Existence of strong symmetric self-orthogonal diagonal Latin squares

H. Caoa, W. Lib

a Institute of Mathematics, Nanjing Normal University, Nanjing 210046, China
b Department of Mathematics, Yancheng Teachers College, Jiangsu 224002, China

\textbf{A R T I C L E I N F O}

Article history:
Received 2 October 2010
Received in revised form 18 January 2011
Accepted 2 February 2011
Available online 2 March 2011

Keywords:
Diagonal Latin square
Self-orthogonal
Strongly symmetric

\textbf{A B S T R A C T}

A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. A Latin square is self-orthogonal if it is orthogonal to its transpose. A diagonal Latin square L of order n is strongly symmetric, denoted by $\text{SSSODLS}(n)$, if $L(i,j) + L(n - 1 - i, n - 1 - j) = n - 1$ for all $i, j \in N = \{0, 1, \ldots, n - 1\}$. In this note, we shall prove that an $\text{SSSODLS}(n)$ exists if and only if $n \equiv 0, 1, 3 \pmod{4}$ and $n \neq 3$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let $N = \{0, 1, \ldots, n - 1\}$. A Latin square of order n is an $n \times n$ array such that every row and every column is a permutation of N. A transversal in a Latin square is a set of positions, one per row and one per column, among which the symbols occur precisely once each. A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals.

Two Latin squares of order n are orthogonal if each symbol in the first square meets each symbol in the second square exactly once when they are superposed. A Latin square is self-orthogonal if it is orthogonal to its transpose. Self-orthogonal (diagonal) Latin squares of order n are denoted by $\text{SOLS}(n)$ ($\text{SODLS}(n)$). For the spectra of SOLS and SODLS, we have the following results.

\textbf{Theorem 1.1} ([3–5,2]). An $\text{SOLS}(n)$ and an $\text{SODLS}(n)$ exist for all positive integers n, with the exception of $n \in \{2, 3, 6\}$.

An $\text{SSSODLS}(n)$ exists for each $n \in \{4, 5, 7, 8, 12\}$ and an $\text{SSSSODLS}(n)$ cannot exist for each $n \in \{2, 3, 6, 10\}$ [4].

\textbf{Theorem 1.2}. (1) An $\text{SSSODLS}(n)$ exists for each $n \in \{4, 5, 7, 8, 12\}$.

(2) An $\text{SSSSODLS}(n)$ cannot exist for each $n \in \{2, 3, 6, 10\}$.

Du and Cao proved that an $\text{SSSODLS}(n)$ exists for all positive integers $n \equiv 0, 1, 3 \pmod{4}$ and $n \neq 3, 15$ in 2002 [6]. They also proved that there exists an $\text{SSSODLS}(n)$ for $n \equiv 2 \pmod{4}$ if there exists an $\text{SSSODLS}(r), r \equiv 2 \pmod{4}$. Ref. [6] was written in Chinese. In this note, we shall complete the spectra of SSSODLS by constructing an $\text{SSSODLS}(15)$ and showing the nonexistence of an $\text{SSSODLS}(n)$ for any $n \equiv 2 \pmod{4}$. We also translate the main part of the proof in [6] and present a full proof of the following theorem.

\textbf{Theorem 1.3}. An $\text{SSSODLS}(n)$ exists if and only if $n \equiv 0, 1, 3 \pmod{4}$ and $n \neq 3$.
2. Proof of Theorem 1.3

We start with the conception of an incomplete self-orthogonal Latin square and some recursive constructions for SSSODLS(n) in [6]. An incomplete SOLS is a self-orthogonal Latin square of order n missing a sub-SOLS of order k, denoted by ISOLS(n, k). For the existence of an ISOLS(n, k), see [1,9,7,8,10].

Theorem 2.1. There exists an ISOLS(n, k) for all values of n and k satisfying $n \geq 3k + 1$, except for $(n, k) = (6, 1), (8, 2)$ and possibly excepting $n = 3k + 2$ and $k \in \{6, 8, 10\}$.

Lemma 2.2 ([6]).

1. If q is a prime power, then there exists an SSSODLS(q).
2. If there exists an SSSODLS(m) and an SSSODLS(n), then there exists an SSSODLS(mn).
3. If n is even, SSSODLS(n) and SOLS(m) both exist, then there exists an SSSODLS(mn).
4. If n is even, SSSODLS(n), SSSODLS(k), SOLS(n) and ISOLS(m + k, k) all exist, then there exists an SSSODLS(mn + k).
5. If n and k are even, SSSODLS(n), SSSODLS(k + h), SOLS(m), ISOLS(m + k, k) and ISOLS(m + h, h) all exist, then there exists an SSSODLS(mn + k).
6. Suppose n is odd and there is at most one odd number among m, k and h. If SSSODLS(n), SSSODLS(m + k + h), SOLS(m), ISOLS(m + k, k) and ISOLS(m + h, h) all exist, then there exists an SSSODLS(mn + k).

Lemma 2.3. There exists an SSSODLS(15).

Proof. An SSSODLS(15) is constructed in the following table.

\[
\begin{array}{cccccccccccccccc}
0 & 4 & 13 & 5 & 2 & 8 & 7 & 9 & 12 & 3 & 6 & 14 & 11 & 1 & 10 \\
11 & 1 & 5 & 12 & 6 & 3 & 0 & 8 & 4 & 14 & 13 & 10 & 2 & 9 & 7 \\
5 & 10 & 2 & 6 & 11 & 14 & 4 & 0 & 13 & 12 & 9 & 3 & 8 & 7 & 1 \\
12 & 6 & 9 & 3 & 14 & 10 & 13 & 1 & 11 & 8 & 4 & 0 & 7 & 2 & 5 \\
10 & 11 & 14 & 8 & 4 & 13 & 9 & 2 & 0 & 5 & 1 & 7 & 3 & 6 & 12 \\
1 & 9 & 10 & 13 & 0 & 5 & 12 & 3 & 6 & 2 & 7 & 4 & 14 & 11 & 8 \\
14 & 2 & 8 & 9 & 12 & 1 & 6 & 4 & 3 & 7 & 5 & 13 & 10 & 0 & 11 \\
8 & 0 & 1 & 2 & 3 & 4 & 5 & 7 & 9 & 10 & 11 & 12 & 13 & 14 & 6 \\
3 & 14 & 4 & 1 & 9 & 7 & 11 & 10 & 8 & 13 & 2 & 5 & 6 & 12 & 0 \\
6 & 3 & 0 & 10 & 7 & 12 & 8 & 11 & 2 & 9 & 14 & 1 & 4 & 5 & 13 \\
2 & 8 & 11 & 7 & 13 & 9 & 14 & 12 & 5 & 1 & 10 & 6 & 0 & 3 & 4 \\
9 & 12 & 7 & 14 & 10 & 6 & 3 & 13 & 1 & 4 & 0 & 11 & 5 & 8 & 2 \\
13 & 7 & 6 & 11 & 5 & 2 & 1 & 14 & 10 & 0 & 3 & 8 & 12 & 4 & 9 \\
7 & 5 & 12 & 4 & 1 & 0 & 10 & 6 & 14 & 11 & 8 & 2 & 9 & 13 & 3 \\
4 & 13 & 3 & 0 & 8 & 11 & 2 & 5 & 7 & 6 & 12 & 9 & 1 & 10 & 14 \\
\end{array}
\]

Lemma 2.4. There does not exist an SSSODLS(n) for any $n \equiv 2 \pmod{4}$.

Proof. Suppose $n = 4k + 2$ ($k > 0$) and L is an SSSODLS(n). Let

\[
A = \sum_{i=0}^{2k} \sum_{j=0}^{2k} L(i, j), \quad B = \sum_{i=0}^{2k} \sum_{j=2k+1}^{4k+1} L(i, j), \quad C = \sum_{i=2k+1}^{4k+1} \sum_{j=0}^{2k} L(i, j).
\]

Then we have $A + B = A + C = (n/2) \cdot (\sum_{i=0}^{n-1} i) = n^2(n - 1)/4$ since every row and every column is a permutation of $N = \{0, 1, \ldots, n-1\}$. Further, by the strongly symmetric property, $B + C = (n-1) \cdot (n^2/4) = A + B$. So, $A = C$. We have $2A = n^2(n - 1)/4 = (2k + 1)^2(4k + 1)$. It is a contradiction. \(\Box\)

Proof of Theorem 1.3. By Lemma 2.4, there does not exist an SSSODLS(n) for any $n \equiv 2 \pmod{4}$.

1. For $n \equiv 0 \pmod{4}$, $n = 4, 8, 12$ come from **Theorem 1.2**. An SSSODLS(24) can be obtained by using Lemma 2.2(5) with $n = 4, m = 5, k = h = 2$, where the input design ISOLS(7, 2) exists by **Theorem 2.1**. For other values of n, start from an SSSODLS(4). Applying Lemma 2.2(3) with an SOLS(n/4) from **Theorem 1.1**, we obtain an SSSODLS(n).

2. For $n \equiv 1 \pmod{4}$, $n = 5, 9, 13, 25$ come from **Lemma 2.2(1)**. An SSSODLS(21) can be obtained by using Lemma 2.2(6) with $n = 5, m = 4, k = 1, h = 0$, where the input designs SOLS(4), SSSODLS(4), SSSODLS(5), and ISOLS(5, 1) exist by **Theorems 1.1, 1.2 and 2.1**. For other values of n, start from an SSSODLS(4). Apply Lemma 2.2(4) with $k = 1$ to obtain an SSSODLS(n), where the input designs SOLS(n/4) and ISOLS(n/4 + 1, 1) exist by **Theorems 1.1 and 2.1**.

3. For $n \equiv 3 \pmod{4}$ and $n \geq 7$, let $n = 4k + 7, k \geq 0$. $0 \equiv k \equiv 0, 1, 3, 4, 5, 6, 9, 10, 13$ come from **Lemma 2.2(1)**. $k = 2$ comes from **Lemma 2.3**. $k = 7, 12, 14$ come from **Lemma 2.2(2)** since there exists an SSSODLS(m) for each $m \in \{5, 7, 9, 11\}$. $n = 39$ and $n = 51$ can be obtained from **Lemma 2.2(6)** with $m = 5, n = 7, h = 2, k = 2$ and $m = n = 7, h = 2, k = 0$, respectively. For other values of $k \geq 15$, apply Lemma 2.2(4) to obtain an SSSODLS(n), where the input designs SOLS(k) and ISOLS(k + 7, 7) exist by **Theorems 1.1 and 2.1**. \(\Box\)
Acknowledgements

The authors would like to thank Professor Zhu Lie of Suzhou University for helpful discussions.
The first author’s research was supported by the National Natural Science Foundation of China under Grant No. 10971101.

References