
Procedia Engineering 15 (2011) 5025 – 5029

1877-7058 © 2011 Published by Elsevier Ltd.
doi:10.1016/j.proeng.2011.08.934

Available online at www.sciencedirect.com
Available online at www.sciencedirect.com

          Procedia Engineering  00 (2011) 000–000 

Procedia
Engineering

www.elsevier.com/locate/procedia

* Corresponding author. Tel.:+8615222025960 

E-mail address: 1tdgy100512@yahoo.cn,2mjhtju@yahoo.com.cn  

Advanced in Control Engineering and Information Science 

Coal Price Index Forecast by a New Partial Least-Squares 
Regression

Bo Zhang1,Junhai Ma1,2 *

1 College of Management Economic，Tianjin University ，Tianjin 300072，China   
2 Tianjin University of Finance & Economics, Tianjin 300222, China 

Abstract 

Deviation of coal price has great influence on growth of China’s economic. Daily coal price indexes in 
Qinhuangdao were collected. Past twenty days were used to predict next day index. The principal 
components of twenty days were extracted. The function between output variable and components was 
fitted by linear, quadratic and exponential model. This improved traditional partial least-squares 
regression. Traditional method such as multivariate linear regression and polynomial regression were 
coming into comparing with our method. Improved quadratic partial least-squares obtained the smallest 
relative errors in mean and variance for ten reserved indexes. Those ten errors had minimum 0.3%, 
median 3.3% and maximum 9.7%. The ideal forecast precision certified that quadratic partial least-
squares was suitable for coal price indexes. 
© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [CEIS 2011] 
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1.  Introduction 

Coal, as principle source of fuel dynamic of industry and source of chemical material and civilian 
energy as well as a key export commodity, plays an important role in China’s economic development 
since China is one of few countries which take coal as primary energy resource. At present, being great 
strategetic status in national economic, coal contributes to 70% and 66% of production and consumption 
of one-time energy and is the main support energy in the long future. 

We can see that the price of coal is closely related with the timeSince Data is the only base of 

prediction, coal price indexes from 2 September 2009 to 2 March 2011were collected from Qinhuangdao 

Coal Information Network that came from real trade contracts and presents the true market. Based on 

Phase Space Reconstruction, indexes were forecasted by improved partial least-squares. 
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2. Improved Partial Least- Squares 

Given two variables sets of independent variables and dependent ones, the first set i.e. independent 

variables can be expressed as p-dimensional table 1 2
( , ,..., )

p
X x x x=

 as well as the second set i.e. 

dependent ones as q-dimensional table 1 2
( , ,..., )

q
Y y y y=

 with sample size n . The raw data is ( )n p q× +

sample matrix ( )( , )n p n q n p qZ X Y× × × +=
.

  Nonlinear partial least-squares regression researched the nonlinear relation between input and 
output variables. In order to avoid influence of different dimension, standardization was necessary and let 

standard matrix 0 01 02 0( , ,..., )p n pE E E E ×= and 0 01 02 0( , ,..., )q n qF F F F ×=  represent dimensionless input variables and 
output variables respectively. Our modified partial least-squares regression was described as follows. 

2.1  Extracting principal components 

Firstly estimate the first principal component 1t of 0E with 1 0 1t E w= , where 1w , unit vector 

with 1 1w = , was the first axis of 0E
. In the same way, the first principal component 1u

of 0F with 1 0 1u F c= ,

where 1c , unit vector with 1 1c = , was the first axis of 0F
. According to principal components analysis, the 

first component has the largest variation as well as 1t and 1u
satisfied following 

condition 

Meanwhile, the sets of independent and dependent variables were required to have the strongest 

correlation as well as 1t and 1u
had the maximum dependence 

1 1( , ) max.r t u → Covariance could be as a measure of dependence, so it equaled  

1 1 1 1 1 1( , ) ( ) ( ) ( , ) maxCov t u Var t Var u r t u= ⋅ → Then the problem could be solved by following 
optimization. 

           1 11 0 0 1

1 1

1max ,

1

TT T

T

w ww E F c
s t

c c⋅

⎧ =
⎨ =⎩

                                                                                             (1) 

Satisfying constrained condition 
2

1 1w =
and

2

1 1c =
, the optimized values 1w

and 1c

maximized 1 0 0 1
T Tw E F c .It was solved that 1w

and 1c
were eigenvectors of the largest eigenvalue of 

0 0 0 0
T TE F F E and 0 0 0 0

T TF E E F respectively. 

 After getting axis 1w
and 1c

, the first principal components was  

                                                                    1 0 1t E w=
                                                                  （2）                          

                                                                    1 0 1u F c=
                                                                  （3）

2.2  Nonlinear regression between dependent variables and principal components

The next step was to construct regression equation on principal components as  

1

1

( ) max

( ) max.

Var t

Var u

→
→
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                                           *
0 1 1 1 0 1 1 1 0 1 1 1, ,T T TE t p E F u q F F t r F= + = + = +                                         （4）

In these three equations, the one between 0F
and 1u

had no use in continuing calculation. The 
equations were all linear in conventional partial least-squares and its descendable methods. We can 
modify the Eqn. (4) as nonlinear form 

                                                               0 1 1 1( )E f t E= +                                                                 （5）

                                                               0 1 1 1( )F g t F= +                                                                  （6）
2.3  Nonlinear regression by iteration 

 The second principal components 2t and 2u
were computed in the same way by substituting 

0E
and 0F

with residuals 1E
and 1F

in Eqn. (5) and Eqn. (6). Nonlinear equation could be calculated 
continuingly  

                                                               1 2 2 2( )E f t E= +                                                                 （7）

                                                              1 2 2 2( )F g t F= +                                                                （8）
After cycle computation, we obtained 

                                                   0 1 1 2 2( ) ( ) ( )A AE f t f t f t= + + +L                                             （9）

                                                  0 1 1 2 2( ) ( ) ( )A A AF g t g t g t F= + + + +L                                            （10）

Because principal components 1 2, , , At t tL were linear combination of 01 02 0, , , pE E EL
, Eqn. (10) could 

be restored to  

1 2

* * * * * * * * * *
1 1 2 2 1 2 1 2[ ( , , , )] [ ( , , , )] [ ( , , , )] , 1, 2, ,

Ak t p t p A t p Aky g x x x g x x x g x x x F k q= + + + + =L L L L Lφ φ φ
   (11) 

where
*

0j jx E= , which could be simplified depending on conditions. 

3.  Forecasting Results 

Our coal price indexes with minimum 1113, maximum 2115 and median 1387, were listed in Fig. 1 
from which periodicity was obvious. The underlying system of univariate time series of price indexes was 
multivariate since many factors had impact on it. The key point was to reconstruct the complicated model 
from finite univariate data, which also called Phase Space Reconstruction. Its foundation is Taken’s 
Theorem which exemplified that information about higher-dimensional space can be hidden in its one 
component and it is possible to restore the whole system by one variable. 

Fig. 1.  Coal price indexes in port of 
Qinhuangdao 

Phase Space Reconstruction was equal to find 

the function between present value tx and past 

ones 2, , ,t t t dx x xτ τ τ− − −L , taking tx as output variable 

and 2, , ,t t t dx x xτ τ τ− − −L as input one. Embedding 

dimension d and time delay τ could be estimated 
by Mutual Average Information before fitting. 

A modified partial least-square, suitable for 
multivariate dependence variable, set time delay 

1τ = and embedding dimension 20d =  large 
enough. 
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Mainly computation works were finished by library “pls” in R language.  
Ten day indexes, randomly reserved from origin sixty five records, could be for testing effect and the 

rest for training. No standard transformation was done since all variable came from the same series.  
Their scores and loadings illustrated in Fig. 2 and Fig. 3, the first three principal components, most 

relevant to dependent variable, were calculated according to conventional partial least-squares by 
traditional orthogonal decomposition. They contributed 36%, 24% and 23% of total variance respectively.  

Fig. 3.  Scores and loadings of the first and 
second principle  components 

Fig. 2 depicted several regression models between 
output variable and the first principal components, 
where scatter points was real price indexes, solid line as 
linear regression model, long dashed curve as quadratic 
model and shorter dashed curve as exponent model. It 
was obvious from Fig. 2 that nonlinear regressions such 
as quadratic and exponent model were superior to linear 
model.   

The fitted parameters of those models were listed as 
Tab. 1, where quadratic model had the smallest standard 
error of the three models using the same raw data 

matrix. Considering standard errors σ̂ of residuals and 
R-squared 

2R , quadratic regression was the best, 
exponent model the better and linear one the worst. 

Fitting effects were compared among some kinds of 
regressions including our modified nonlinear partial 
least-squares based on the identical sample, and ten  

reserved data’s absolute relative errors, true value divided by the difference between predicted value 
and true one, were boxploted In Fig. 3. 

Overestimate or underestimate were all thought as errors, so absolute values were compared. In Fig. 
3, “line” presented linear partial least-squares, “quad” as quadratic partial least-squares, “exp” as 
exponent partial least-squares, “ml” as multivariate regression, “pcr” as principal regression, “step” as 
step polynomial regression and “local” as local polynomial regression. 
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4.  Conclusion 

Ignoring nonlinear dependence, conventional linear and nonlinear partial least-squares only 
considered the linear relation between output variables and principle components, so the model could be 
chose under condition as well as each principle components were still linear combination of independent 
variables in our modified partial least-squares. Comparing of regression model, relative errors of reserved 
data demonstrated quadratic partial least-squares’ superiority for coal price index prediction. 
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TABLE I 
FITTING EFFECT OF THREE MODELS BETWEEN 

DEPENDENT VARIABLE AND THE FIRST PRINCIPLE 
COMPONENTS  

R-squared
2R

Number Model 
Standard 

Errorsσ̂ 2R Adjust
2R

1 Quadratic 131.4 0.6134 0.5949 
2 Linear 142.4 0.5347 0.5239 

It was seen from Fig. 5 that relative 
errors of quadratic partial least-squares 
whose minimum was 0.3%, median 
3.3% and maximum 9.7%, were the 
closest to zero with the lowest height of 
box which indicated the smallest 
deviation, which reached ideal forecast. 
In conclusion, quadratic partial least-
squares was appreciated for our coal 
data. 


