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Abstract

In this paper, we present a modified density-dependent Drucker-Prager Cap (DPC) model to simulate the com-
paction behaviour of pharmaceutical powders. In particular, a nonlinear elasticity law is proposed to describe the
observed nonlinear unloading behaviour following compaction. To extract the material parameters for the modified
DPC model, a novel experimental calibration procedure is used, based on uniaxial single-ended compaction tests
using an instrumented cylindrical die. The model is implemented in ABAQUS by writing a user subroutine, and
a calibration process on microcrystalline cellulose (MCC) Avicel PH101 powders is detailed. The calibrated param-
eters are used for the manufacturing process simulation of two kinds of typical pharmaceutical tablets: the flat-face
tablet and the concave tablet with single or double radius curvatures. The model developed can describe not only
the compression and decompression phases, but also the ejection phase. The model is validated by comparing finite
element simulations with experimental loading–unloading curves during the manufacture of 8 and 11 mm round
tablets with flat-face (FF), single radius concave (SRC) and double radius concave (DRC) profiles. Moreover,
the density and stress distributions during tabletting are used to analyse and explain the failure mechanism of tab-
lets. The results show that the proposed model can quantitatively reproduce the compaction behaviour of pharma-
ceutical powders and can be used to obtain the stress and density distributions during compression, decompression
and ejection.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: Constitutive law; Powder compaction; Granular media; Finite element; Material parameter identification
0020-7683/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2008.01.024

* Corresponding authors. Tel.: +44 1223 767059; fax: +44 1223 334366.
E-mail addresses: lhh24@cam.ac.uk (L.H. Han), jae1001@cam.ac.uk (J.A. Elliott).

mailto:lhh24@cam.ac.uk
mailto:jae1001@cam.ac.uk


L.H. Han et al. / International Journal of Solids and Structures 45 (2008) 3088–3106 3089
1. Introduction

As the most widely used dosage form for drug delivery in the pharmaceutical industry, tablets have many
advantages over other dosage forms, such as low cost, long term storage stability, good tolerance to temper-
ature and humidity and ease of use by the patient. However, some common defects, such as sticking, picking,
capping and lamination, can occur during tabletting by uniaxial die compaction. Although several simple the-
ories have been used to explain the causes of failure (Burlinson, 1968; Long, 1960), more detailed simulation
and analysis of the tabletting process are imperative in order to quantitatively predict the occurrence of tablet
failure and how it may manifest. Moreover, simulation of the tabletting process can also help to understand
the influence of tooling properties, lubrication and compaction kinematics (e.g. compaction speed and com-
paction sequences), and provide the guidance for the optimisation of tooling design and the improvement of
the powder formulation.

The computational modelling of powder compaction has typically been carried out by two different
approaches: the discrete model method and the continuum model method. The discrete model method (Fleck,
1995; Fleck et al., 1992; Helle et al., 1985) treated each powder particle individually and analysed the contact
interaction and deformation of particles, while the continuum model method considered the powder as a con-
tinuous media. Whereas the discrete model method (DiMaggio and Sandler, 1971; Khoei and Azizi, 2005;
Schofield and Wroth, 1968; Shima and Oyane, 1976) was more useful for understanding the physical processes
of powder compaction, the continuum model method was more suitable for engineering applications.
Although a pharmaceutical powder is clearly discontinuous at the particle level, this becomes irrelevant at
a larger scale of aggregation such as when it is compacted into a relatively dense compact in a die during tab-
letting. Therefore, the compaction behaviour of pharmaceutical powders can be studied using the principles of
continuum mechanics at a macroscopic level, i.e. phenomenological models. The phenomenological models,
such as critical state models like Cam-Clay plasticity models and Cap plasticity models, which were originally
developed for geological materials in soil mechanics, turned out to be well suited for modelling powder com-
paction, especially in powder metallurgy (Aydin et al., 1997, 1996; Chtourou et al., 2002; Coube and Riedel,
2000; PM-Modnet-Modelling-Group, 1999). More recently, Drucker-Prager Cap plasticity models have been
used for the analysis of compaction of pharmaceutical powders, because they can represent the densification
and hardening of the powder, as well as the interparticle friction (Cunningham et al., 2004; Frenning, 2007;
Michrafy et al., 2004, 2002; Sinka et al., 2003, 2004; Wu et al., 2005, 2008). However, in these studies, the
Young’s modulus and Poisson’s ratio were assumed to be constant, which was not suitable to describe the
observed nonlinear unloading behaviour of pharmaceutical powders and understand the elastic recovery of
compacts during unloading and ejection. This is particularly important for tablet fracture, since the elastic
recovery may initiate the cracks within compacts and produce catastrophic flaws, causing the compaction fail-
ures such as capping, lamination and chipping (Martin et al., 2003; Train, 1957). Moreover, the unsuitable
material parameter identification for Drucker-Prager Cap models may result in an unrealistic simulation of
the decompression phase of compaction, where the plastic strain almost vanished after decompression (Wu
et al., 2005).

In this paper, a modified density-dependent DPC plasticity model was described. A nonlinear elasticity law
as a function of the relative density and the stress was used to describe the unloading behaviour during phar-
maceutical powder compaction. To identify the material parameters of the modified DPC model, a new exper-
imental calibration procedure was also developed, based on the uniaxial compaction test using an
instrumented die. This modified DPC model with the nonlinear elasticity law was implemented in ABAQUS
by using user subroutines.

The rest of this paper is organised as follows: Section 2 describes typical experimental tests used to char-
acterise the compaction behaviour of pharmaceutical powders using an instrumented die, and to measure
the strengths of the resulting tablets; Section 3 presents a modified density-dependent Drucker-Prager Cap
plasticity model with a nonlinear elasticity law to represent the compaction behaviour; Section 4 introduces
the calibration method based on the experimental tests described in Section 2; Section 5 presents results for
the calibrated material parameters of MCC Avicel PH101 powders, the experimental validation of the model
and some qualitative analyses of tablet failure using numerical simulations. Finally, Section 6 summarises the
conclusions.
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2. Characterising compaction behaviour of pharmaceutical powders

To characterise the compaction behaviour of powders, both triaxial equipment and uniaxial die compaction
equipment have been used (Pavier and Doremus, 1999; Rottmann et al., 2001). Triaxal equipment allows test-
ing with different loading paths by introducing both the shear and compressive stresses in the compact and can
characterise more complete mechanical properties of powders, but it is more complex, expensive and difficult
to use. By comparison, uniaxial die compaction equipment is much cheaper and easier to use. Moreover, it
better models the industrial process of tabletting. Therefore, uniaxial die compaction equipment, also known
as compaction simulators in the pharmaceutical industry, have been widely used to investigate the compaction
behaviour of pharmaceutical powders (Doelker and Massuelle, 2004). To measure the radial die wall pressure
and investigate the powder friction at the die wall during compaction, instrumented dies are generally
equipped to compaction simulators for tabletting research and development (Doelker and Massuelle, 2004).
The axial upper/lower punch forces and displacements, and the radial die wall pressure are measured during
compaction (see Fig. 1).

Fig. 2 shows the typical quasi-static compaction behaviour of MCC Avicel PH101 measured by a compac-
tion simulator equipped with an 8 mm instrumented die (Phoenix Calibration & Services Ltd, Bobbington,
UK) at a compaction speed of 0.1 mm/s. The axial stress, rU

z , was calculated from the upper punch force
divided by the cross-section area of the compact; the axial strain, ez, was calculated from the powder height
change (DH) divided by its initial filling height (H0) in the die. Both the loading and unloading curves exhibit
nonlinear behaviour. Moreover, the unloading curves at different compaction densities (or heights) are not
parallel, i.e. the unloading properties are density-dependent. The axial to radial stress transmission during
unloading (Fig. 2b), related to Poisson’s ratio, also shows nonlinear behaviour. Note that the density value
shown in Fig. 2 is the compaction density calculated from the powder weight divided by the in-die powder
volume.

During compaction, the powder friction at the die wall induces non-uniform axial stress and produces density
gradients within the compact. The friction effect could be quantified by the wall friction coefficient during com-
paction. Based on Janssen-Walker theory (Nedderman, 1992), the wall friction coefficient was calculated as:
l ¼ D
4H

rL
Z

rrðZÞ
rU

z

rL
z

� � z
H

ln
rU

z

rL
z

� �
ð1Þ
Fig. 1. 2D diagram of an instrumented die.



Fig. 2. Typical quasi-static compaction behaviour of MCC Avicel PH101 at different compaction densities: (a) typical axial stress–strain
relation; (b) typical stress transmission from axial stress to radial wall pressure.
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where D is the die interior diameter, H is the compaction height in the die, rr(z) is the radial pressure at the
position z from the top surface of the powder compact, and rU

z and rL
z are axial compression stresses applied

by the upper and lower punches, respectively.
In order to obtain the intrinsic characteristics of the powder, the influence of die wall friction should be

minimised. Two kinds of lubrication methods could be used: the external lubrication method and the internal
lubrication method. In the internal lubrication method, magnesium stearate (e.g. 1% w/w) was mixed with
powders, while in the external lubrication method the suspension of magnesium stearate was used to lubricate
the die wall. Fig. 3 shows the die wall friction coefficient change with the applied upper-punch force at the
position where the wall pressure sensor was located. It was found that both lubrication methods could reduce
the die wall friction coefficient to a small value (e.g. 0.12) during the compaction of MCC Avicel PH101. It was
generally considered that a die wall friction coefficient of order 0.1 should have a small effect on powder com-
paction behaviour (Cunningham et al., 2004).

After the tablets made by compaction simulators are ejected from the die, their strengths can be measured.
Typically, the radial tensile strength and the axial compressive/tensile strengths of pharmaceutical tablets are
measured because of relatively simple experimental procedures. The radial tensile strength of tablets is mea-
sured using a diametrical compression test (also known as Brazilian disk test), as shown in Fig. 4a. Tablets are
crushed along their central lines. From the maximum crush force, the radial tensile strength of tablets is deter-
mined using the following equation:
rf
d ¼

2F max

pDt
ð2Þ
Fig. 3. Lubrication effect on die wall friction.



Fig. 4. Tablet strength measurement: (a) radial tensile strength; (b) axial compressive/tensile strength.
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where Fmax is the crushing force, D is the tablet diameter and t is the tablet thickness. In order to use Eq. (2),
the failure model of tablets should be brittle fracture, that is, tablets should be split into two halves along the
centre line (see dashed line ‘ab’ in Fig. 4a). The axial compressive/tensile strengths are measured by uniaxial
compression/tension tests, as shown in Fig. 4b. The tablet is compressed/stretched axially. The axial compres-
sion strength is calculated from:
rf
c ¼

4F y

pD2
ð3Þ
where Fy is the axial compression force at the yield point.
3. Modified Drucker-Prager Cap model

Since being first introduced by Drucker et al. (1957), the DPC plasticity model has been modified and
expanded over the years (Chen and Mizuno, 1990; Sandler, 2002). Fig. 5 shows a typical Drucker-Prager
Cap model (ABAQUS, 2006). The model is assumed to be isotropic and its yield surface includes three
segments: a shear failure surface, providing dominantly shearing flow, a ‘‘cap,” providing an inelastic hard-
Fig. 5. Drucker-Prager Cap model: yield surface in the p � q plane.
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ening mechanism to represent plastic compaction, and a transition region between these segments, intro-
duced to provide a smooth surface purely for facilitating the numerical implementation. Since the material
parameters of pharmaceutical powders are density-dependent (Cunningham et al., 2004; Jonsén and Hägg-
blad, 2005), a modified density-dependent Drucker-Prager Cap model is adopted to describe the mechan-
ical behaviour of pharmaceutical powders in this work. Further, a nonlinear elasticity law was proposed to
describe the unloading behaviour. Elastic parameters, the bulk modulus, K, and shear modulus, G, were
expressed as functions of the relative density and stress level, rather than constants. Fig. 6 shows a sche-
matic representation of a density-dependent DPC model, where q is the relative density of the compact.
Because of the axisymmetry, only one quarter of the full 3D yield surface is plotted in the principal stress
space, as shown in Fig. 6a; the symmetry axis is r1 = r2 = r3 in which r1, r2 and r3 are the principal
stresses.

3.1. Formulas and material parameters

The Drucker-Prager shear failure surface is written as:
Fig. 6.
represe
F s ¼ q� p tan b� d ¼ 0 ð4Þ

where b is the material friction angle, d is its cohesion, p ¼ � 1

3
traceðrÞ is the hydrostatic pressure stress, and

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðS : SÞ

q
is the Mises equivalent stress in which S is the stress deviator, defined as:
S ¼ rþ pI ð5Þ

where r is the stress tensor, and I is the identity matrix.

For a uniaxial cylindrical die compaction test, the hydrostatic pressure stress and the Mises equivalent
stress are expressed as:
p ¼ � 1

3
ðrz þ 2rrÞ ð6Þ

q ¼ jrz � rrj ð7Þ
where rz and rr are the axial and radial stresses, respectively.
The cap serves two main purposes: it bounds the yield surface in hydrostatic compression, thus providing

an inelastic hardening mechanism to represent plastic compaction, and it helps to control volume dilatancy
when the material yields in shear by providing softening as a function of the inelastic volume increase created
as the material yields on the Drucker-Prager shear failure and transition yield surfaces. The cap surface hard-
Schematics of a density-dependent Drucker-Prager Cap model: (a) 3D yield surfaces in principal stress space (1/4 model); (b) 2D
ntation.
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ens or softens as a function of the volumetric plastic strain: volumetric plastic compaction (when yielding on
the cap) causes hardening, while volumetric plastic dilation (when yielding on the shear failure surface) causes
softening. The cap yield surface is written as:
F c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp � paÞ

2 þ Rq
1þ a� a= cos b

� �2
s

� Rðd þ pa tan bÞ ¼ 0 ð8Þ
where R is a material parameter (between 0.0001 and 1000.0) that controls the shape of the cap, a is a small
number (typically 0.01–0.05) used to define a smooth transition surface between the shear failure surface and
the cap, and pa is an evolution parameter that represents the volumetric plastic strain driven hardening/soft-
ening. The hardening/softening law is a user-defined piecewise linear function relating the hydrostatic com-
pression yield stress, pb, and the corresponding volumetric inelastic (plastic and/or creep) strain. Here, only
volumetric plastic strain ep

v is considered, we have:
pb ¼ f ðep
vÞ ð9Þ
The volumetric plastic strain can be expressed as (Chtourou et al., 2002):
ep
v ¼ ln

q
q0

� �
ð10Þ
where q is the current relative density, and q0 is the initial relative density on filling of die. The evolution
parameter pa is given as:
pa ¼
pb � Rd

ð1þ R tan bÞ ð11Þ
The transition surface is defined as:
F t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp � paÞ�

2 þ q� 1� a
cos b

� �
ðd þ pa tan bÞ

� �2
s

� aðd þ pa tan bÞ ¼ 0 ð12Þ
To determine the plastic flow rule, the plastic potential is defined by an associated component (that is, a
potential function Gc that is equivalent to the cap yield surface Fc) on the cap and a non-associated com-
ponent on the failure and transition regions. The associated flow potential component in the cap region is
defined as:
Gc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp � paÞ

2 þ Rq
1þ a� a= cos b

� �2
s

ð13Þ
The non-associated flow component in the failure and transition regions is defined as:
Gs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðpa � pÞ tan b�2 þ q

1þ a� a= cos b

� �2
s

ð14Þ
The two elliptical portions, Gc and Gs, form a continuous and smooth potential surface.
Considering the associated flow rule, we can write the inelastic strain rate in the cap region as:
_ep
ij ¼ _k

oGc

orij
¼ _k

oF c

orij
ð15Þ
where _k is a positive scalar denoting the magnitude of the plastic deformation, and oGc
or denotes the direction of

the plastic flow.
To uniquely define each of the yield surfaces, six parameters are required: b, d, pa, R, pb and a, for which b,

d, R and pa are functions of the relative density. The friction angle b and cohesion d are needed to define the
Drucker-Prager shear failure surface; the cap eccentricity parameter R and evolution pa are required to define
the cap surface, and pb as a function of the volumetric plastic strain is required to define the cap hardening/
softening law; a is required to define the transition surface.
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3.2. Nonlinear elasticity law

Experimental measurements on real pharmaceutical powders exhibit nonlinear behaviour during unload-
ing. As shown in Fig. 2, there exist nonlinear segments at the end of the unloading curves, which become more
obvious for a relatively loose compact. Some researchers (Aydin et al., 1996; Wu et al., 2005) considered that
the nonlinear segments of the unloading curves were a result of dilation during unloading; that is, the unload-
ing path intersected with the Drucker-Prager failure surface Fs before the axial stress decreased to zero. Using
this assumption to define the Drucker-Prager failure surface resulted in an unrealistic simulation of decom-
pression during die compaction, in which the plastic strain almost vanished after decompression due to the
dilation of powders (Wu et al., 2005), that is, the tablet was not formed, which was obviously not true in
the experimental tests on pharmaceutical powders. To avoid this problem, we use a nonlinear elasticity law
rather than a linear elasticity law to describe the unloading behaviour, a similar method for describing geoma-
terials (Chen and Mizuno, 1990) and metal powders (Coube and Riedel, 2000). During unloading and reload-
ing in the die compaction, lactose, an excipient widely used for the failure mechanism investigation of tablets
exhibited a very small hysteresis, and MCC Avicel PH101 also showed a relatively small hysteresis at higher
compaction densities (typically 0.85 for pharmaceutical tablets). Therefore, the nonlinear elasticity assumption
is suitable. Within the elastic range, the elastic behaviour of the material must be path-independent in order
not to generate hysteresis. To satisfy the path independency, the bulk modulus, K, and shear modulus, G,
could be expressed as (Chen and Baladi, 1985):
K ¼ KðI1; qÞ ¼ Kðp; qÞ ð16Þ
G ¼ G

ffiffiffiffiffi
J 2

p
; q

� �
¼ Gðq; qÞ ð17Þ
where I1 = 3p is the first stress invariant,
ffiffiffiffiffi
J 2

p
¼ q=

ffiffiffi
3
p

is the second stress invariant and q is the density. In the
DPC model, materials behave isotropically and elastically during unloading, therefore, the elastic material
moduli, K and G, can be obtained by using the unloading data of the hydrostatic loading test, the triaxial test,
the uniaxial strain test, and so on. In the elastic range, the behaviour of isotropic materials is governed by the
incremental Hooke’ law:
dee
ij ¼

dI1

9K
dij þ

dsij

2G
ð18Þ
where dee
ij is the elastic strain increment, sij = rij � (I1/3)dij is the deviatoric stress tensor, and dij is the Kro-

necker delta.
For the uniaxial strain test (or uniaxial compaction test), the following relations are obtained:
_er ¼ _eh ¼ 0 ð19Þ
and
rr ¼ rh ð20Þ
Thus, from Eq. (18), the axial strain increment during unloading can be expressed as:
dez ¼
drz þ 2drr

3K
¼ dI1

3K
¼ dp

K
ð21Þ

dez ¼
drz � drr

2G
¼ dq

2G
ð22Þ
Consequently, the bulk modulus K can be obtained from the hydrostatic pressure/axial strain unloading curve
and may be fitted as a function of p. The shear modulus G can be obtained from the equivalent-Mises-stress/
axial strain unloading curve and may be fitted as a function of q.

4. Material parameter identification for the DPC model

Typically, triaxial equipment has been used to calibrate the DPC model (Rottmann et al., 2001). However,
triaxial equipment is complex and difficult to use in practical engineering applications. Therefore, a calibration
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method based on experimental tests from compaction simulators with an instrumented die is developed to
identify the material parameters of the modified DPC model. As described in Section 3.1, six parameters
are required to define the yield surface of the modified DPC model: b, d, pa, R, pb and a. In addition, two elas-
tic parameters, Young’s modulus E and Poisson’s ratio v, are required for describing the elastic behaviour of
powders. We now describe how to obtain these parameters from uniaxial compaction experiments using a
compaction simulator.

4.1. Parameters for yield surfaces

The Drucker-Prager shear failure surface could be determined by assuming that the nonlinear segment of
the unloading curve in a die compaction test was produced by the shear failure (Aydin et al., 1996; Sandler
et al., 1976; Wu et al., 2005). The nonlinear unloading segment of the unloading curve, line CD as shown
in Fig. 7b, will locate on the shear failure line in the p � q space, as shown in Fig. 7a. Consequently, the shear
failure surface can be determined by plotting a straight line through CD. This method is very simple, but it
may result in an unrealistic simulation of decompression when material parameters calibrated by this method
are used (Wu et al., 2005), due to the dilation of the material during unloading when the unloading path hits
the shear failure line.

Here, we employed another method (Procopio et al., 2003) to determine the Drucker-Prager shear failure
surface by using any two of four experiments for measuring the tablet strengths: the uniaxial tension, pure
shear, diametrical compression and uniaxial compression tests. First, the loading paths of the four kinds of
tests above were plotted in the p � q space. Under the elastic loading, these four loading paths can be pre-
sented by four dashed lines through the origin, point O, whose slopes are �3,1; 3

ffiffiffiffiffi
13
p

=2 and 3, respectively,
as shown in Fig. 8. Then, the four maximum loading points corresponding to four kinds of the tablet strengths
are plotted on these four dashed lines, respectively. Finally, the shear failure line can be determined by plotting
a straight line though any two maximum loading points. The slope of the line gives the friction angle b, and the
intersection with q axis gives the cohesion d. Here, we used two simple tests: the diametrical compression test
and the uniaxial compression test. The equivalent hydrostatic pressure stress p and Mises equivalent stress q
are p ¼ 2

3
rf

d ; q ¼
ffiffiffiffiffi
13
p

rf
d for the diametrical compression test, and p ¼ � 1

3
rf

c ; q ¼ �rf
c for the uniaxial com-

pression test, respectively. Consequently, the cohesion d and friction angle b are expressed as:
Fig. 7.
(b) axi
d ¼ rf
c r

f
d ð

ffiffiffiffiffi
13
p

� 2Þ
rf

c þ 2rf
d

ð23Þ

b ¼ tan�1 3ðrf
c þ dÞ
rf

c

� �
ð24Þ
A method to determine shear failure line from die compaction tests (Aydin et al., 1997): (a) loading path plotted on the p � q space;
al stress–axial strain curve.



Fig. 8. Determination of shear failure line from tablet strength tests.
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where rf
d is the radial tensile strength of tablets measured from the diametrical test, and rf

c is the axial com-
pressive strength of tablets measured from the uniaxial compression test.

To define the cap yield surface (Eq. (8)), four parameters, pa, R, pb and a, are required. a is a small number
between 0.01 and 0.05; here we set it to 0.02. pa and R can be determined by analysing the stress state of the
loading points on the cap surface. As shown in Fig. 8, the loading path OA is plotted at the p � q space. At the
loading point located at the cap surface, e.g. point A, cap yielding is active, that is, Eq. (8) is satisfied:
F cðpA; qAÞ ¼ 0 ð25Þ
With an assumption that the die wall is a rigid body without any deformation in the cylindrical die com-
paction test, the radial plastic strain rate at Point A (Eq. (15)) can be written as:
_ep
r ¼ _k

oGc

orr

				
ðpA;qAÞ

¼ 0 ð26Þ
Since _k is a positive quantity, then
oGc

orr

				
ðpA;qAÞ

¼ 0 ð27Þ
By using Eqs. (13) and (27) can be rewritten as:
2ðp � paÞ
op
orr

				
ðpA;qAÞ

þ 2
R2q

ð1þ a� a= cos bÞ2
oq
orr

					
ðpA;qAÞ

¼ 0 ð28Þ
Considering p ¼ � 1
3
ðrz þ 2rrÞ and q = |rz � rr|, we can rewrite Eq. (28) as:
� 2

3
ðpA � paÞ þ

R2qA

ð1þ a� a= cos bÞ2
¼ 0 ð29Þ
From Eq. (29), the cap shape parameter R is given as:
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ a� a= cos bÞ2

3qA

ðpA � paÞ

s
ð30Þ
Consequently, the evolution parameter pa can be obtained from Eqs. (8) and (30) as:
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pa ¼ �
½3qA þ 4d tan bð1þ a� a= cos bÞ2�

4½ð1þ a� a= cos bÞ tan b�2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9q2

A þ 24dqAð1þ a� a= cos bÞ2 tan bþ 8ð3pAqA þ 2q2
AÞ½ð1þ a� a= cos bÞ tan b�2

q
4½ð1þ a� a= cos bÞ tan b�2

ð31Þ
Once the powder was compacted to a specified height (e.g. Point A shown in Fig. 8), the applied force was
released and the tablet was then ejected from the die. The relative density of the tablet can be calculated from
the measured tablet density after ejection divided by the initial filling density of powders. With the measured
relative density, the volumetric plastic strain ep

v at the loading point in the p � q space can be calculated from
Eq. (10), and pb can be calculated from Eq. (11). The cap hardening/softening law can be obtained by plotting
pb as a function of a volumetric plastic strain ep

v .

4.2. Elastic parameters

In the DPC model, the Young’s modulus E and Poisson’s ratio v are required, which have the relations with
the bulk modulus and shear modulus as:
G ¼ E
2ð1þ vÞ ð32Þ

K ¼ E
3ð1� 2vÞ ð33Þ
For a die compaction test, the strain increment and elastic strain increment relation during unloading may be
obtained by combining Eqs. (21) and (22) and expressed as:
drz ¼ Mdez ¼ K þ 4

3
G

� �
dez ð34Þ
and the axial stress increment and radial stress increment relation may be written as:
drz ¼
3K þ 4G
3K � 2G

drr ð35Þ
in which M is the constrained modulus. Substitution of Eqs. (32) and (33) into Eqs. (34) and (35) yields:
drz ¼
Eð1� vÞ

ð1þ vÞð1� 2vÞ dez ð36Þ

drz ¼
1� v

v
drr ð37Þ
Thus, using Eq. (37), we can obtain the Poisson’s ratio v as a function of the axial stress, rz, and the relative
density of compact, q, from the axial stress/radial stress unloading curve (see Fig. 2b). Consequently, using
Eq. (36) and the Poisson’s ratio obtained, we can obtain the Young’s modulus E as a function of the axial
stress, rz, and the relative density of compact, q, from the axial stress/axial strain unloading curve (see
Fig. 2a).

5. Results

5.1. Material parameters of MCC Avicel PH101

The material parameter identification for MCC Avicel PH101 was performed by the method proposed in
Section 4. The powder was uniaxially compacted by a high speed compaction simulator (Phoenix Calibration
& Services Ltd, Bobbington, UK). An 8 mm diameter instrumented die was used to measure the radial wall
pressure. As mentioned previously, to obtain the intrinsic material properties of pharmaceutical powders from
die compaction tests, the wall friction influence should be minimised. Hence, MCC Avicel PH101 (FMC, UK)
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was chosen in this study, due to its good self-lubrication performance. To further reduce the die wall friction
effect, Avicel PH101 was mixed with 1% w/w magnesium stearate (Mallinckrodt, UK), which is normally used
as a lubricant in a direct compression formulation. Table 1 lists material properties of MCC Avicel PH101 and
magnesium stearate. A series of tablets with different densities were made by compressing powders to different
specified heights in the die at a compaction speed of 0.1 mm/s. After ejection, the weight and dimensions of
tablets were measured to calculate their densities. The axial tensile and axial compressive strengths of tablets
were measured by the diametrical test and uniaxial simple compression test, respectively.

Typical loading–unloading curves of quasi-static uniaxial single-ended compaction tests of lubricated MCC
Avicel PH101 are shown in Fig. 9. A piecewise linear function can be used to represent the unloading curve.
For the sake of simplicity and easy numerical implementation, we use two linear segments to approximately
describe the nonlinear unloading curve, for example, we use lines AC and CB to represent the unloading curve
AA0B, as shown in Fig. 9. Consequently, Young’s modulus and Poisson’s ratio are represented as step func-
tions of the axial stress, rz; that is, the Young’s modulus and Poisson’s ratio have two different values at the
high stress segment and low stress segment of unloading curves, and the stress threshold (e.g. point C in Fig. 9)
to separate the high stress segment from the low stress segment is determined from the curve fitting. For exam-
ple, for the test shown in Fig. 9, at the high stress segment, AC, (rz > 105 MPa), the Young’s modulus and
Poisson’s ratio are 22.6 GPa, and 0.233, respectively; at the low stress segment, CB (rz 6 105 MPa), the
Young’s modulus and Poisson’s ratio are 4.2 GPa, and 0.42, respectively. Figs. 10 and 11 illustrate the depen-
dence of Poisson’s ratio and Young’s modulus on the relative density, respectively. With increasing relative
density, both values of the Young’s modulus and Poisson’s ratio increase.

Fig. 12 shows the tablet strengths of Avicel PH101 measured by diametrical tests and uniaxial compression
tests on tablets with different densities. The denser tablet has a higher strength. With the measured tablet
strengths in Fig. 12, the cohesion, d, and friction angle, b, are calculated for each relative density, and plotted
as functions of the relative density in Fig. 13. With the stress values of equivalent pressure stress p and Mises
equivalent stress q at the largest compression point (e.g. Point A in Fig. 8), the parameters to define the cap
surface, R, pa and pb, are determined, as shown in Fig. 14.

With all these parameters obtained, the modified DPC model can be fully defined.
Table 1
Material properties

Materials Avicel PH101 Magnesium stearate Lubricated Avicel PH101

Particle size (lm) 10–200 1–50 —
True density (g/cm3) 1.577 — 1.4590

Fig. 9. Typical loading–unloading curves of lubricated Avicel PH101 in a die compaction test: (a) axial stress and axial strain relation; (b)
axial stress transition to radial wall pressure.



Fig. 10. Poisson’s ratio as a function of relative density: (a) high stress segment of unloading curve; (b) low stress segment of unloading
curve.

Fig. 11. Young’s modulus plotted as a function of relative density: (a) high stress segment of unloading curve; (b) low stress segment of
unloading curve.

Fig. 12. Strengths of Avicel PH101 tablets: (a) radial tensile strength; (b) axial compressive strength.
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Fig. 13. (a) Cohesion and (b) friction angle plotted as functions of relative density.

Fig. 14. Parameters for defining cap surface: (a) cap eccentricity parameter R; (b) evolution parameter; (c) hydrostatic compression yield
stress.
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5.2. Finite element modelling

Using materials parameters determined in Section 5.1, we employed ABAQUS/Standard to simulate the
uniaxial single-ended die compaction process of MCC Avicel PH101 powders. Two kinds of tablets are con-
sidered, the flat-face tablet and concave tablets, where the concave tablet could be single radius concave (SRC)
shaped or double radius concave (DRC) shaped. The modified Drucker-Prager Cap model was implemented
in ABAQUS/Standard by using a user subroutine, USDFLD. Due to the axisymmetry of the geometry and
the loading condition, an axisymmetrical model was adopted. The powder was modelled as a deformable con-
tinuum, while the upper/lower punches and die were modelled as analytical rigid bodies without any deforma-
tion. Fig. 15 shows finite element models and 2D meshes. Axisymmetric elements were used for modelling
powders in the analyses. The wall friction effect was considered by adopting a Coulombic boundary condition
on the interfaces of the powder die wall and the powder punch, and adjusted by changing the friction coeffi-
cient. In the simulations, first, powders in the die were compressed to a specified maximum compression height
by an upper punch, then the upper punch was removed from the die to unload, and once the upper punch was
moved out of the die, the lower punch was moved upward to eject the tablets.

First, uniaxial single-ended die compaction experiments for calibrating the model parameters were simu-
lated, without considering wall friction. An 8 mm cylindrical die and flat-face punches were employed.
Fig. 16a shows a comparison between experimental and calculated loading–unloading curves during the man-
ufacture of 8 mm flat-face tablets. The loading–unloading curves from finite element analyses (FEAs) matched
very well with experimental data. Note that the maximum compaction density was larger than the true density
since the compaction density was calculated from the in-die compact height, which contained the elastic defor-
mation. The maximum compaction force required for making a tablet with a specified density was also pre-
dicted. Again, Fig. 16b shows a good agreement between finite element predictions and experimental results.



Fig. 15. Finite element model of die compaction using: (a) flat-face punches; (b) concave face punches.

Fig. 16. A comparison between finite element simulation and experimental results of 8 mm flat-face tablets: (a) loading–unloading curves
during compaction; (b) maximum compaction force.
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To further assess the predictive capability of the model, besides 8 mm flat-face tablets used in the material
parameter identification, tablets with other sizes and shapes were also investigated. Here, three different tablet
shapes: flat-face (FF), single radius concave (SRC) and double radius concave (DRC), and two different tablet
diameters: 8 and 11 mm, were considered. FEAs were used to predict the compaction behaviour of powders
during the manufacture of these tablets. To facilitate comparison of different tablets, the mechanical response
of powders during die compaction was described by the upper-punch pressure vs. average compaction density
curve. The compaction pressure was calculated from the upper-punch force divided by the cross-sectional area
of the die and the average compaction density was calculated from the mass of powder divided by its bulk
volume. Fig. 17 shows a comparison of loading–unloading curves between finite element predictions and
experimental results during tablet manufacture, where Fig. 17a is for 8 mm diameter FF, SRC and DRC tab-
lets and Fig. 17b is for 11 mm diameter FF and SRC tablets. 8 mm tablets were made using two different pow-



Fig. 17. Finite element prediction and experimental validation of unloading–loading curves: (a) 8 mm tablet; (b) 11 mm tablet.
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der weights, 200 and 250 mg. Since the average compaction density was used as a parameter, the loading
curves for these two different weight tablets should overlap, which was confirmed by both experimental
and FEA results, as shown in Fig. 17. From Fig. 17, we can see that FEA results agreed well with the exper-
imental results for both 8 and 11 mm flat-face and concave round tablets. The good agreement between FEA
and experimental results showed that the model had a genuine predictive capability of powder compaction
behaviour.

The numerical simulations could also be used to analyse the tablet failure mechanism. For demonstration,
two typical tablet shapes, the flat-face and SRC, were chosen. In the following numerical simulations, powders
with a 6 mm initial filling height were compressed to 2 mm. For a flat-face tablet without the wall friction
effect, the stress distributions during tabletting are illustrated in Fig. 18. During the compression and decom-
Fig. 18. Stress distribution of powders compacted by flat-face punches without wall friction: (a) maximum compaction; (b) after
decompression; (c) emerging from the die; (d) during ejection.
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pression phases, the stress distributions were uniform, and the density distributions were also uniform. During
the ejection phase, a large stress concentration appeared near the die edge once the tablet emerged from the
die, and large shear stresses developed due to the radial elastic recovery of the material of compacts outside the
die. The local stress concentration may cause the capping and lamination failure. When wall friction was con-
sidered, the stress distributions during the compression and decompress phases were non-uniform, conse-
quently, causing the density gradient. Fig. 19a shows a typical non-uniform density distribution of a flat-
face compact when a wall friction coefficient of 0.2 is considered. The top corner had the highest density while
the bottom corner had the lowest density, which was in agreement with experiments (Eiliazadeh et al., 2003).
The punch geometry could also cause a non-uniform density distribution. Fig. 19b shows that a non-uniform
density distribution of concave tablets, even without the wall friction effect. High density regions developed at
the edges of the concave tablet with low density regions at the regions around the tablet apex, which was also
consistent with experimental measurements (Eiliazadeh et al., 2003). Since the lowest density region in a flat-
face tablet was at the bottom corner, as shown in Fig. 19a, it was therefore not surprising that concave tablets
had more resistance against edge chipping, but less resistance against capping than flat-face tablets in practical
manufacture processes of pharmaceutical tablets. Fig. 20 illustrates the stress distributions of compacts with-
out the wall friction effect when concave surface punches are used. The stress distributions were always non-
Fig. 19. Non-uniform density distribution of tablet due to (a) wall friction; (b) punch geometry.

Fig. 20. Stress distribution during compaction using concave punches.
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uniform during the compression, decompression and ejection phases. When the applied force from the upper
punch was removed, the radial elastic recovery of the material at the top central region caused large shear
stresses because most of other regions were still constrained by die walls, and developed larger stress concen-
trations at the top corner of the compact. This could also be used to explain the experimental observation that
capping took place more frequently in concave tablets than in flat-face tablets. Similar to flat-face tablets, the
stress concentration developed near the top corner during ejection due to the radial elastic recovery of the
material of tablets outside the die. The stress concentration could contribute to capping and lamination.

6. Conclusions

The die compaction tests on pharmaceutical powders showed the nonlinearity of the unloading curve and
the density dependence of compaction behaviour. By adopting a similar treatment as for geological materials,
a nonlinear elasticity law was expressed as a function of the relative density and stress, used for describing the
unloading behaviour of pharmaceutical powders. A density-dependent Drucker-Prager Cap model with the
nonlinear elasticity model was proposed and implemented into ABAQUS/Standard by using a user subroutine
(USDFLD). To determine the material parameters of the model from experiments, a material parameter iden-
tification method was proposed, based on the instrumented cylindrical die compaction test with flat-face
punches and the tablet strength test. The model was validated by observing a good agreement between finite
element prediction and experimental measurement of loading–unloading curves during the manufacture of
flat-face, single radius concave and double radius concave round tablets. The detailed stress and density dis-
tributions of flat-face and the SRC round tablets during tabletting, including the compression, decompression
and ejection phases, were analysed. FEA results showed that the density and stress distributions could be used
to analyse and explain tablet defects such as edge chipping, capping and lamination. For example, non-uni-
form density distributions due to wall friction or the punch geometry could be used to explain the phenomena
in the practical manufacture of pharmaceutical tablets that concave tablets had more resistance against edge
chipping and less resistance against capping, compared with flat-face tablets. The local stress concentration
and large shear stress due to the radial elastic recovery during the decompression and ejection phases could
be used to analyse capping and laminar cracks. The results obtained so far indicate the model has a great
potential for the tabletting process modelling of pharmaceutical powders and the failure investigation of tab-
lets. Furthermore, the equipment and procedures for carrying out parameterization are readily available to the
pharmaceutical industry.
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