there
exists a congruence y on 4* such that S is isomorphic to A*/y. A pseudovariety of
monoids V is locally finite if for any A, there are finitely many A4-generated monoids
in V. Equivalently, there exists for each A, a congruence y4 such that an 4-generated
monoid S is in V if and only if S is a morphic image of 4*/y4. By Eilenberg’s one-
to-one correspondence between the pseudovariety V and a x-variety of languages ¥,
a language L of 4* is in 4*¥" if and only if L is a union of y,-classes.

Starting with the congruence 7,4, we associate to each tree u a congruence =, (4)
in such a way to generate the class A*¥, of recognizable languages of 4* defined
recursively as follows: If u is the tree reduced to a point, then 4* ¥, =A%y if u =

then A*¥; is the boolean algebra generated by the languages LjaiL;, ...axL;, where
O<ip<iy<:-- <ip<m, ay,...,a are letters of 4 and for each 0<j<k, L; is in
A*“//,,,.j. Pin showed that the Schiitzenberger product is perfectly adapted to the oper-
ation (Lg,...,Lg)— LoayLy ...a;Ly. This result allows to build, without reference to
languages, hierarchies of pseudovarieties of monoids corresponding, via Eilenberg’s
result, to the above-mentioned hierarchies of x-varieties of languages. In other
words, starting with a pseudovariety V, a pseudovariety <,(V) is associated to each
tree u.

We first give partial results on the problem of comparing the congruences =,
(74) (Section 3). Our congruence construction shows, in particular, that all the pseu-
dovarieties of the hierarchy built from locally finite pseudovarieties are locally finite
(Section 4). Case studies are proposed of associating trees to semidirect or two-sided
semidirect products of locally finite pseudovarieties using our congruence construction
(Section 5). Definitions and results are given for pseudovarieties of monoids. Up to the
obvious changes, they hold also for pseudovarieties of semigroups. Unless otherwise
specified, any congruence we discuss has finite index.

2. Preliminaries

This section is devoted to reviewing basic properties of finite monoids and recog-
nizable languages. The reader is referred to the books of Almeida [2], Eilenberg [8]
and Pin [12] for further definitions and background.
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2.1. Monoids

A semigroup is a set S together with an associative binary operation (generally
denoted multiplicatively). If there is an element 1 of S such that ls=s1 =s for each
s€ S, then S is called a monoid and 1 is its unit. S is a group if § is a monoid and, for
each s€ S, there exists s’ € S such that ss' =s's=1. A subset of S is a subsemigroup
(respectively submonoid, subgroup) of S if the induced binary operation makes it
a semigroup (respectively monoid, group).

Let S and 7 be monoids. A morphism ¢ :S — T is a mapping such that ¢(ss’) = ¢(s)
@(s") for all 5,5’ €S and ¢(1)=1. We say that § divides T, and write S<T, if S is
the image by a morphism of a submonoid of T.

If 4 is a set, we let AT be the free semigroup on A and A* be the free monoid
on A. A" is the set of all finite strings a;...a; of elements of 4 and 4™ =47 U {1},
where | is the empty string (when we write a; we will always mean a letter in 4).
The operation in 4* is the concatenation of these strings.

2.1.1. Varieties of finite monoids

A variety of monoids is a class of monoids that is closed under division and direct
product. An M-variety is a class of finite monoids that is closed under division and
finite direct product. M-varieties are also called pseudovarieties of monoids. Given
a class C of finite monoids, the intersection of all M-varieties containing C is still an
M-variety, called the M-variety generated by C.

A (monoid) identity on a set 4 is a pair (x, y) of elements of 4*, usually indicated
by a formal equality x = y. We say that a monoid S satisfies an identity x = y (or that
the identity x = y holds in §) and we write S =x = y if, for any morphism ¢:4* — S,
we have p(x)= ¢@(y). For an identity x = y and an M-variety V, the notation ViEx=y
will abbreviate the fact that each S €V satisfies x = y.

Work of Eilenberg and Schiitzenberger [9] showed that M-varieties are ultimately
defined by sequences of identities (that is, a monoid belongs to the given M-variety if
and only if it satisfies all but finitely many of the identities in the sequence), and that
finitely generated M-varieties are equational or defined by sequences of identities (that
is, a monoid belongs to the given M-variety if and only if it satisfies all the identities
in the sequence).

We now list a few important M-varieties that we are going to use:

A is the M-variety of all finite aperiodic monoids (a monoid § is aperiodic if all
groups in § are trivial).

I is the trivial M-variety consisting only of the I-element monoid.

J, is the M-variety of all finite idempotent and commutative monoids (also called
semilattices) defined by the identities x> =x and xy = yx.

J is the M-variety of all finite #-trivial monoids.

M is the M-variety of all finite monoids.

R is the M-variety of all finite #-trivial monoids.

G is the M-variety of all finite groups (any M-variety contained in G will be called
a G-variety).



160 F. Blanchet-Sadri/ Discrete Applied Mathematics 86 (1998) 157-179
2.2. Languages

Let 4 be a finite set. When we deal with languages, 4 is called an alphabet and its
elements are called letters. The elements of A* are called words on A. A language on
A is a subset L of 4*. A language L in 4* is said to be recognizable if there exists
a finite monoid S and a morphism ¢ :A4* — S such that L= ¢~ '(¢(L)), that is, if x€ L
and @(x)=@(y), then ye€ L. This is also equivalent to saying that there is a subset
X of S such that L=¢~'(X). In that case, we say that S (or @) recognizes L. The
notions of recognizable sets (by finite monoids and by finite automata) are equivalent.
To each language L, we associate a congruence ~; defined, for x,y € 4™, by x~ y
if and only if uxv and uyv are both in L or both in 4*\L, for all u,v in 4*. The
congruence ~; is called the syntactic congruence of L and the monoid M(L)=4%/ ~,
is called the syntactic monoid of L. A monoid recognizes L if and only if it is divided
by M(L).

2.2.1. Varieties of languages
A x-variety ¥ is a family 4*#" of sets of recognizable languages of 4* defined

for all finite alphabets 4 and satisfying the following three conditions:

1. A*¥  is a boolean algebra, that is, if K and L are in A*¢ , then so are K UL, KNL
and A*\L.

2. If ¢:4* — B* is a morphism and L € B*¥", then ¢ (L)€ 4* 7"

3. If Le A*¥ and a € A, then both {x € 4* |ax €L} and {x € 4* |xac L} are in 4™ ¥
Eilenberg [8] proved that M-varieties and *-varieties are in one-to-one correspon-

dence. If V is an M-variety, then 4*¥ = {L C 4™ | M(L) € V} defines the correspond-

ing *-variety ¥". If " is a %-variety, then the M-variety generated by {M(L) | L€ 4*¥"

for some A} defines the corresponding M-variety V.

Let V be an M-variety generated by the monoids S),...,S,. Thus V is generated by
S=8; %+ xS, Let ¥ be the *-variety associated to V. Then 4*¥  is the boolean
closure of the sets ¢~ !(s) for all s€S and all morphisms ¢:A4* —§. Consequently,
A*7 is finite.

We now list *-varieties of languages associated to some of the M-varieties listed
previously:

e A* .o/ consists of the star-free languages of 4™ [16].

o A* 4 ={0,4*} where { denotes the empty set.

e A* ¢ consists of the piecewise testable languages of 4™ [17].

e A*.# consists of the rational languages of 4* [10].

We end this section with a few examples of locally finite M-varieties.

1. For any positive integer ¢ and nonnegative integer m, Com,, ,, is the M-variety of
all finite commutative monoids defined by the identities x™t7 =x™ and xy = yx (we
adopt the convention that x® =1). For any word x on 4 and a € 4, we denote by
x| the number of occurrences of a in x. We define on 4™ the congruence f, ., by
xBgmy if for all ac€ A4, |x|;=]y|a, OF |X|s,|y]a=m and |x|,=|y|s mod g (B0 will
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often be abbreviated by w). An A-generated monoid § is in Com, ,, if and only if

S is a morphic image of A4*/f, » (note that Com, o =1I). The M-variety Com of

all finite commutative monoids (which is the join Vq;l,mzo Com, ) is not locally

finite; the same is true for Com N A which is the join \/, ., Com, , and Com NG
which is the join V/, ., Comy,,.

2. A hierarchy was introduced by Straubing [21] for the star-free languages of 4™: the
set {0, 4*} constitutes 4*¥;; then, 4*¥; is the boolean algebra generated by the
languages of the form LoaiL, ...a;L;, where i=0, a,,...,a,€A and Ly,...,L; € 4*
#% 1. Straubing’s hierarchy induces, by Eilenberg’s correspondence, a hierarchy of
M-varieties: Vo CV, CV,C .- which is known to be strict [23]. We have Vy; =1.
Simon [17] proved that V; =J and hence V| is decidable. The problem remains
open as to whether V, is decidable for £ >2.

Straubing’s hierarchy can be refined as follows: for each k=1, m>0, A*¥;,, is the
boolean algebra generated by the languages of the form Loa L; ... a;L;, where 0<i<m,
ay,...,a; € A and Lg,...,L; € A*¥;_,. Then, for each positive integer £, V; naturally
contains a subhierarchy of M-varieties: Vg CV, | TV, C-- - CV,.

A remarkable fact about these hierarchies is their connections with some hierarchies
of formal logic [22, 23, 11]. In particular, the congruences %(m,...m,) defined below are
intimately related to Straubing’s hierarchy, namely to its kth level.

A word a;...aq; on A is a subword of a word z on A4 if there exist words z,...,z;
on A such that z =zya;z)...a;z;. For any nonnegative integer m and word z on 4,
we denote by x(z) the set of subwords of z of length less than or equal to m. We
define the congruence o, on A* by X0y ¥ 1 Ay () = 2%m) (1) (21y = 1,1 will often
be abbreviated by «). An A-generated monoid S is in V,, or J, if and only if S is
a morphic image of A™ /o).

We proceed with a generalization of o, related to an Ehrenfeucht-Fraissé game.
We identify any word x on 4 with a word model x=(#%,, <*,(Q})sc4) Where the
universe %, =={1,...,|x|} represents the set of positions of letters in the word x (x|
denotes the length of x), <* denotes the usual order relation on %,, and Qf is a unary
relation on %, containing the positions with letter a, for each a€ 4 (we will often
write QF p instead of p € OF). The game Gyi(x, ), where m = (m,...,m;) is a k-tuple
of positive integers (k=0) and x, v are words on A, is played between two players
I and I on the word models x and y. A play of the game consists of £ moves. In
the ith move, Player I chooses, in x or in y, a sequence of m; positions; then, Player
I chooses, in the remaining word (y or x), also a sequence of m; positions. Before
each move, Player 1 has to decide whether to choose his next elements from x or
from y. After & moves, by concatenating the position sequences chosen from x and
from y, two sequences pi,...,p, from x and gqy,...,q, from y have been formed
where n=m; + --- + my. Player Il has won the play if the following two conditions
are satisfied: p;<*p; if and only if ¢;<Vq; for all 1<i, j<n, and Q) p; if and
only if O;q; for all 1<i<n and a < A. Equivalently, the two subwords in x and y
given by the position sequences pi,..., p, and q,,...,q, should coincide. If there is
a winning strategy for Player 1l in the game to win each play we say that Player 1I



162 F. Blanchet-Sadri/ Discrete Applied Mathematics 86 (1998) 157-179

wins G(x, y) and write xa;y. The special case Gij(x,y) where 1 denotes a k-tuple

of 1’s is the standard Ehrenfeucht-Fraissé game [7]. The relation o,; naturally defines

a finite-index congruence on A*.

The congruences «,; can be defined inductively as follows: First, if x=a;...a, is
a word on 4 and 1<i<j<n, then x[i, ], x(i,/), x(i,j] and x[i,j} denote the factors
Qi...q;, @y ...qj_1, @y...qa; and a;...a;_y respectively. Now, we have xom qyy if
and only if
(a) For every pi,...,pm €Uy (p1< - < pp), there exist q1,...,qgu €%, (1< -

<¢qm) such that

(i) pi<*p; if and only if ¢; <”7g; for all 1<i, j<m,
(ii) Q2 p; if and only if Q}gq; for all 1<i<m and a€ 4,
(i) x[1, p)aay[1,q1),
(iv) x(pi, pit1)%7y(qi,qiv1) for all 1<i<m,

(V) X(Pm, [x|]oti y(gms | ¥|], and

(b) For every qi,....,qn €% (q1< - <qm), there exist p,...,pn €%, (1< -

< pm) such that (i)—(v) hold.

For fixed 1, we define the M-variety V,; as follows: an A-generated monoid S is
in V; if and only if S is a morphic image of A*/n;. Note that the equality Vi =J,
holds. The M-variety V; = \/(ml ,,,,, )

3. For any words x,z on 4 with z=a,...a;, the binomial coefficient (%) is defined
as the number of distinct factorizations of the form x = xpa;x;...a;x; with words
Xp,...,X; on A. For any prime number p and nonnegative integer m, we define on
A* the congruence 8 by X0,y if (£) =(2) mod p whenever |z| <m. We define
the M-variety H, ,, as follows: an A-generated monoid S is in H,,, if and only
if § is a morphic image of A4%/0, . The M-variety G, = {J,,5Hpm of all finite
p-groups is not locally finite.

3. Congruences associated to trees

We denote by P the set of trees on the alphabet {c,c}. Formally, P is the set of
words in {c,é}* congruent to 1 in the congruence generated by the relation c¢¢ = 1.
Intuitively, the words of P are obtained as follows: Given a tree, and starting from the
root we encode ¢ for going down and ¢ for going up. For example,



F. Blanchet-Sadri| Discrete Applied Mathematics 86 (1998) 157-179 163

is encoded by ccceccececécee. The number of leaves of a non-empty word « on {c,c},

denoted by I(u), is the number of occurrences of the factor ¢¢ in u (we define the

number of leaves of the empty word, /(1), by 1). The following two properties of trees

are satisfied:

¢ Each non-empty tree u can be written uniquely as u = cugcC. .. cu,,¢ where m >0 and
Uy, ..., um € P. We have l(u)= > o, ().

o If u=cupc...cu,¢ and u=uv,cv,cv3 where v, € P, then the tree cv»¢ is factor of
some cu;cC.

Definition 3.1. Let 4 be a finite alphabet, « be a tree and yi,..., 7, be equivalence

relations on A*. We define an equivalence relation =, 715+ Vi) on A* as follows:

e = (y) =17 for each equivalence relation y on 4*.

o If u=cugc where ug € P, =, (y1,-- -, 710) = Zup (V1s-- - Viuo))-

o If u=cupc...cu,c where m>1 and u,...,un €P, =, (y1,.... ) is the equiva-
lence relation on A* where x =, (v15. ... Yy )y if and only if

X Zuy (Vo b+l V1o - -5 Vo) +-+1(u) )y for all 0<i<m,

(note that when i =0, this means x =,, (y1,...,1u,))y) and

1. For every pi,...,pm €%, (p1<--- < pm), there exist qi,....,qgn €U, (: < -
<¢m) such that
(a) p;<*p; if and only if g; <*gq, for all 1<i, j<m,
(b) QXp; if and only if Qzq; for all 1<i<m and ac 4,
(©) x[1, piv1) =u, (Viwo)to+0u )15+ Vo)t + 1) )Y 1, gi1 ) for all 0<i<m,
(d) x(pi, Pis1) Swy Gt 1 415 -+ Vicwo - +iu) )Y (@is i) Tor all 1<i<m,
(©) x(pir X1 =, i)t t— 31+ Tiguo 41 V(i [ ¥[] for all 0<i<m,

and

2. For every qi,....qm€ ¥, (1< - - <qn), there exist pi,...,pn €% (p1< -

< pm) such that (a)—(e) hold.

If y=---=y;=v for 1 <i<j<Il(u), then we will abbreviate =, (y1,..., 1)) by

3 e ‘
= VLY T Y e i )-

We will abbreviate =, (") by =, (7). A consequence of Definition 3.1 is that if
u=cuyC...cu,¢ with ug,...,u, € P, then we have

=y (yl,...,’y[(u)): E(Cc-)mﬂ (Euo (}71,...,’)’1("0)),...,

S (Vitug) oo 1t 4 s - 5 Vit - Ltem) })-

Let m=(m,...,m;) be a k-tuple of positive integers (k>0). We have that =,
(w)=o,; where the tree u,; is defined, by induction on &, as follows: if £ =0, then

uy = 1; then, for m=(m,my,...,my), Ui =" (Clim,...m¢)" .
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Lemma 3.1. Let A be a finite alphabet, u be a tree and y1,.. ., i) be finite-index con-
gruences on A*. The equivalence relation =, (}1,...,Viw)) is a finite-index congruence
on A*.

Proof. The proof is by induction on #. If u=1, we have =, (y)=7. Otherwise, we
factorize u as u = cupC...cuy¢ with ug, ..., un € P. We have the following two cases:
Case 1 (m=0) and Case 2 (m=1).

Case 1. We have =, (J1,--, Vi) = =uy (V1»---»Viuy)) and the result follows by the
inductive hypothesis on up.

Case 2. Let x=,(71,---»Viw)y and X' =, (y1,...,%w)y'. We want to show that
xx' =u (})1 seees ’})l(u))yyl. FiI'St, xx' ESN (Vl(u0)+~-+[(u,_| Ylseees yl(u0)+...+[(u‘))yyl for all 0 <
<m by the inductive hypothesis on u;. Second, let pi,..., pn €U (1< < pi)
(the proof is similar if starting with qi,...,qm € %,y ). Say pi,..., pa<|x| and pay1,...,
pm>|x| for some 0<n<m. We treat the case O<n<m (the other cases are
simpler). Put p| = pp1 — |x|...., Phy_p = Pm — Ix|. From x =, (31,..., 7))y, there
exist qi,...,qn €U, (q1< -+ <q,) satisfying (a)-(e) (here, we let pi,..., pa,
Dns---> Pn€ ¥, for a total of m positions), and from x' =, (71,---, Vi)Y, there exist
qreor o €Uy (g, < - <q,_,) satisfying (a)—(e) (here, we let pi,..., p\, py,...,
ph_ €U for a total of m positions). Put gns1=¢] + |Vl .gm =qp_, + |¥|. The
positions qi,...,qm € %y, are such that g; < --- <gm, and we have

X(Pns 1X1] 2y Prug -4 1atnm 10« - Vi -+ 1) )Y (s | Y]],
XL P Zy (o)l )415 -+ 2 V)41 )Y 11 41,
and by the inductive hypothesis on u, we get

XX (Prs Prt1) Sy Mo ) +-ttn— 11 - - > Vito) 4+ ) )Y Y (G G )-

Condition (d) easily follows. Conditions (a)—(c) and (e) are simpler. The relation
=, (y1,..., 7)) 1s hence a congruence on A*. This obviously is finite-index since
Yls---s Vi) are. [

3.1. Inclusion results

This section is concerned with comparing the equivalence relations =, (71,..., Yiu))-
Proposition 3.1, Theorem 3.1, Corollary 3.1 and Theorem 3.2 are adaptations of results
of [13].

Proposition 3.1. Let 4 be a finite alphabet, u be a tree and yi, ..., yiu) be congruences
on A*. We have

=y (Vl,-u,Vl(u)): =cue (Vla---ayl(u)): =cé (Eu (Vla-uayl(u)))'

Proof. This is an immediate consequence of Definition 3.1. O
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Theorem 3.1. Let A be a finite alphabet, u=vicv2cvs be a tree as well as vy and
Vis-- s Yiw) be congruences on A*. We have

=0 (Ve Vi)
= Zyicivs (Floe v e Vitwrys =v2 (Vo1 1s -« - Vo 4062) Do Vi 4 Ko )+ 1 - -5 Vi) )-

Proof. The proof is by induction on u. If u=c¢, we have =z (y) = =cc (=1 (7)). Oth-

erwise, we factorize u as u=—cuyC...cu,c with uy,...,u, € P. We have the following
two cases: Case 1 (m=0) and Case 2 (m=1).
Case 1. If vjv3 = 1, we get v; =u, and by Proposition 3.1, we have =, (y1,.-., %)

= = (0, (J1s+- > 71(e)))- Otherwise, we have v; =cv}, v3=0¢ and hence up = vjcv2
cvy. The result follows by Proposition 3.1 and the inductive hypothesis on uo.

Case 2. Then some cu;é has cv,é as factor. We put cu;é = v'cvocv” and by using
Proposition 3.1 and the inductive hypothesis, we get = (V.- Vi) =
=0 (Vs s Vi) ) =S wrccor (Voo Vitw 3 Zoy (Vo Y+ 1 -+ V@ v 000) D> VI Y+ 1(02) 41 -+ > Vi) )-
The result follows from =, (V1,....%) ==t (Fug Poeeos V) -+ =um
(Plug Y-+t 415+ 5 Vo)) B

Corollary 3.1. Let A be a finite alphabet, u=v\ccv,cévs be a tree as well as vy and
Yis. - Yiw) be congruences on A*. We have =, (11,..., Vi) = Svicvsdvs (M- s Vi))-

Proof. By Proposition 3.1 and Theorem 3.1. [J

Corollary 3.1 enables us to restrict ourselves to the set P’ of trees in which each
node is either a leaf or has a number of children greater than 1.

If u is a tree and u# = vjcvCp3 is a factorization of u, then we say that the occurrences
of ¢ and ¢ defined by this factorization are related if v, is a tree. Each occurrence of ¢
in u is related to a unique occurrence of ¢ in u. If u and v are trees, then we say that
u is extracted from v if u can be obtained from v by removing in v a certain number
of related occurrences of ¢ and ¢.

Theorem 3.2. Let A be ua finite alphabet, u and v be trees, u be extracted from v and
y be a congruence on A*. We have =, (y)C =, (7).

Proof. We treat the case where v=uvcv,¢évy with v; € P and w=uv,vpv3. The proof
is by induction on v. If v=cc, then u=1 and the result is obvious. Otherwise, we
factorize v as v = cwol...cw,C with wy,...,w, € P. We have the following two cases:
Case 1 (m=0) and Case 2 (m=1).

Case 1. If viv3 =1, we get v =wy=u and the result follows. Otherwise, we have
vy =cv| and v; =0¢ and the equality wo = vjcvpév; results. By using the inductive
hypothesis on wy, we deduce

=y (7) = Fyy (V) c Ev{vzlvg (}') = Ecv[vzvgf (V) ==y ()’)
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Case 2. Then some cw;¢ has cv,é as factor. We put cw;é=10v'cv,6v” and cwic
=v'vv”. By using the inductive hypothesis =,, (7) C =,/ (7), we get

=v (V) = F(ceyt (Ewo (’y)a - (V))
c =(ceym! (EWO (’y)r"’zwi' (?)a cos Sy (V)): =u (V) g

Let m be a positive integer. We now define the (m) positions in a word x that will
lead to an inclusion result useful for our purposes. These positions were defined in
some of our earlier papers (like [4]) but they are needed to understand the proofs of
our new results. So we repeat their definition for the sake of completeness.

Let x be a word on a finite alphabet 4. To find the positions that spell the first
occurrences of every subword of length <m of x (or the (m) first positions in x),
proceed inductively as follows:

o Let x; denote the smallest prefix of x such that a(x;)=a(x) (call p; the last position
of x1),

o Let x;;; denote the smallest prefix of x(p;, |x|] such that a(x; 1) = o(x{ p;, |x|]) (call
pi+1 the last position of x;.) for 1 <<i<m.

If |a(x)| =1 (|a(x)| denotes the cardinality of a(x)), the positions p,,..., p,, are the

ones we are looking for and the procedure terminates. If |a(x)|>1, the positions

Pis..., pm are among the ones we are looking for. To find the others, repeat the

process to find the (m) first positions in x[1, p;) and the (m — i) first positions in

x(p;, pinr) for 1<i<m.

We can define similarly the positions that spell the last occurrences of every subword
of length <m of x (or the (m) last positions in x). The (m) first and the (m) last
positions in x are called the (m) positions in x.

Consider the following example: Let 4 ={a,b} and

x = aaaaaabababbbbbbababaaabbabbaaaaabbaa.

The underlined (respectively overlined) positions of x are the (3) first (respectively
last) positions in x.

The following lemmas give necessary and sufficient conditions for =( a1 (Om),
"1, oy )-equivalence, as well as =(eep (%m)» V) and =.a2 (7, %m) )-equivalences.

Lemma 3.2. Let 4 be a finite alphabet, x and y be words on A and m,n be positive in-
tegers. Let py,...,ps €Uy (p1<--- < p;) (respectively qy,...,q: €Uy, (1 < -+~ <q;))
be the (m) positions in x (respectively y). We have x =(.zypm (%my, 0", amy)y if and
only if the following three conditions are satisfied:

1. s=t

2. QXp; if and only if Qlq; for all 1<i<s and a € A.

3. x(pi, Pir1) )my¥(4Gi,giv1) for all 1 <i<s,

Proof. Assume that Conditions (1)—(3) hold. First, the oy, -equivalence of x and y
follows from (1) and (2). Second, let pi,..., p, €%, (pi< - <p)) (the proof is
similar when starting with positions in %, ).
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Case 1. If some of the p}’s are among pi,..., Ps, then for each such p}, there exists
1<i;<s such that p’ = p;. Since (1) holds, we may consider g; =g;,. Condition (2)
implies that Oy p’; if and only if Qz¢] for ac 4.

Case 2. If p},...,p}, € Ui py.piyyy for some 1<i<s, 1<j< - <j'<n, then from
(3), there exist q},...,q% € Uy(g,q.1) (¢;< -+ <qjy) such that p; <*p) if and only
if g, <”q, for all j<k, /<j', and QI p, if and only if Qiq, for all j</ <, and
acAi.

The positions gi,...,q, € %, are such that ¢} < --- <gj, and satisfy
e p;<*pj if and only if g <”g; for all 1<i,j<n,

e O p}if and only if Q;q) for all 1<i<n and a€ 4,
o x[1, p)am (1, q))s
o x( Pl Xl 1otm) ¥ (g | Y]]

Conversely, assume xE(CE),.H(a(m),w"_l,oc(,,,))y. Conditions (1) and (2) hold by
considering each of the (m) positions in turn. To see that Condition (3) holds, let
Plo-evs Py € Usippry (PY< - < p)) (the proof is similar when starting with posi-
tions in %y, 4,,)). There exist suitable positions q1....,q, €%, (¢; < --- <gq,). The
facts that x[1, p))awmy[1,q}) and x(p), |x|1eemy (gL, |¥|] guarantee the membership of
Glo-eosn 10 Up(g g O

Lemma 3.13. Let A be a finite alphabet, x and y be words on A, y be a congruence
on A* and m be a positive integer. Let pi...., ps €Uy (p1<--- < ps) (respectively
qis-- G €Uy () < --- <qu)) be the (m) first positions in x (respectively y). We have
X =iap (%my, 7)Y if and only if the following five conditions are satisfied:
l. s=¢
2. QXp; if and only if Qiq; for all 1<i<s and a€ A.
3. x(pi, [xX|1yy(gi, |¥I] for all 1<i<s.
4. For all 1 <i<s and for every p € Ux(p, p.,) (respectively q € Uy, q...)), there exists
g € Uy(g.q..) (respectively p € Us(p,p,.)) Such that
(a) QXp if and only if Qyq for a€ A,
(b) x(p, |x|Iyy(q.|y[]
5. For every pe&Uy(p, . (respectively q&€Uyyq, |y), there exists q€Uyq,. v
(respectively p € Uy p, |x)) such that (a)—(b) hold.
A similar statement is valid for the (m) last positions and = sy (y, 0m))-equivalence.

Proof. Assume that Conditions (1)—(5) hold. First, the o)-equivalence of x and y
follows from (1) and (2), and their y-equivalence from (2) and (3) (with i=1) and
the fact that p; = ¢, = 1. Second, let p be a position in %, (the proof is similar when
starting with a position in %, ). Assume Q] p.

Case 1. p= p; for some 1 <i<s. Since (1) holds, we may consider g = ¢;. Condition
(2) implies that Q7 q.

Case 2. p € Us(p, p,,) for some 1<i<s. From (4), there exists g € %,(,.4,,,) Such
that Q) q.

Case 3. p € Uy(p,, |x)- From (5), there exists g € %, |, such that 0lq.
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In all cases, (1)-(5) and the choice of ¢ imply that x[1, p)orm)y[l,q) and x(p,|x|]
¥(g,1¥[].

Conversely, assume x =(.¢2 (%m),7)y. Conditions (1)—(3) hold by considering each
of the (m) first positions in turn. To see that Condition (4) holds, let p be in %(p, p,.,)
(the proof is similar when starting with ¢ in %, 4.,)). Assume QO p. Hence there
exists ¢ in %, such that Qq, x[1, p)aumy[l,q) and x(p,|x/]y¥(q,|y|]. Assume that
qEUyg,.q.,)- Hence qE Uy 41 O GE Uy, y)- From the choice of the p,’s and
the ¢;’s, we get a contradiction with either g € 07 or x[1, p)aym »[1,¢). Condition (5)
follows similarly. []

Note that in the case where y = w, Conditions (3)—(5) can be replaced by
x(ps, [x[loy(gs, | y|] and x(pi, piv1)ey(gi.giv1) for all 1<i<s.

Theorem 3.3. Let A be a finite alphabet, y be a congruence on A* and m be a positive
integer. We have

m+1

_ - i
Sceeymricee (W7 ,7) = =emti(ced)mt (")

and

=cecteeyic (5 "ty = S(eacyens (9, W™,
Proof. The inclusion =cneeyn(w)C=(symet (w) is clear from Theorem 3.2.
So =miiaesymi (" )= =(eey (Seneee)(0),7) C Seey (Seeynn (©),7) = Sceeyms
éce(w™ !, y) by Theorem 3.1. For the reverse inclusion, let us assume that x, y are such
that x Ec(“—)mﬂc—cc—(w’"“,}')y of X =(cey2 (A(m), 7)y. We want to show that x = w1 gz yme
(@™ )y or x =y emcymcee (@M, 7)y. By Definition 3.1, we need to show that x
=emeecyn (@), xyy and
e For every p € %,, there exists ¢ € %, such that

(a) QXp if and only if Qsq for a€ 4,

(b) x[1. p) Zeniaceyn (@)1, ),

(¢) x(p, |x|1y¥(g,|]], and
e For every g € %,, there exists p € %, such that (a)—(c) hold.
Under our assumption, this is equivalent to showing that xyy and
e For every p € %, there exists ¢ € %, such that (a)—(c) hold, and
e For every g € %,, there exists p € %, such that (a)—(c) hold.
To see this, we proceed by induction on m. We have x =gz ym (w)y if and only if
X Syen—1(gesymn-Nyace (@)y if and only if x =gn—1(gzym-1 (w)y and
e For every p €., there exists g € %, such that

(d) @ p if and only if Qg for ac A,

(e) x[1, p)=pn—(aeyn—1 (w)y[1,q), and
e For every g € %,, there exists p € %, such that (d)—(e) hold.
For m=1, x =mzey» (w)y if and only if xay (which is part of our assumption). The
result follows since o(m) C om—1y and Zen(aezym (©) C Zenmi1(zezym—1 (©).
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Now, the y-equivalence of x and y is part of our assumption. Next, since x =y
(%my, 7}y, the (m) first positions in x and v satisfy (1)—(S5) of Lemma 3.13. So let
p €, (the proof is similar if starting with g € %,.). Assume Q; p.

Cuse 1. p= p; for some | <i<s. Since (1) holds, we may consider g =¢,. Condi-
tions (2) and (3) imply that Q2q and x(p, |x|]7 (g, | v|].

Case 2. p& WUy, p,,,) for some 1 <i<s. From (4), there exists g € %y, 4,.,) such
that Qzq and x(p, |x|]y3(q. | ¥[].

Case 3. pEUyp, s From (5), there exists g€ ¥, |, such that O7g and
x(p. [x{]7v(g, | y]].

In all cases, (1)-(5) and the choice of g imply that x[1, p) =wmaey= (0)¥[1. ).
This is done by induction on m. For m =1, x[1, p) =m@ae)» (0)y[1,q) if and only if
x[L. p)ay[l,q). For m>1, we will show that x[1, p)=.mac)» (®)y[1l,q) by showing
that x[1, p) =qceynece (W)Y, q) or X[, p) =(ey (Am—1), @) ¥11,q) (using the inductive
hypothesis). We treat Case 2 (Case | and Case 3 are handled similarly).

We need to show that x[1, p)ag,—1y¥[1,q) (which is obvious) and
e For every p' € U, p, there exists ¢’ € %, such that

(f) Qi p' if and only if Q;q’ for b€ 4,

(g) X[l’P/)OC(m—I))’[l,‘Z/)s and
o For every ¢’ € ¥, .4), there exists p’ € %, ») such that (f)—(g) hold.

So let p' € .. ) (the proof is similar if starting with g’ € %, 4)). Assume O} p'.

Case 2.1. p' €U ). If p'=p; for some 1< <i, consider ¢’ =g, which satis-
fies Qpq’. If p' €Uy, p,,.) for some 1<j<i, then from (4), consider ¢’ € %,(q,. 4
satisfying Oy q’'.

Case 2.2. p' = p;. Consider ¢’ =g¢; satisfying 0} ¢q’.

Case 2.3. p' €Uy, p) Here, let p; be the last of the (m— 1) first positions in
x[1. pi) (p; exists, otherwise x{ p;, p;1)=1). Consider ¢’ to be the first occurrence of
bin 4yq,.q)-

In Cases 2.1-2.3, we see that x[L, p )oam—1y¥[1.¢"). O

i+1)

We end this section with a lemma similar to Lemma 3.2 involving the congruence
P instead of ay,,).

Lemma 3.4. Let A be a finite alphabet, x and y be words on A and m,n be positive in-
tegers. Let p,...,ps €Ux (p1<--- < p,) (vespectively q\,...,q, €U, (q1 < -+ <gq,))
be the positions that spell the first m and the last m occurrences of every letter of
x (respectively y). We have x = ep-1 (Br.m @', BLm)y if and only if the following
three conditions are satisfied.:

l. s=¢t

2. QFpi if and only if Qiq; for all 1<i<s and a € A.

3. x(pis pis 1) M(Gis gi4) Jor all 1<i<s.

Proof. The proof is similar to that of Lemma 3.2. [0
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4. Pseudovarieties associated to trees

We are now going to review a few facts about the Schiitzenberger product. A first
version of this product was introduced in [16], and it was generalized in [20].

Let m be a positive integer and Si,...,S, be finite monoids. We define the
Schiitzenberger product of Si,...,Sy,, denoted by On,(Si,...,S5,), to be the submonoid
of m x m matrices with the usual multiplication of matrices, of the form x = (x;;), 1</,
j<m, in which the (i, j)-entry is a subset of S; x --- x S, and satisfying the following
three conditions:

1. If i>], then Xij = 0.

2. If i=j, then x; = {(1,..., L,s;, 1,...,1)} for some s; €S; (here, s; is the ith compo-
nent in the m-tuple).

3. If i<y, then x;; C{(51,...,5m) ESI X - X Sp|s1="--=si1=1=s5;4 = =Sy}

(here, 1 is the unit of Si,...,S,).

Note that these matrices are exactly the upper-triangular matrices whose ith diagonal
entry corresponds to a singleton of S; and whose (i,7)-entry (if i<j) to a subset of
S x xS If §=(s4,...,8,) €8 x--- xS and §’=(s§,,...,s},)eSi/ X +++x Sy, then
§5' = (Sis-- 8- 1,8)800s8)1 415+ -8} ) if j=1', and is undefined otherwise. This multipli-
cation is extended to sets in the usual fashion; addition is given by set union. It is
easy to check that ©,(Si,...,S») is a monoid.

If W, W,,..., W, are M-varieties, ¢,(W),...,W,) denotes the M-variety generated
by the products of the form <, (Si,...,S») with ;€ W; for all 1<i<m. Also, we
write On(W) for Onu(W,...,W) and O(W)=J,,5; On(W). It is not difficult to see
that O, (W) C Opy (W) and that O (W) is an M-variety.

The algebraic operation on monoids that corresponds to the concatenation of lan-
guages was identified to be the Schiitzenberger product.

Proposition 4.1 (Pin [13], Reutenauer [14], Straubing [20]). Let m be a positive inte-
ger. Let Wy,..., W be x-varieties and Wy, ..., Wy, be the associated M-varieties. If
W is the x-variety associated 10 Opni1(Wo,...,Wy), then for each finite alphabet A,
A*W is the boolean algebra generated by the languages of the form LiaiL;, ... arL;,
where 0<ip<i) < --- <ix<m, a1,...,a, €A and L; EA*“W,»] for all 0<j<k.

The following definition associates pseudovarieties to trees.

Definition 4.1 (Pin [13]). Let u be a tree and Wy, ..., Wy, be M-varieties. We define

an M-variety ¢, (W),..., W) as follows:

o O (W)=W for each M-variety W.

o If u=cuol, where up € P, O,(Wy,...,Wi))= Cup (Wi, W)

o If u=cuyé...cu,¢ where m=>=1 and wuy,...,u, €P, Ou(Wi,..., Wiy)) is the M-
variety generated by the Schiitzenberger products of the form <, 1(So,...,Sm),
where

So € <>u0 (W,... ,W](uo)), e, Sm € <>um (Wl(uo)+---+l(u,,,,|)+l, e ,W](u0)+.A.+l(um)).
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If W= =W,;=W for 1<i<;j</(u), then we will abbreviate O, (Wi,..., W)
by

Ou(Wr,..., W, WL W W)

We will abbreviate O, (W) by ©,(W). More generally, if LC P, we denote by
OL(W) the join \/,o; Ou(W). A consequence of Definition 4.1 is that if u=cupc...
cu,,¢ with ug, ..., u, € P, then we have

Cu(Wi, ... Wi) = Oeaymtt (O (Wi, Wiy ),
ey Oum(W[(u0)+...+[(umA! ) Ex ERRRE) Wl(u0)+---+1(u,,.)))~

The following theorem together with Proposition 4.1 describe, for each tree u, the
x-variety of languages associated to the M-variety ©,(Wi,..., W)

Theorem 4.1 (Pin [13]). If m is a positive integer and Wy, ..., W,, are M-varieties,
then

O(Cg)erl(W(), .o ,Wm) = <>m+1 (WO, e ,Wm)

Now, let u be a tree and W,..., Wy, be locally finite M-varieties. The following
proposition shows that ©,(Wi,..., Wyq,) is also locally finite.

Proposition 4.2. Let A be a finite alphabet, u be a tree and Wy, ..., Wy, be locally
finite M-varieties. For 1 <i<I(u), let y; be the congruence generating W; for A. Then,
an A-generated monoid S belongs to O, (W,...,Wyw) if and only if S is a morphic
image of A* /=, (15 Vi)

Proof. Let ¥, be the x-variety of languages associated to O,(Wi,..., Wy,)). We want
on A that are unions of classes of =, (y1,-..,%iu). The proof is by induction on
u. If u=1 and v is the congruence generating W for 4, then O(W)=W and =
(y)=7. Otherwise, we factorize u as u=cuoC...cun¢ with ug,...,un € P. If m=0,
then O,(Wi,..., Wiun) = Oug (Wi, Witig) s Zu (P15 Vi) = =g (V155 Viug)) and
the result follows by the inductive hypothesis on ug. If m>1, then from

Cu(Wi,..., Wi)) = Opaymt (Cue(Wi, o, Wig))s
cos Qo (Wigug ool )+ 1 -+ > Wi oo+ 1(um) ) )

using the inductive hypothesis, Proposition 4.1 and Theorem 4.1, we can conclude that
A*v, is the boolean algebra generated by the languages of the form L;aiL; ... aL;,,
where 0<ip<ij< -+ <ir<m, ai,...,ap €A and L;, € gs,,{/ (Pgrs -+l 100+ )
for all 0<j<k. The result follows since each =, (y1,...,7u))-class is a boolean com-
bination of sets of the form L;aiL; ...arL;, where 0<ip<iy <--- <ip<m, ay,...,

ar €A and each L; is a = (Vl(uo)+~~-+l(u,j-.)+l,-~~a“r’l(uo)+---+/(u,,))'ClaSS (this comes
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directly from Definition 3.1 where the sets L;aiL;,...,arL; are induced by the cor-
responding positions py,..., pm (P1< - < pn) (a total of k different positions) and
Gl qm (1< -+ <qm) (a total of k different positions)). O

5. Semidirect products

We are now going to review a few facts about semidirect products.

Let S and 7 be monoids. For the sake of clarity, when semidirect products are
considered, we will usually express the operation of S additively (without assuming
commutativity) and T multiplicatively. We will let 0 denote the unit of S and 1 the
unit of 7. A fleft unitary action of T on § is a map (¢,s)— ts from 7 x S into § sat-
isfying (#")s =t(t's), t(s +s')=ts+ts', t0=0 and 1s=s for all 5,5’ €S and 1,t' € T}
a right unitary action of T on § is a map (f,s)— st from T x § into S satisfying
sty =(st)t', (s+ 5 ) =st+5't,0t=0 and sl =s for all 5,5’ S and £,#/ €T. If a left
unitary action of 7 on S is given, the semidirect product S =T is the set S x T with
operation (s,¢)(s’,#') = (s +1#s,#¢'). If commuting left and right unitary actions of 7 on
S are given (that is, #(st’)=(ts)t' for all s€ S and t,t' € T), the two-sided semidirect
product ST is the set S x T with operation (s,7)(s',t') = (st’ + ts',1t"). Properties
of the semidirect product are studied in [8] and properties of the two-sided semidirect
product are found in [15]. Semidirect products are special cases of two-sided semidirect
products.

Two-sided semidirect products induce an operation on M-varieties. Let V and W be
M-varieties. We define V + « W to be the M-variety generated by the products S*x* T
with S€V and T€W. We have S€VxxW if and only if S divides some product
Sx* T with S€V and T € W. The definition of the M-variety VW is similar. Note
that * is associative on M-varieties and that ** is not. Neither * nor * % is associative
on monoids. The operation * behaves well with respect to directed unions [8, 15].

Straubing has given a general construction to describe the languages recognized by
the semidirect product of two finite monoids (“principle of the semidirect product”)
[19]. Weil has given such a construction for two-sided products [24]. The following
results are consequences of their constructions and the equality R=(J,,.,J7 where
Ji" denotes J; % --- xJy (J; appears m times) [18].

Proposition 5.1 (Pin [13]). Let ¥~ be a x-variety and V be the associated M-variety.
If # is the x-variety associated to J, *V, then for each finite alphabet A, A* W  is
the boolean algebra generated by the languages of the form L or LaA™, where a€ A4
and Le A* Y . In other words, 3y xV = Owep (V1) If #7 is the x-variety associ-
ated to R*V, then for each finite alphabet A, A* W' is the smallest boolean algebra
containing A* V" and closed for the operations L LaA™ where a € A.

Proposition 5.2 (Weil [24]). Let ¥+~ be a x-variety and V be the associated M-
variety. If W is the *-variety associated to J\ xxV, then for each finite alphabet
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A, A* W is the boolean algebra generated by the languages of the form L or Lal',
where ac A and L,L' € A* 1", In other words, J; xxV = Oy (V).

The following representations of free objects for V+W and V x «x W were obtained
by Almeida and Weil. The free object on the alphabet 4 in the variety generated by
a pseudovariety V is represented by Fy(4). In general, Fy(4) does not lie in V. We
have Fy(4)€ V if and only if Fy(A4) is finite. In case V is M, Fy(4) is A*.

Proposition 5.3 (Almeida and Weil [1]). Let V and W be M-varieties such that
Fyv(A)eV and Fw(4) €W for all finite alphabets A. Then so is V+W.
Moreover, for a finite alphabet A, let T =Fw(A) and S = Fy(T x A). Consider:
1. The left unitary action of T on S defined by t(t),a)=(tt1.a) for all t.t, €T and
a €A
2. The associated semidirect product S*T.
Then there exists a one-to-one morphism from Fy.w(A) into S =T that maps a into

((l,a),a).

Proposition 5.4 (Almeida and Weil [3]). Let V and W be M-varieties such that
Fyv(A)e VY and Fw(A) €W for all finite alphabets A. Then so is Vx* W,
Moreover, for a finite alphabet A, let T = Fw(A) and S = Fy(T x A x T). Consider:
1. The left unitary action of T on S defined by 1(t),a,t)=(tt1,a,t2) for all t,t,,t, €T
and a € A.
2. The right unitary action of T on S defined by (t;,a,0)t = (t1.a,tt) for all t,t), L, €T
and a € A.
3. The associated two-sided semidirect product S+« T.
Then there exists a one-to-one morphism from Fy..w(A4) into S*xT that maps a
into ((1,a,1),a).

5.1. Congruences associated to semidirect products

In this section, we associate congruences to semidirect and two-sided semidirect
products of locally finite M-varieties.

Let 4 be a finite alphabet. Let W be a locally finite M-variety and 74 be the finite-
index congruence on A* such that an A-generated monoid S belongs to W if and only
if S is a morphic image of 4*/y4. The free object Fy(A4) is isomorphic to 4* /7. The
pseudovariety W is such that Fw(4)c W. We denote by =, the projection from 4*
into Fw(A4) that maps a to the generator a of Fyw(A). If x, y € A*, then m,, (x)=m ()
if and only if xy4y.

Definition 5.1. Let B=Fw(4) x 4 and z be a word on 4. Let 67, : 4* — B* be defined
by i (1)=1 and

o:(ar...a)=(m,,(2),a )7, (za1),@2) ... (1. (za; ...a;-y ). q;).

We often denote ¢/ (x) simply by a.,(x).
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Definition 5.2. Let B=Fw(4) x A x Fw(A) and z,z’ be words on 4. Let r§f' :4* — B*
be defined by 77 (1)=1 and

’
i (ay...aq) = (my(2),a1, 7y, (a2 ... a2 ))(my, (zar ), a2, 7y, (a3 ... ;2"))
oy, (zay .. aiy), a1, (2)).

We often denote 7;'(x) simply by 7,,(x).
Fix two locally finite M-varieties V and W. Let S, (respectively y4) be the finite-
index congruence generating V (respectively W) for the finite alphabet 4.

5.1.1. The case VxW
Let A be a finite alphabet and B=Fw(4) x 4. We define an equivalence relation
~ppy, ON A* as follows:

x~g,, v if and only if o, (x)Bs0,,(y) and xy4y.

Proposition 5.5. The equivalence relation ~g,,, is a finite-index congruence
*
on A™.

Proof. We will abbreviate 8z by B and 7,4 by y throughout the proof. Assume x ~g, y
and x’ ~p, y'. We have

oy(x)Bay(y) and xyy

and similarly with x and y replaced by x’ and y'. Since y is a congruence we have
xx'yyy'. The above, the fact that m,(x)=m,(y), and the fact that § is a congruence
imply that

o,(xx") = 0y(x)a3(x') = 0,(x)a) (x )P (»)oy (¥) = &, (y¥").

Thus xx’ ~p, yy' showing that ~p, is a congruence. This obviously is a finite-index
congruence since § and y are. [

Proposition 5.6. Let V and W be locally finite M-varieties. Let y4 (respectively Bp)
be the finite-index congruence generating W (respectively V) for the finite alphabet
A (respectively, B=Fw(A)x A). Then, an A-generated monoid S belongs to V+W
if and only if S is a morphic image of A*[~p,.,,.

Proof. We will abbreviate fz by B and y4 by y throughout the proof. Let x=y be
an identity on 4, say x=a;...q; and y=>5y...b;. Then x=y holds in V+W if and
only if x and y represent the same element of Fy.w(4). By Proposition 5.3, this is
equivalent to x and y having the same image under the one-to-one morphism from
Fv.w(A4) into Fy(B)xFw(A4) defined by a— ((1,a),a) and where the left unitary action
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of Fw(4) on Fy(B) is given by #(#;,a) = (#;,a). The above morphism maps x to

((L,ap) +(a,a)+ - +(ar...ai_,aq),a; ... q;), ()
and y to
((1,b)) + (b1, b))+ -+ + (b ...bj_|,bj),b1 .bp), 2)

(here, Fy(B) is written additively). The identity x = y holds in Fy ,w(4) if and only if
corresponding components of the pairs (1) and (2) coincide. Denote by x’ (respectively
y') the first component of (1) (respectively (2)). Then, Fy,w(4)}=x =y is equivalent
to the two conditions Fy(BY=x' = ' and Fw(4)E=x =y, or 6,(x)Po,(y} and xyy. U

5.1.2. The case V+xW
Let A be a finite alphabet and B = Fw(A) x 4 x Fw(A4). We define an equivalence
relation ~z, ., on 4™ as follows:

x=g,, v if and only if 7., (x)fp7,,(¥) and x74y.
Proposition 5.7. The equivalence relation ~g, ., is a finite-index congruence on A*,

Proof. Using the notation in the proof of Proposition 5.5, assuming x = .y and
x' =y ¥, the result follows from

1) = T @) ) = o 0 O 00 0D =), D

Proposition 5.8. Ler V and W be locally finite M-varieties. Let y4 (respectively Bg)
be the finite-index congruence generating W (respectively V) for the finite alphabet
A (respectively B=Fw(A) X A x Fw(A4)). Then, an A-generated monoid S belongs to
V««W if and only if S is a morphic image of A*/~y, ..

Proof. The proof is similar to that of Proposition 5.6 using Proposition 5.4 instead of
Proposition 5.3. O

5.2. Trees associated to semidirect products

In this section, we associate trees to some semidirect and two-sided semidirect prod-
ucts of locally finite M-varieties.

The following theorem provides equalities which relate with Propositions 5.1 and 5.2.
Let 7 be the finite-index congruence generating a locally finite M-variety V for the finite
alphabet 4. By Proposition 5.6 (respectively 5.8), the congruence ~, ., (respectively
~,.) generates J; xV (respectively J; x+V) for 4. By Proposition 4.2, =z (7, ®)
(respectively =7y2(7)) generates O(.p(V,I) (respectively Oy(V)) for A.

Theorem 5.1. Let A be a finite alphabet and y be a congruence on A*. We have
~ay = Feep (w) and ~q ==ep ()

i
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Proof. We have x =y (y,) y if and only if xyy and
1. For every p €, there exists g € %, such that
(a) QXp if and only if Q)q for ac 4,
(b) x[1, p)yy(l,q), and
2. For every g € %,, there exists p € %, such that (a) and (b) hold.
It is easy to see that x =y (y, )y if and only if o,(x)ac,(y) and xyy.
We have x =y (y) y if and only if xyy and
1. For every p € %,, there exists g € %, such that
(a) QFp if and only if QJq for a€ 4,
(b) x[1, pyyy[l.9),
(c) x(p,|x|ly¥(g,|y[], and
2. For every q € %,, there exists p € %, such that (a)—(c) hold.

It is easy to see that x =y (y)y if and only if 7,(x)at,(y) and xyy. O

Corollary 5.1. Let y; be the sequence of congruences defined by vy =o and 7,1 =
Scey (vi) The equality yi= =,, (w) =03 holds where 1; is a sequence of i 1’s.

Theorem 5.2. Let m be a positive integer, H be a locally finite G-variety and y be the
congruence generating H for the finite alphabet A. Then ~q, , ==y, y ==y (7).

Proof. We have x =¢yn+1 (y) y if and only if xyy and

1. For every pi,...,pm€%Ux (P1< - < pp), there exist qi,....qgn €% (1<
<gp;) such that
(a) pi<*p; if and only if g;<”q; for all 1<i,j<m,
(b) Q% p; if and only if Q2g; for all 1<i<m and a€ 4,
(©) x[1, pir1)yyll, gir) for all 0<i<m,
(d) x(pi, pit1)y¥(qi,gi+1) for all 1<i<m,
(e) x(pi, |x[Iy¥(g:, |¥(] for all 0<i<m, and

2. For every qi,....qm €%, (q1<- - <qnm), there exist pi,...,pn €% (1< -
< pm) such that (a)—(e) hold.

We have x ~y, . y if and only if ,(x)am)c,(y) and xyy. This is equivalent to saying

that x ~,, , v if and only if xyy and

1. For every pi,....,pm€%U; (P1<--- <pn), there exist gi,...,qgm€¥, (1< -
<qm) such that (a)—(c) hold, and

2. For every qi,....qm€%, (1< - - <qn), there exist pi,...,pn €% (11 <
--+ < pn) such that (a)-(c) hold.

We have x =, , y if and only if t,(x)om)7,(y) and xyy. This is equivalent to saying

that x =, , v if and only if xyy and

1. For every pi,...,pm €Ux (p1< -+ < pp), there exist q1,...,qn €%, (1< -~
<¢m) such that (a)—(c) and (e) hold, and

2. For every qi,....qm €%, (g1 < - <qu), there exist pi,...,pu €U (1< --
< pn) such that (a)—(c) and (e) hold.
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Since H is a G-variety and y generates H for 4 (y is a group congruence), the
conditions xyy and (a)—(c) imply (d) and (e). We conclude that x =)=+ (y)y if and
only if x~y, .y if and only if x=,, .y. O

Theorem 5.3. Let A be a finite alphabet and m,n be positive integers. We have

-1
,Ot(m)).

~ [ n
Sy Umy - —(cC Yt ((X(m), @

Consequently, J,, * % Jm = 0(c§)n+l (Jm,ln_],Jm) = OC(CC-)mHE(“:)n—Ic(cg)mﬂc- (l)

Proof. By Lemma 3.2, we have x =(cyp+ (%(m)y, @" ', amy)y if and only if 7, (x)on)
Tx(m)(y) and X0(m) Y- |

Theorem 5.4. Let A be a finite alphabet and m,n be positive integers. We have
- —1
R stimy Brm = =(c€ y+i (Br.m ", Bim).
Consequently, J, x * Comy,, = Oz (Comy , 1", Comy ).

Proof. By Lemma 3.4, we have x =(czyn1 (B1m, "', f1.m)y if and only if 7, ,(x)at(m)
t5,,(¥) and xBy my. O

We end this section with a few results on a conjecture of Pin. It was conjectured
in [13] that if u,v € P’, then O,(I)C O, (I) (in other words, =, (w) C =, (w)) if and
only if u is extracted from v. The following two results give counterexamples.

Theorem 5.5 (Blanchet-Sadri [5]). If m>1, then

J’ln‘*'l - <>cm+l(555)m+l (I): <>C(CCT)'”+IECC7 (I):J1 *Jm

Proof. By Theorem 5.1, if y; is the sequence of congruences defined by y; =~ 4
and yip) ==y (yi,w), then the equality y; == i (zsy+ (@) holds. Also, we have
the equality ~y 4, ==y (4m),®) by Theorem 5.1. The result then follows from
Theorem 3.3 with y=w. O

Theorem 5.6. If m> 1, then
O emri(geaymti (D € Qceaearymt (1)

Proof. The equality Ogmri(zezymet(1) = Cyaymtizea(I) holds by Theorem 5.5. But the lat-
ter is included in Oyezymiap(l) since =eymizy (@)C =geeymigs (@) by
Theorem 3.2. We have (c(cZ)"+'¢ )Y = u().m and (ccéece )™t = u(m 1y. The result then
follows from the inclusion =, |, (@)= 0m1y € &1,my= Sy, (@) from [6]. O

Theorem 5.6 answers a statement at the end of Section 3 of [13]. But Pin’s conjecture
was shown to be true in an important special case.
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Theorem 5.7 (Blanchet-Sadri [6]). Let P" be the set of trees u; where m is a tuple of
positive integers either of length 1 or of the form (my,...,my, 1) for some my,...,my.
If uyve P", then O,(HNC O, (1) if and only if u is extracted from v.
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