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Abstract

A generalization of Mallat’s classical multiresolution analysis, based on the theory of spectral pairs, was
considered in two articles by Gabardo and Nashed. In this setting, the associated translation set is no longer
a discrete subgroup ofR but a spectrum associated with a certain one-dimensional spectral pair and the
associated dilation is an even positive integer related to the given spectral pair. As a generalization of Dai,
Larson, and Speegle’s theory of wavelet sets, we prove in this paper the existence of nonuniform wavelet
sets associated with the same translation and dilation parameters.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the two papers[7,8], Gabardo and Nashed considered a generalization of Mallat’s [18]
celebrated theory of multiresolution analysis (MRA), in which the translation set acting on the
scaling function associated with the MRA to generate the subspaceV0 is no longer a group (or a
translate of a group), but is the union ofZ and a translate ofZ. Such constructions were called
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non-uniform multiresolution analysis (NUMRA). In this theory, the translation set� is chosen
so that for some measurable setA ⊂ R with 0 < |A| < ∞, (A, �) forms a spectral pair, i.e.
the collection{|A|−1/2 e2�i�·� �A(�)}�∈� forms an orthonormal basis forL2(A), where|A| and
�A(�) denote, respectively, the Lebesgue measure and the characteristic function ofA. If N �1
is an integer, we define the set�N = {mN + j/2 : m ∈ Z, j = 0,1, . . . , N − 1} and, if
r ∈ {1,3, . . . ,2N − 1} is any odd integer, the set�r,N = {0, r/N} + 2Z.
The following theorem and its corollary characterize certain one-dimensional classes of

spectral pairs.

Theorem 1.1(Gabardo and Nashed[7] ). Let� = {0, a} + 2Z, where0 < a < 2 and let A be
a measurable subset ofR with 0 < |A| < ∞. Then(A, �) is a spectral pair if and only if there
exist an integerN �1 and an odd integer r, with 1�r �2N − 1 and r and N relatively prime,
such thata = r/N , and

N−1∑
j=0

�j/2 ∗
∑
n∈Z

�nN ∗ �A = 1, (1.1)

where∗ denotes the usual convolution product of Schwartz distributions and�c is the Dirac
measure at c. In this case|A| = 1.

Corollary 1.2 (Yu[25] ). Let N �1 be an integer and A be a measurable subset ofR with
0 < |A| < ∞. If the tiling equation(1.1) is true, then (A, �r,N ) is a spectral pair for each
oddr ∈ {1,3, . . . ,2N − 1} (not necessarily prime with N) and, furthermore, |A| = 1.

Additional results on spectral pairs can be found in [6–9,13–17,19–21,24]. We now define
nonuniform wavelets associated with the translation sets�r,N and the dilation 2N .

Definition 1.3. Let N �1 be a positive integer, and 1�r �2N − 1 be a fixed odd integer. A
collection of functions� = {�k : k = 1, . . . , K} ⊂ L2(R) is called a set of wavelets (associated
with the dilation 2N and the translation set�r,N ) if the family {�k

j,� : k = 1, . . . , K, j ∈
Z, � ∈ �r,N } forms a complete orthonormal system forL2(R), where�k

j,�(x) = (2N)
j
2�k((2N)j

x − �).

The characterization of nonuniform wavelets associated with a NUMRA was given in our
recent paper[9]. Our main goal in this note is to characterize nonuniform wavelet sets (see
Definition 2.3) and to prove their existence for any values of the parametersr andN with r odd
and1�r �2N−1.Wewill also show that, for a fixeddilation 2N , awavelet set associatedwith the
translation set�r,N for some odd integerr with 1�r �2N −1 is also awavelet set associatedwith
the translation set�r ′,N for anyodd integerr ′ with 1�r ′ �2N −1. The Fourier transform will be
defined by

f̂ (�) = Ff (�) =
∫

R
e−2�i�xf (x) dx for f ∈ L1(R) ∩ L2(R). (1.2)

2. Nonuniform wavelets and wavelet sets

The first part of the following lemma is a result of[7](see Eqs. (3.3) and (3.4)).
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Lemma 2.1. LetN �1 be a positive integer, andr ∈ {1,3, . . . ,2N − 1} be an odd integer. Let
� ∈ L2(R) with ‖�‖L2 = 1.Then,

(i) For a given odd r, the collection{�(x − �)}�∈�r,N
is an orthonormal system inL2(R) if and

only if

∑
p∈Z

∣∣∣�̂ (
� + p

2

)∣∣∣2 = 2 for a.e.� ∈ R (2.1)

and

∑
p∈Z

e−i� r
N

p
∣∣∣�̂ (

� + p

2

)∣∣∣2 = 0 for a.e.� ∈ R. (2.2)

(ii) The collection{�(x−�)}�∈�r,N
is an orthonormal system for every odd integerr ∈ {1,3, . . . ,

2N − 1} if and only if
∑
�∈�N

∣∣∣�̂(� − �)
∣∣∣2 = 1 for a.e.� ∈ R. (2.3)

Proof. The proof of (i) is given in[7, Lemma 3.2]. We will only prove (ii). By (i), the collection
{�(x − �)}�∈�r,N

is an orthonormal system for every odd integerr ∈ {1,3, . . . ,2N − 1} if and
only if (2.1) holds and (2.2) holds for every odd integerr ∈ {1,3, . . . ,2N − 1}. Define, for a.e.
� ∈ R,

cj (�) =
∑
q∈Z

∣∣∣∣�̂
(

� − qN − j

2

)∣∣∣∣
2

, 0�j �2N,

and note thatc0(�) = c2N(�). Suppose that (2.1) and (2.2) hold for every oddr ∈ {1,3, . . . ,
2N − 1}. By (2.1) we have

2N−1∑
j=0

cj (�) =
N−1∑
j=0

(
cj (�) + cN+j (�)

) = 2. (2.4)

By (2.2), for everyr = 2s + 1, s = 0,1, . . . , N − 1, we have

0=
∑
p∈Z

ei� r
N

p
∣∣∣�̂ (

� + p

2

)∣∣∣2 =
∑
q∈Z

2N−1∑
j=0

e−i� r
N

(2qN+j)

∣∣∣∣�̂
(

� − qN − j

2

)∣∣∣∣
2

=
N−1∑
j=0

e−i� r
N

j


∑

q∈Z

∣∣∣∣�̂
(

� − qN − j

2

)∣∣∣∣
2

−
∑
q∈Z

∣∣∣∣�̂
(

� − qN − j + N

2

)∣∣∣∣
2



=
N−1∑
j=0

e−i2� s
N

j
(
cj (�) − cN+j (�)

)
e−i� j

N . (2.5)

Considering the sum in the right-hand side of (2.5) as a discrete Fourier series on the groupZ/NZ,
we deduce that, for a.e.� ∈ R, cj (�) = cN+j (�), for j = 0,1, . . . , N − 1. It follows from this
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last fact and (2.4) that, for a.e.� ∈ R,

N−1∑
j=0

cj (�) = 1, (2.6)

which is exactly (2.3). Conversely, suppose that (2.3) or, equivalently that (2.6) holds, for a.e.
� ∈ R. Replacing� by � − N

2 and� − (N+1)
2 in the previous equation, we obtain that

2N−1∑
j=N

cj (�) =
2N∑

j=N+1

cj (�) = 1

and, in particular,cN(�) = c2N(�) = c0(�). Similarly, we see thatcj (�) = cN+j (�) for j =
0,1, . . . , N − 1. Hence, (2.1) and (2.2) hold for each oddr ∈ {1,3, . . . ,2N − 1} by using (2.4)
and (2.5). This completes the proof.�

The following theorem follows as a special case of Calogero’s characterization of wavelets on
general lattices with expansive matrix dilations ([2, Theorem 3.1]; see also [1]) applied to the
function system� = {�k : k = 1, . . . ,2K} ⊂ L2(R), where

�k(·) =
{

�k(·) for 1�k�K,

�k
(· − r

N

)
for K + 1�k�2K,

together with the dilationM = M∗ = 2N and the translation lattice	 = 2Z with dual lattice
	∗ = 1

2Z. This result can also be obtained from various more general results that have appeared
recently in the literature characterizing certain normalized tight frame systems. In particular, it is
also a special case of[4, Theorem 1; 3, Corollary 1; 22, Corollary 4.15 (ii)]. With quite a bit of
extra work needed to verify the assumptions, this result can also be obtained from [11, Theorem
2.1].

Theorem 2.2. Let1�r �2N −1be a fixed odd integer. A collection of functions� = {�k : k =
1, . . . , K} ⊂ L2(R) with ‖�k‖L2 = 1, k = 1, . . . , K, is a set of wavelets associated with the
dilation 2N and the translation set�r,N if and only if for a.e.� ∈ R,

K∑
k=1

∑
l∈Z

∣∣∣�̂k
((2N)l�)

∣∣∣2 = 1, (2.7)

and, for anyq ∈ Z \ 2NZ,

tq(�) = 2
K∑

k=1

∞∑
l=1

�̂
k
(
(2N)l�

)
�̂

k
(
(2N)l(� + q

2
)
)

+(1+ ei�q r
N )

K∑
k=1

�̂
k
(�)�̂

k
(
� + q

2

)
= 0. (2.8)

Note that, whenN = 1, Eq. (2.8) reduces to

K∑
k=1

∞∑
l=0

�̂
k
(2l�) �̂

k
(2l (� + q)) = 0, q ∈ Z \ 2Z,
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and thus (2.7) and (2.8) give us the well-known necessary and sufficient conditions satisfied by a
wavelet system in that case ([10,23]; see also [12, p. 332]).

Definition 2.3. Let N �1 be a positive integer, andr ∈ {1,3, . . . ,2N − 1} be an odd integer.
LetA ⊂ R be a measurable set with|A| = 1.We callA a wavelet set associated with the dilation
2N and translation set�r,N if F−1(�A(�)) is an orthonormal wavelet in the sense of Definition
1.3 (withK = 1), whereF−1 denotes the inverse Fourier transform.

Lemma 2.4. LetA ⊂ R be a measurable set with finite measure, and�(x) be anL2(R) function
with |�̂(�)| = �A(�). If � satisfies(2.1)and(2.2) for a fixed odd integerr ∈ {1,3, . . . ,2N − 1},
then it also satisfies(2.8) (withK = 1 and�1 = �) for the same r.

Proof. Fix anyq ∈ Z \ 2NZ. For almost every� ∈ R, if �̂((2N)l�) �= 0 for a fixedl�0, then
|�̂((2N)l�)| = �A((2N)l�) = 1, and thus, by (2.1),

∑
p∈Z\{0}

|�̂((2N)l� + p/2)|2 = 1.

There exists an integerp(l)(�) �= 0 such that|�̂((2N)l� + p(l)(�)/2)| = 1 and

�̂((2N)l� + p/2) = 0, p ∈ Z \ {0, p(l)(�)}. (2.9)

These equalities and (2.2) yielde−i� r
N

p(l)(�) = −1. Sop(l)(�) r
N

∈ 2Z + 1 andp(l)(�) /∈ 2NZ.
It follows from (2.9) that in the casel�1

�̂
(
(2N)l

(
� + q

2

))
= �̂

(
(2N)l� + 1

2
(2N)lq

)
= 0,

sincep(l)(�) �= (2N)lq. Therefore, one has

∞∑
l=1

�̂((2N)l�)�̂
(
(2N)l

(
� + q

2

))
= 0 for a.e.� ∈ R. (2.10)

If �̂(�) �= 0 then, whether or notq = p(0)(�), the previous argument withl = 0 shows that
�̂(� + q

2)(1+ ei� r
N

q) = 0. This together with (2.10) proves the equality (2.8) withK = 1. �

Lemma 2.5. LetA ⊂ R be a measurable set with finite measure. Then, the following two state-
ments are equivalent
(A) For a.e.� ∈ R, one has

∑
p∈Z

�A

(
� + p

2

)
= 2 and

∑
p∈Z

ei� r
N

p �A

(
� + p

2

)
= 0,

where r is a fixed odd integer coprime to N with1�r �2N − 1.
(B) For a.e.� ∈ R, one has

∑
�∈�N

�A(� − �) = 1.

Proof. The implication (B)⇒(A) is an immediate consequence of Lemma 2.1 with�̂ = �A.
Conversely, assume that (A) holds. For a.e.� ∈ R there exist two distinct integersp1 = p1(�)
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andp2 = p2(�) such that

� + p1

2
∈ A, � + p2

2
∈ A and � + p

2
/∈ A, p ∈ Z \ {p1, p2}

by the first equality in (A). Thenei� r
N

p1+ei� r
N

p2 = 0 by the second equality in (A). It follows that
p1 − p2 = (2l + 1)N for somel ∈ Z sincer andN are relatively prime. Write−p2 = 2Nm + j

with m ∈ Z and 0�j �2N − 1. Then� ∈ A − p2
2 = A + mN + j

2, and� ∈ A − p1
2 =

A + (m − l)N + j−N
2 . Thus, ifN �j �2N − 1, then 0�j − N �N − 1. If 0�j �N − 1, then

N + j−N
2 = j+N

2 andN �j + N �2N − 1. This means that one and only one ofA − p2
2 and

A − p1
2 must be a component of the union

⋃
�∈�N

(A + �). This last fact and the arbitrariness of
� show that

⋃
�∈�N

(A + �) = R where the union is disjoint, which is equivalent to (B).�

The following theoremprovides a characterization for nonuniformwavelet sets and proves their
existence. The corresponding result for the uniform case, which is also valid in higher dimensions
and for arbitrary dilations, is due to Dai, Larson and Speegle ([5]).

Theorem 2.6. LetA ⊂ R be ameasurable set with|A| = 1.Then, the following three statements
are equivalent.
(A) F−1(�A(�)) is a wavelet associated with the dilation2N and the translation set�r,N for

one particular odd r prime to N with1�r �2N − 1.
(B) (i)

⋃
l∈Z (2N)lA = R and (ii)

⋃
�∈�N

(A + �) = R, where both unions are disjoint almost
everywhere.

(C) For every odd integerr ∈ {1,3, . . . ,2N − 1}, F−1(�A(�)) is a wavelet associated with the
dilation 2N and the translation set�r,N .

Moreover, a measurable set A satisfying the three previous equivalent statements always exists.

Proof. First of all, it is clear that when̂�(�) = �A(�), the statement (B), (i) is equivalent to (2.7)
with K = 1 while (B),(ii) is equivalent to (2.3) when� is replaced by�.

If (A) holds, part (i) of (B) is a consequence of Theorem 2.2, while part (ii) of (B) follows from
Lemmas 2.1 and 2.5. On the other hand, if (B) holds, (C) follows from Lemmas 2.1, 2.4, and
Theorem 2.2. Since (C) obviously implies (A), this proves our claim.
We now prove the existence of such a setA. Consider the set

E =
[
−N

2
, −N

2
+ 1

4

)
∪

[
−1

4
,
1

4

)
∪

[
N

2
− 1

4
,
N

2

)
.

Note thatE satisfies the tiling condition

∑
m∈Z

N−1∑
j=0

�E ∗ �mN ∗ �j/2 = 1. (2.11)

Let F = [−2N, −1) ∪ [1,2N) and note that∑
l∈Z

�(2N)lF = 1. (2.12)

Since 0 is an interior point ofEandF is bounded away from 0 and has nonempty interior, we can
use a key result of Dai, Larson and Speegle in[5] to construct a measurable setAwhich is both
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NZ-translation congruent toE and 2N -dilation congruent toF. Equivalently,A satisfies∑
m∈Z

�A ∗ �mN =
∑
m∈Z

�E ∗ �mN (2.13)

and ∑
l∈Z

�(2N)lA =
∑
l∈Z

�(2N)lF . (2.14)

It follows immediately from (2.11), (2.12), (2.13) and (2.14) that the conditions in (B) are all
satisfied by setA, and this completes the proof.�
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