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We compute the monoid of essential self-maps of Sn × Sn fixing the diagonal. More
generally, we consider products S × S , where S is a suspension. Essential self-maps of
S × S demonstrate the interplay between the pinching action for a mapping cone and
the fundamental action on homotopy classes under a space. We compute examples with
non-trivial fundamental actions.
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1. Introduction

This paper investigates self-maps of Sn × Sn fixing the diagonal � : D = Sn → Sn × Sn . More precisely, we consider maps
f : Sn × Sn → Sn × Sn with f � = �, and the set, [Sn × Sn, Sn × Sn]� , of homotopy classes of such maps, where we only
admit the homotopy H : f � g if, for each t , 0 � t � 1, the map Ht also fixes the diagonal. The function

ϕn : [Sn × Sn, Sn × Sn]� → [
Sn × Sn, Sn × Sn]∗,

takes the homotopy class of a map relative D to the homotopy class of the same map relative the base point ∗ ∈ D . There
is a fundamental action of F = πn+1(Sn) ⊕ πn+1(Sn) on [Sn × Sn, Sn × Sn]� such that ϕn( f ) = ϕn(g) if and only if there is
an α ∈ F such that f + α = g , see Section 2.

Theorem 1.1. The function ϕn is injective, that is, the fundamental action is trivial for n � 1.

In other words, given a self-map F of Sn × Sn with F� � �, there is a homotopy F � G with G� = � and the homotopy
class of G is uniquely determined by F .
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More generally, given a suspension S of a co-H-group with diagonal � : D = S ⊂ S × S and a map v : D = S → U , we
consider the function

ϕ : [S × S, U ]v → [S × S, U ]∗,
where [S × S, U ]v is the set of homotopy classes of maps under D . In Section 4 we compute both sets in terms of Whitehead
products and obtain a criterion for ϕ to be injective.

The function ϕ is not injective in general, that is, there are spaces U and maps v : S → U , for S = S2, such that the
fundamental action on [S × S, U ]v is non-trivial.

We compute the orbits of the fundamental action for S = Sn × Sn in Sections 4 and 5, apparently providing the first
example in the literature where such orbits are computed for subspaces other than points. As a special case of Theorem 4.2
we obtain

Theorem 1.2. Take a map v : Sn → U . Then

[
Sn × Sn, U

]v =
⋃

u

π2n(U )/Iu,

where u ranges over the set I of all u = (u′, u′′) ∈ πn(U ) × πn(U ) with [u′, u′′] = 0 and u′ + u′′ = v. Let w = u′′ + (−1)n−1u′ , so
that v = w + (1 + (−1)n)u′ . Then

Iu = {[α, w] ∣∣ α ∈ πn+1(U )
}

and

Ju = {[α, w] + [
γ , u′] ∣∣ α,γ ∈ πn+1(U )

}
.

The orbits of the fundamental action are given by the quotient groups Ju/Iu acting on π2n(U )/Iu . Thus ϕ is injective if and only if
Iu = Ju for all u ∈ I .

To determine the monoid [Sn × Sn, Sn × Sn]� , consider the monoid N of (2 × 2)-matrices over Z given by

N =
{[

a′ a′′
b′ b′′

] ∣∣∣ a′ + a′′ = 1, b′ + b′′ = 1

}
⊂ End(Z ⊕ Z).

Let M be the submonoid of matrices with a′,a′′,b′,b′′ ∈ {0,1}. There are four canonical self-maps of Sn × Sn which fix the
diagonal, namely the identity, I , the interchange map, T , P ′ = � ◦ pr1 and P ′′ = � ◦ pr2, where pri : Sn × Sn → Sn is the
projection onto the i-th factor for i = 1,2. We obtain the multiplication table

I T P ′ P ′′

I I T P ′ P ′′
T T I P ′ P ′′
P ′ P ′ P ′′ P ′ P ′′
P ′′ P ′′ P ′ P ′ P ′′

and identify the monoid formed by I, T , P ′ and P ′′ with the monoid M. Let ηn+1 ∈ πn+1(Sn) be the Hopf element, in ∈
πn(Sn) the identity and [ηn+1, in] ∈ π2n(Sn) the Whitehead product. We know that π3(S2) = Z and πn+1(Sn) = Z2, i � 3,
are generated by ηn+1. Moreover, for small n the Whitehead product satisfies

n 2 3 4 5

[ηn+1, in] 0 0 
= 0 
= 0

see [9]. We define the abelian group Vn by

Vn = π2n
(

Sn)/[ηn+1, in].
If n is odd, Vn ⊕ Vn is an N -bimodule. Namely, for (x, y) ∈ Vn ⊕ Vn , the left action of α = [ a′ a′′

b′ b′′
] ∈ N is given by

α(x, y) = (
a′x + a′′ y,b′x + b′′ y

)
and the right action is given by

(x, y)α = (
a′b′′ + (−1)nb′a′′)(x, y).
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If n is even, Vn ⊕ Vn is an M-bimodule by the same formulæ. We define the monoid Mn = M × (Vn ⊕ Vn) by the
multiplication

(
m, (x, y)

) ◦ (
m′, (x′, y′)

) = (
mm′,

(
m(x′, y′) + (x, y)m′)),

that is, Mn is a split linear extension of M.

Theorem 1.3. The set [Sn × Sn, Sn × Sn]� together with composition of maps is a monoid isomorphic to Mn, if n is even. If n is odd,
the monoid Nn = [Sn × Sn, Sn × Sn]� is a linear extension of N by the bimodule Vn ⊕ Vn, that is, there is a surjection π : Nn → N
of monoids and a free action + of Vn ⊕ Vn on Nn, such that the linear distributivity law holds, that is,

(
m + (x, y)

) ◦ (
m′ + (x′, y′)

) = m ◦ m′ + m(x′, y′) + (x, y)m′,

and π(m) = π(m′) if and only if there is (x, y) ∈ Vn ⊕ Vn with m + (x, y) = m′ for m,m′ ∈ Nn.

For n odd it remains an open question whether the linear extension Nn splits. Here Nn splits if and only if the coho-
mology class [Nn] ∈ H3(N , Vn ⊕ Vn) represented by Nn is trivial, see [7].

For the proof of Theorem 1.3 we use the fact that the Whitehead product [in, in] has infinite order if n is even, is
trivial for n = 1,3,7 and otherwise an element of order 2. Moreover, we use the realizability conditions for u = (u′, u′′) in
Corollary 4.4, where u′ + u′′ = 1 implies that either u′ or u′′ must be even.

Theorem 1.3 was proved for n = 2 by different methods in [6]. The special case motived the authors to consider the
general case in this paper.

2. The fundamental action

Let D be a space and let i : D � X be a cofibration. Given a map u : D → U , we consider maps f : X → U under D , that
is, maps with f i = u. Two maps f , g : X → U under D are homotopic relative D , if there is a homotopy H : f � g , such that
for each t , 0 � t � 1, the map Ht is also a map under D . Let [X, U ]D = [X, U ]u be the set of homotopy classes relative D of
maps under D . For D = ∗ a point, the set [X, U ]∗ is the usual set of homotopy classes of base point preserving maps. Given
a cofibration E � D , the forgetful map

ϕ : [X, U ]v → [X, U ]E

takes the homotopy class [ f ] relative D to the homotopy class [ f ] relative E . The image of ϕ is the subset of all elements
[g] ∈ [X, U ]E with gi � u relative E . Let ΣE D be the pushout of S1 × E � E and S1 × E � S1 × D . Then [ΣE D, U ]v is a
group acting on [X, U ]v via the fundamental action +, given by the homotopy extension property of the cofibration D � X .
By II (5.17) in [3], ϕ( f ) = ϕ(g), for f , g ∈ [X, U ]v , if and only if there is an α ∈ [ΣE D, U ]v such that f + α = g .

In general, the fundamental action is non-trivial. For example, if E = ∅, the empty set, and D = ∗, the point, then the
fundamental action is the action of the fundamental group. If X = K (G,1) and U = K (H,1) are Eilenberg–MacLane spaces,
then [X, U ]∗ = Hom(G, H) and π1(U ) = H acts via (ϕ + α)(g) = −α + ϕ(g) + α for α ∈ H and ϕ ∈ Hom(G, H).

3. The pinching action

Choosing a closed ball B2n in the complement, Sn × Sn \�(Sn), of the diagonal, we obtain the pinching map, μ : Sn × Sn →
Sn × Sn ∨ S2n , by identifying the boundary of the ball to a point. The map μ induces the pinching action of the group
π2n(U ) on the set [Sn × Sn, U ]u , where u : D = Sn → U . This action commutes with the fundamental action of Section 2.
Since D = Sn is a suspension, there is a homotopy equivalence, Σ∗D � Sn+1 ∨ D , under D , and the fundamental action on
[Sn × Sn, U ]u is an action of the group [Σ∗D, U ]u = πn+1(U ). The pinching action and the fundamental action define an
action of π2n(U ) ⊕ πn+1(U ) on [Sn × Sn, U ]u . Putting U = Sn × Sn and denoting the homology functor by Hn , we obtain

Lemma 3.1. Take f , g ∈ [Sn × Sn, Sn × Sn]� . Then Hn( f ) = Hn(g) if and only if there is an α ∈ Wn = π2n(Sn × Sn)⊕πn+1(Sn × Sn)

with f + α = g.

Lemma 3.1 follows from Eq. (1) in Section 4 which is devoted to the computation of the isotropy groups of the action of
π2n(U ) ⊕ πn+1(U ) on [Sn × Sn, U ]u .

4. Computation of the isotropy groups

Let S = ΣT be the suspension of a pointed space and assume that the diagonal � : D = S ⊂ S × S is a cofibration. There
is a homotopy H : � � μ from the diagonal � to the comultiplication μ : D = S → S ∨ S ⊂ S × S . Let Z be the mapping
cylinder of μ. Then H yields a map H : Z → S × S under D , which is a homotopy equivalence in Top∗ . By Corollary II (2.21)



H.-J. Baues, B. Bleile / Topology and its Applications 158 (2011) 2198–2204 2201
in [3], H is also a homotopy equivalence in TopD and hence, for a map v : D = S → U ,

[Z , U ]v = [S × S, U ]v . (1)

We consider the diagram

Z = C f

w

A
f

B = Ch
u

i f

U

Q h
D

v

which corresponds to diagram II (13.1) in [3]. We are interested in the special case where D = S, Q = T ∨ T and h is the
trivial map. Then B = S ′ ∨ S ′′ ∨ D is a 1-point union of three copies of S = S ′, S ′′, D , and we denote the inclusions of S by
e′, e′′ and e, respectively. Further, we put A = Σ(T ∧ T ) ∨ S and

f1 = f |Σ(T ∧T ) = [
e′, e′′], the Whitehead product,

f2 = f |S = −e + e′ + e′′, the sum of inclusions.

It is known that the mapping cone C f coincides with Z , see for example (0.3.3) in [2]. For S = Sn , the coaction on C f yields
an action corresponding to the action in Lemma 3.1. The map u in the diagram is an extension of v and thus determined
by u′, u′′ : S → U . In order to apply II (13.10) in [3], we recall the definition of the difference element of a map f : A → Ch ,
where Ch is the mapping cone of a map h : Q → D . The inclusions i1 : Σ Q → Σ Q ∨ Ch and i2 : Ch → Σ Q ∨ Ch yield the
map i2 + i1 : Ch → Σ Q ∨ Ch and

∇ f = − f ∗(i2) + f ∗(i2 + i1) : A → Σ Q ∨ Ch.

Note that ∇ f is trivial on Ch , that is, (0,1)∗∇ f = 0. An extension w of u gives rise to w+ : [Σ A, U ] → [C f , U ]v ,α �→ w +α,
where the action + is given by the pinching map of the mapping cone C f . Now II (13.10) in [3] yields

Theorem 4.1. There is an exact sequence

[
Σ2 Q , U

]∇(u, f ) [Σ A, U ] w+ [C f , U ]v
i∗f [B, U ]v f ∗ [A, U ],

where ∇(u, f )(β) = (E∇ f )∗(β, u) and E is the partial suspension.

Special cases of Theorem 4.1 for D = ∗ correspond to results by Barcus and Barratt [1] and Rutter [8].
For the computation of ∇(u, f ) we must consider ∇ f : A → Σ Q 1 ∨Σ Q 2 ∨ D , where Q 1 = Q 2 = T ∨ T and E∇ f : Σ A →

Σ2 Q 1 ∨ Σ Q 2 ∨ D . The inclusions e′ and e′′ yield the corresponding inclusions e′
1, e′

2, e′′
1, e′′

2 of S in Σ Q 1 ∨ Σ Q 2 ∨ D and
the inclusions Σe′

1,Σe′′
1 of Σ S in Σ2 Q 1 ∨ Σ Q 2 ∨ D , so that

∇ f1 = −[
e′

2, e′′
2

] + [
e′

2 + e′
1, e′′

2 + e′′
1

]
,

∇ f2 = −(−e + e′
2 + e′′

2

) + (−e + e′
2 + e′

1 + e′′
2 + e′′

1

)
.

If T is a co-H-group, the Whitehead product is bilinear and we obtain

∇ f1 = [
e′

1, e′′
2

] + [
e′

2, e′′
1

] + [
e′

1, e′′
1

]
= [

e′
1, e′′

2

] − (Στ)∗
[
e′′

1, e′
2

] + [
e′

1, e′′
1

]
,

where τ : T ∧ T → T ∧ T is the interchange map. Then

E∇ f1 = [
Σe′

1, e′′
2

] − (
Σ2τ

)∗[
Σe′′

1, e′
2

]
,

see (3.1.11) [2]. Moreover, ∇ f2 = e′
1 + e′′

1, so that

E∇ f2 = Σe′
1 + Σe′′

1.

By the definition of ∇(u, f ) in Theorem 4.1, we thus obtain

∇(u, f1) : [Σ2(T ∨ T ), U
] → [

Σ2(T ∧ T ), U
]
, ∇(u, f1)(α,β) = [

α, u′′] − (
Σ2τ

)∗[
β, u′],

∇(u, f2) : [Σ2(T ∨ T ), U
] → [

Σ2T , U
]
, ∇(u, f2)(α,β) = α + β.

We leave it to the reader to compute these functions when T is not a co-H-group.
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For the suspension S = ΣT with diagonal � : S ⊂ S × S and a map v : S → U as above, consider the commutative
diagram

[Z , U ]v = [S × S, U ]v ϕ

p�

[S × S, U ]∗

p

[S ∨ S, U ]∗.
(2)

The group [Σ2T ∧ T , U ] acts on [S × S, U ]∗ and the group [Σ2T ∧ T , U ] ⊕ [Σ2T , U ] acts on [Z , U ]v . For f , g ∈ [S × S, U ]∗
we obtain p( f ) = p(g) if and only if there is an element α ∈ [Σ2T ∧ T , U ] with f + α = g . For f , g ∈ [Z , U ]v we obtain
p�( f ) = p�(g) if and only if there is an element (α,β) ∈ [Σ2T ∧ T , U ] ⊕ [Σ2T , U ] with f + (α,β) = g . An element
u = (u′, u′′) ∈ [S ∨ S, U ]∗ is in the image of p if and only if [u′, u′′] = 0, and then the isotropy group of the orbit p−1(u) is
the image of ∇(u, f1), see (3.3.15) in [2]. Moreover, u is in the image of p� if and only if u′ + u′′ = v and [u′, u′′] = 0, and
then the isotropy group of the orbit p−1

� (u) is the image of ∇(u, f1) + ∇(u, f2).

Theorem 4.2. Let S = ΣT be the suspension of a co-H-group T and let v : S → U be a map. Choosing a representative in each orbit,
we obtain the bijection

[S × S, U ]v =
⋃

u

[
Σ2T ∧ T , U

]
/Iu,

where u ranges over the set I of all u = (u′, u′′) ∈ [S, U ] × [S, U ] with [u′, u′′] = 0 and u′ + u′′ = v, and

Iu = {[
α, u′′] + (

Σ2τ
)∗[

α, u′] ∣∣ α ∈ [
Σ2T , U

]}
.

Proof. Surjectivity of ∇(u, f2) yields the commutative diagram

ker∇(u, f2)
∇(u, f1) [Σ2T ∧ T , U ] [Σ2T ∧ T , U ]/Iu

∼=

[Σ2 Q , U ]
∇(u, f2)

∇(u, f ) [Σ A, U ] coker∇(u, f )

[Σ S, U ] [Σ S, U ] 0

of short exact columns and exact rows, where Iu = ∇(u, f1)(ker(∇(u, f2))). The formula for Iu follows from the computation
of ∇(u, f1) and ∇(u, f2). �

Theorem 4.2 corresponds to (3.3.15) in [2], where [S × S, U ]∗ is computed by the formula

[S × S, U ]∗ =
⋃

u

[
Σ2T ∧ T , U

]
/ Ju,

where u ranges over the set J of all u = (u′, u′′) ∈ [S ∨ S, U ] with [u′, u′′] = 0 and

Ju = {[
α, u′′] − (

Σ2τ
)∗[

β, u′] ∣∣ α,β ∈ [
Σ2T , U

]}
.

Moreover, the diagram

[S × S, U ]v

ϕ

⋃
u∈I [Σ2T ∧ T , U ]/Iu

[S × S, U ]∗ ⋃
u∈J [Σ2T ∧ T , U ]/ Ju

commutes, where I ⊂ J and the arrow on the right-hand side is induced by the identity. Thus we obtain

Corollary 4.3. The orbits of the fundamental action are given by the quotient groups Ju/Iu acting on [Σ2T ∧ T , U ]/Iu . Thus ϕ is
injective if and only if Iu = Ju for all u ∈ I .

For the special case of a sphere S = Sn , we obtain
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Corollary 4.4. Take a map v : Sn → U . Then

[
Sn × Sn, U

]v =
⋃

u

π2n(U )/Iu,

where u ranges over the set I of all u = (u′, u′′) ∈ πn(U ) × πn(U ) with [u′, u′′] = 0 and u′ + u′′ = v. Let w = u′′ + (−1)n−1u′ , so
that v = w + (1 + (−1)n)u′ . Then

Iu = {[α, w] ∣∣ α ∈ πn+1(U )
}

and

Ju = {[α, w] + [
γ , u′] ∣∣ α,γ ∈ πn+1(U )

}
.

Corollary 4.5. Let v = idSn : Sn → Sn be the identity. Then the fundamental action on [Sn × Sn, Sn]v is trivial.

Proof. Take u = (u′, u′′) ∈ Z ⊕ Z = [Sn ∨ Sn, Sn] with u′u′′[in, in] = [u′, u′′] = 0 and u′ + u′′ = v = 1. Then Iu is the subgroup
of all elements of the form (u′′ + (−1)n+1u′)[ηn+1, in] and Ju is the subgroup generated by u′′[ηn+1, in] and u′[ηn+1, in]. As
u′ + u′′ = 1 implies that either u′ or u′′ must be odd and [ηn+1, in] = 0 for n = 2 and is an element of order 2 otherwise,
we conclude that Iu = Ju . �
5. Computation of Iu and J u for S2 × S2

First recall Whitehead’s quadratic functor Γ . A function η : π2 → π3 between abelian groups is quadratic if η(−a) = η(a)

and π2 × π2 → π3, (a,b) �→ η(a + b) − η(a) − η(b) = [a,b]η is bilinear. There is a universal quadratic map γ : π2 → Γ (π2),
such that there is a unique homomorphism η̂ : Γ (π2) → π3 with η = γ η̂. To define the Γ -torsion Γ T (π2), take a short free

resolution A1
d� A0 � π2 and consider the sequence

A1 ⊗ A1
δ2

Γ (A1) ⊕ A1 ⊗ A0
δ1

Γ (A0),

where δ1 = (Γ (d), [d,1]) and δ2 = ([1,1],−1 ⊗ d). Then

Γ T (π2) = ker(δ1)/im(δ2).

Moreover, let M(η) be the subgroup of π3 ⊗ Z/2 ⊕ π3 ⊗ π2 generated by

(ηx) ⊗ x

and

[x, y]′η ⊗ 1 + (ηx) ⊗ y + [y, x]′η ⊗ x,

where x, y ∈ π2 and [x, y]′η = η(x + y) − η(y). Putting

Γ 2
2 (η) = (π3 ⊗ Z/2 ⊕ π3 ⊗ π2)/M(η),

there is a short exact sequence of abelian groups

Γ 2
2 (η) Γ4(η) Γ T (π2), (3)

where Γ4(η) is the group Γ4 K (η,2) in (12.3.3) which is the natural element contained in Ext(Γ T (π2),Γ
2

2 (η)) computed in
(11.3.4) and (11.1.21) in [4].

Definition 5.1. Let π2,π3,π4, H2, H3, H4 and H5 be abelian groups with H5 free abelian and π2 = H2. A (5-dimensional)
Γ -sequence is an exact sequence in the category of abelian groups

H5 Γ4(η) π4 H4 Γ (π2)
η̂

π3 H3 0. (4)

A morphism ϕ of Γ -sequences is given by homomorphisms Hi(ϕ) : Hi → H ′
i , πi(ϕ) : πi → π ′

i and Γ4(ϕ) : Γ4(η) → Γ4(η
′)

compatible with the exact sequences (3) and (4). Here (Γ (π2(ϕ)),π3(ϕ)) is a morphism η → η′ inducing a map Γ 2
2 (η) →

Γ 2
2 (η′).

The following result is proved in [4].
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Theorem 5.2. There is a representable functor W from the homotopy category of simply connected 5-dimensional CW-complexes
to the category of 5-dimensional Γ -sequences. In other words, for every Γ -sequence (4) there is a simply connected 5-dimensional
CW-complex U , such that the Γ -sequence W (U ) is isomorphic to (4) in the category of Γ -sequences. We call U a realization of (4).

Note that (4) is realizable, but does not determine the homotopy type of the realization U . Complete invariants classifying
the homotopy type of U are provided in (12.5.9) in [4]. Theorem 5.2 follows from (3.4.7) and (11.3.4) in [4], see also 7.10
in [5]. The functor W is an enrichment of Whitehead’s Certain Exact Sequence [10].

For n = 2 we now show that the groups Iu and Ju in Corollary 4.4 depend on the Γ -sequence of U only. Given a
Γ -sequence (4) and y ∈ π2, let [π3, y] ⊂ π4 denote the image of

π3 ⊗ 〈y〉 π3 ⊗ π2 Γ 2
2 (η) Γ4(η) π4.

By (11.3.5) in [4], [π3, y] corresponds to the Whitehead product.

Theorem 5.3. Given a Γ -sequence (4) and a realization U of (4), take w, u′ ∈ π2 ∼= π2(U ), such that [u′, u′′] = 0 for u′′ = w + u′ .
Then

Iu ∼= [π3, w]
and

Ju ∼= [π3, w] + [
π3, u′].

In order to find examples with Iu 
= Ju , we choose appropriate Γ -sequences.

Corollary 5.4. Consider a Γ -sequence (4) with realization U and elements w, u′ ∈ π2 , with π2 = π ′
2 ⊕〈w〉⊕ 〈u′〉 and π3 ⊗〈u′〉 
= 0.

Further, assume (4) satisfies η = 0 and H5 = 0. Then [u′, u′′] = 0 for u′′ = w + u′ ,

Iu ∼= π3 ⊗ 〈w〉
and

Ju ∼= π3 ⊗ (〈w〉 ⊕ 〈
u′〉),

so that Iu/ Ju ∼= π3 ⊗〈u′〉 
= 0. Hence the fundamental action on [S2 × S2, U ]v is non-trivial, where v : S2 → U represents u′ + u′′ =
w +2u′ . Moreover, the orbits of the fundamental action are of the form π3 ⊗〈u′〉, where the abelian group π3 can be chosen arbitrarily
and 〈u′〉 can be any cyclic group.

Proof. As H5 = 0, the map Γ4(η) → π4 is injective. Therefore the map Γ 2
2 (η) → π4 is also injective. Further, η = 0 implies

M(η) = 0 and hence Γ 2
2 (η) = π3 ⊗ Z/2 ⊕ π3 ⊗ π2. Thus [π3, w] ∼= π3 ⊗ 〈w〉 and [π3, w] + [π3, u′] ∼= π3 ⊗ (〈w〉 ⊕ 〈u′〉). �
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