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Abstract

In this paper we consider the twists of the single curve of genus 2 with group of automorphism isomorphic
to S̃4. To this end, we first study 2-dimensional representations of the quaternion group of 8 elements and
of S̃4, both with a given Galois action.
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0. Introduction

Let k be a perfect field of characteristic different from 2 and 5, k̄ a fixed algebraic closure of k

and Gk the absolute Galois group of k, Gk = Gal(k̄/k). There is, up to k̄-isomorphism, a single
genus 2 curve defined over k with group of automorphisms isomorphic to S̃4, the 2-covering of
S4 isomorphic to GL(2,3). Namely, one can take the curve with affine equation y2 = x5 − x as
a representative of this k̄-isomorphism class. In this paper we are interested in the classification
of curves of genus 2 with group of automorphisms isomorphic to S̃4 up to k-isomorphism, that
is, the k-twists of the curve y2 = x5 − x.

We will always assume that genus 2 curves are given by a hyperelliptic model,

C : y2 = f (x),

E-mail address: gabriel.cardona@uib.es.
1 Supported by grants BFM-2003-06768-C02-01 and 2005SGR-00443.
0021-8693/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2006.02.005

https://core.ac.uk/display/82641504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


708 G. Cardona / Journal of Algebra 303 (2006) 707–721
where f (x) ∈ k[x] is a polynomial of degree 5 or 6. Isomorphisms between genus 2 curves will
always be given in terms of their hyperelliptic models:

(x, y) �→
(

ax + b

cx + d
,
(ad − bc)y

(cx + d)3

)
,

(
a b

c d

)
∈ GL2(k̄),

and we will identify such an isomorphism with the corresponding matrix. We recall that this
identification preserves both the group law and the Galois action. In particular, the group of
automorphism Aut(C) is a Gk-group isomorphic, as a Gk-group, to a sub-Gk-group of GL2(k̄).

As a result, any k-isomorphism between two curves is given by a matrix M ∈ GL2(k), and the
groups of automorphisms of both curves are related, in terms of their matricial representation, by
conjugation by M . Therefore, to any k-isomorphism class of curves of genus 2 there corresponds
a subgroup of GL2(k̄) up to GL2(k)-conjugation.

1. Quaternionic Gk-groups as groups of matrices

1.1. Galois actions on groups

Let H be a Gk-group, that is, H is a group with a given Gk-structure. By a Gk-structure (or,
equivalently, a Galois action) on H we mean a continuous mapping, with respect to the Krull
topology on Gk and the discrete topology on H ,

Gk × H → H,

(σ, x) �→ σ x,

which defines an action of Gk on H (as a set) and is, moreover, compatible with the group
structure of H , that is, σ(xy) = σx σy. To give such an action is equivalent to giving a morphism
of groups ρ :Gk → S = Aut(H), so that σx = ρ(σ )(x). This morphism factors through a finite
Galois extension K/k with Galois group isomorphic to a subgroup T of S . We will call K the
field of definition of the Gk-group (or of the Galois action). Then, any Gk-structure on H is
defined by giving a Galois extension K/k together with an isomorphism

Gal(K/k)
�−→ T ⊂ S.

A morphism ϕ :H1 → H2 of Gk-groups, with respective Galois actions given by ρi :Gk →
Aut(Hi), is a morphism of groups that translates the given Galois actions; that is, ϕ(ρ1(σ )(x)) =
ρ2(σ )(ϕ(x)). In particular, an isomorphism of Gk-groups is an isomorphism ϕ :H1 → H2 such
that ρ1 = ϕ∗ ◦ ρ2, where for any automorphism ψ of H2, ϕ∗(ψ) is the automorphism ϕ−1ψϕ

of H1. In other words, the condition is ρ1(σ ) = ϕ−1ρ2(σ )ϕ for every σ ∈ Gk .
For the case of different Gk-structures on a group H , the condition for these actions to be

equivalent is that the corresponding morphisms differ by an inner automorphism of S ; namely,
using the notations in the paragraph above, the inner automorphism is conjugation by ϕ, which
is an automorphism of H . Then,

Hom(Gk,S)/ Inn(S)

classifies Gk-structures on H , up to equivalence.
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It is clear that equivalent Gk-structures are defined over the same field K , since K/k is a
Galois extension. Two actions defined over the same field K are equivalent if the correspond-
ing isomorphisms from Gal(K/k) to T1,T2 are conjugate. It follows that T1,T2 are conjugate
subgroups of S , but notice that non-equivalent structures could have conjugate associated sub-
groups, since not only the subgroups but also the morphisms must be conjugate. After this, and
up to equivalence, we can fix a set of representatives of conjugacy classes of subgroups of S ,
and assume that T is one of these subgroups. We will call T the type of the Galois structure.
Given T , the equivalence classes of Gk-structures with associated subgroup T are classified by
Aut(T )/ Inn(S)|T .

1.2. Linear representations of Gk-groups

Let M be a subgroup of GLn(k̄). The natural Galois action on k̄ gives a natural Gk-structure
on M, provided that M is closed under this action; in this case, we will call M a sub-Gk-group
of GLn(k̄). By an n-dimensional Gk-representation of a group H , we will mean an isomorphism
of Gk-groups between H and a sub-Gk-group of GLn(k̄). Namely, we mean an embedding

H
ϕ

↪→ GLn(k̄)

such that

ϕ(σx) = σϕ(x)

for every x ∈ H and σ ∈ Gk .
The general problem of deciding, given the Gk-group H and the dimension n, whether this

embedding exists is, up to our knowledge, unsolved. Some 2-dimensional dihedral cases have
been studied in [4].

All the groups we will consider have an unique non-trivial central element, that we will denote
by −1. We will always assume that this element is represented by the matrix −1 ∈ GLn(k̄).

1.3. Galois actions on the quaternion group

Let us now consider the case when H is the quaternion group,

H = {±1,±i,±j,±k},

with, as usual, i2 = j2 = k2 = −1, ij = −ji = k. We recall that S = Aut(H) is isomorphic
to S4, the symmetric group on 4 letters, and so is Inn(S). We will hereafter identify S with S4;
whenever an explicit identification is needed, we will use the following one:

(1,2,3,4) : (i, j, k) �→ (i, k,−j),

(1,2) : (i, j, k) �→ (−j,−i,−k).

The explicit computations with this group, and with S̃4 in the next section, can be performed
using a system for computational algebra such as GAP or Magma (see [6,8]).

Let us now remark some properties of this action that will be used afterwards:
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(1) The isotropy subgroups of each non-central element in H are cyclic of order 4. Namely:

Si = S−i = 〈
(1,2,3,4)

〉
,

Sj = S−j = 〈
(1,2,4,3)

〉
,

Sk = S−k = 〈
(1,3,2,4)

〉
.

(2) The isotropy subgroups of each of the three subgroups generated by each of the non-central
elements in H , which are all of them cyclic of order 4, are isomorphic to D8. Namely:

S〈i〉 = 〈
(1,2,3,4), (1,3)

〉
,

S〈j〉 = 〈
(1,2,4,3), (1,4)

〉
,

S〈k〉 = 〈
(1,3,2,4), (1,2)

〉
.

(3) The inner automorphisms of H are identified with the normal subgroup of S4 isomorphic
to V4, the Klein 4-group. Namely:

γi = (1,3)(2,4),

γj = (1,4)(2,3),

γk = (1,2)(3,4),

where γx denotes conjugation by x.
(4) Let εi be the mapping S → {±1} defined by

εi(σ ) =
{

1, if σ(i) ∈ {i, j, k},
−1, if σ(i) ∈ {−i,−j,−k},

and define εj and εk analogously. Then, under the identification of S with S4, the sign of an
automorphism is given by

sgn(σ ) = εi(σ )εj (σ )εk(σ ).

Note that the sign of an element σ ∈ S does not depend on the isomorphism used to iden-
tify S with S4. We will denote by A the subgroup of even automorphisms of H , which is
isomorphic to A4.

In order to classify all possible actions of Gk on H up to equivalence we follow the recipe at
the end of Section 1.1. We fix a set of representatives of subgroups of S modulo conjugacy and
label them according to its group structure, distinguishing with a label those that are isomorphic,
see Table 1.

Note that for every type different from V B
4 and D8, all the automorphisms are inner inside S .

For the two types V B
4 and D8, the automorphism class modulo inner automorphisms is deter-

mined by the image of A ∩ T , which is a C2-subgroup for the type V B
4 and a V4-subgroup for

the type D8.
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Table 1

Type Representative Aut(T ) Aut(T )/ Inn(S)|T
1 1 1 1

CA
2 〈(1,2)(3,4)〉 1 1

CB
2 〈(1,2)〉 1 1

C3 〈(1,2,3)〉 C2 1

C4 〈(1,2,3,4)〉 C2 1

V A
4 〈(1,2)(3,4), (1,3)(2,4)〉 S3 1

V B
4 〈(1,2), (3,4)〉 S3 C3

S3 〈(1,2), (1,2,3)〉 S3 1

D8 〈(1,2,3,4), (1,3)〉 D8 C2

A4 〈(1,2,3), (2,3,4)〉 S4 1

S4 〈(1,2,3,4), (1,2)〉 S4 1

Note also that the structure of A∩ T distinguishes the types CA
2 from CB

2 , where one gets C2

for the first type and 1 for the second one, and V A
4 from V B

4 , where one gets V4 for the first type
and C2 for the second one.

In terms of fields, we get from the discussion above that whenever the field of definition K

of the Galois action does not uniquely identify the Gk-structure, it is determined by giving the
quadratic or trivial subextension Ku/k fixed by ρ−1(T ∩A). Namely:

• Gal(K/k) � C2: If Ku = k, it is of type CA
2 ; otherwise, it is of type CB

2 .
• Gal(K/k) � V4: If Ku = k, it is of type V A

4 ; otherwise, it is of type V B
4 , and the three

different Galois structures correspond to the three different choices for Ku a quadratic subex-
tension of K/k.

• Gal(K/k) � D8: Ku/k is necessarily quadratic and the two different Galois structures cor-
respond to the two quadratic subfields of K/k such that K/Ku is not cyclic.

For the sake of completeness, we give the fields Ku corresponding to the remaining cases:

• Gal(K/k) � C3, S4: Ku/k is trivial.
• Gal(K/k) � C4, S3, S4: Ku/k is the only quadratic subfield of K/k.

We have thus proved the following proposition.

Proposition 1. Any Gk-structure on the quaternion group is, up to equivalence, uniquely deter-
mined by its field of definition K and the quadratic (or trivial) extension Ku of k contained in K

defined as the subfield of k̄ fixed by ρ−1(A).

In the following proposition we show how we can summarize all the data required to deter-
mine a Gk-structure in single quartic polynomial.

Proposition 2. Any Gk-structure on the quaternion group is determined by giving a quartic
polynomial f (X) ∈ k[X] such that K is the splitting field of f and Ku = k(

√
discf ).
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Proof. For S4, A4, D8, and C4 extensions the result is obvious.
For S3, and C3 extensions this is also true. Take any cubic polynomial g(X) with splitting

field K and consider the quartic polynomial

f (X) = Xg(X).

Then f and g have the same splitting field and their discriminants differ by a square.
For V4 extensions, say K = k(

√
a,

√
b ), we can take

f (X) = (
X2 − a

)(
X2 − b

)
,

(
X2 − a

)(
X2 − ab

)
,

(
X2 − b

)(
X2 − ab

)
,

whose discriminants are, respectively, ab, b, a modulo squares, or

f (X) = X4 − 2(a + b)X2 + (a − b)2,

which is the minimal polynomial of
√

a + √
b over k and whose discriminant is a square.

For C2 extensions, say K = k(
√

a ), we can take

f (X) = X(X − 1)
(
X2 − a

)
,

which has discriminant modulo squares equal to a, or

f (X) = (
X2 − a

)(
X2 − 4a

)
,

whose discriminant is a square. �
1.4. Linear 2-dimensional Gk-representations of quaternionic groups

Let H be a Gk-subgroup of GL2(k̄) isomorphic to the quaternion group. Let K and Ku be
the associated fields. The following proposition gives expressions for the matrices in H , up to
conjugation by elements in GL2(k).

Proposition 3. Let H be a sub-Gk-group of GL2(k̄) isomorphic to the quaternion group. Then
H is GL2(k)-conjugate to the group generated by the matrices:

M1 =
(

α1 β1
−1−α2

1
β1

−α1

)
, M2 =

(
α2 β2

−1−α2
2

β2
−α2

)
, M3 =

(
α3 β3

−1−α2
3

β3
−α3

)
,

where ±β1,±β2,±β3 are the roots of a polynomial of the form

g(X) = X6 − C X2 − D ∈ k[X],

with D and disc(X3 −C X −D) = 4C3 − 27D2 differing by a square in k, say (4C3 − 27D2) =
s2D, s ∈ k∗, and

αi = −3

s
β3

i + 2C

sD
β5

i , i = 1,2,3.
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Proof. Let K,Ku be the fields associated to the Galois action on H . In the following discussion
we will suppose that Gal(K/k) � S4, which is the most complicated case; for the other cases,
the discussion goes analogously and the results are the same.

Let M1,M2,M3 denote the matrices corresponding to the quaternions i, j, k. Since we are
interested in matrices up to GL2(k)-conjugation, we can assume that the upper right entries of
the matrices M1,M2,M3 are non-zero, and since their square equals −1 we can assume that the
matrices M1,M2,M3 are of the form in the statement of the proposition. Note also that, using
GL2(k)-conjugation, we can also ensure that βi = ±βj (i = j ).

From the relations defining the quaternion group, namely M1M2 = M3 and M1M2 =
−M2M1, it follows easily that

β2
1 + β2

2 + β2
3 = 0. (1)

Since H is closed under the action of Gk , the polynomial

g(X) = (
x2 − β2

1

)(
x2 − β2

2

)(
x2 − β2

3

)

has coefficients in k and, after (1), is of the form

g(X) = X6 − CX2 − D ∈ k[X].
Moreover, K is the splitting field of g, and since discg = 64D(4C3 − 27D2)2, it follows that
Ku = k(

√
D ). The splitting field of g̃(X) = X3 − CX − D is an S3-subextension of K/k with

unique quadratic subfield k(
√

4C3 − 27D2 ). Therefore 4C3 − 27D2 = s2D for some s ∈ k∗.
As for the coefficients αi appearing above, taking into account how Gk operates on the matri-

ces, it follows that αi ∈ k(βi), and αi can be written as a linear combination of βi and its powers.
Since when σβi = −βi we have that σαi = −αi , it follows that in the former linear combina-
tion, only odd powers will have non-zero coefficients. Now, since when σαi = αj , we have that
σMi = Mj , it follows that the coefficients in this linear combination are the same for each of
the αi . Then, we can assume

αi = a1βi + a3β
3
i + a5β

5
i .

Now, and up to conjugation by the matrix
(

1 0−t 1

)
, we can replace αi by αi + tβi for any t ∈ k;

therefore, we can assume that a1 = 0 and

αi = a3β
3
i + a5β

5
i .

The considerations above, together with the condition that M1,M2,M3 generate the quaternion
group, lead to expressions for a3, a5 involving βi ,

a3 = −(β6
1 + β6

2 + β6
3 )

δ
, a5 = β4

1 + β4
2 + β4

3

δ
,

where

δ = β1β2β3
(
β2

1 − β2
2

)(
β2

2 − β2
3

)(
β2

3 − β2
1

)
.

Writing the expressions found in terms of a k-base of K (see remark below) we get the result. �
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Remark 4. Let L = k(β2
1 , β2

2 , β2
3 ), which is the splitting field of g̃(X); this is, in the generic case,

an S3-extension of k and we can take as a k-base of L

{
1, β2

1 , β4
1 , β2

2 , β2
1β2

2 , β4
1β2

2

}
,

and any polynomial expression in the β2
i can be written as a linear combination of the elements

above using the relations

β2
1 + β2

2 + β2
3 = 0, β4

1 + β4
2 + β2

1β2
2 − C = 0, β6

1 − Cβ2
1 − D = 0.

Now, the extension K/L is biquadratic, and the set

{1, β1, β2, β3}

is an L-base of K . In order to find the corresponding coefficients for any element in K we use
that

β1β2β3 = √
D =

√
4C3 − 27D2

s
= (β2

1 − β2
2 )(β2

2 − β2
3 )(β2

3 − β2
1 )

s
∈ L

and

β1β2 = β1β2β3

β2
3

β3, β1β3 = β1β2β3

β2
2

β2, β2β3 = β1β2β3

β2
1

β1.

Then, we can find a k-base of K and explicitly find the corresponding coefficients for any element
in K .

Following [5], we will call a quartic polynomial principal if both its cubic and quadratic
coefficients are zero; analogously, we will call an extension K/k principal if it is the splitting
field of some principal quartic polynomial; and a pair (K,Ku) principal if K is the splitting of a
principal quartic polynomial and Ku is generated by the square root of its discriminant.

Proposition 5. Let H be as in the previous proposition. Then, the pair of fields (K,Ku) associ-
ated to the Galois action on H is principal.

Proof. We will use the same notations that those in the previous proof. Taking into account
how Gk acts on the roots ±βi of g(X), which can be explicitly computed in terms of the iden-
tification of Gal(K/k) with S4, we can find a defining polynomial for the non-normal quartic
subextensions of K/k, whose composition is K . Namely, we can take

f (X) = (
X − β1β2β3(β1 − β2 − β3)

)(
X − β1β2β3(−β1 + β2 − β3)

)
× (

X − β1β2β3(−β1 − β2 + β3)
)(

X − β1β2β3(β1 + β2 + β3)
)
.

Using the identity (1), together with the natural expressions for C,D in terms of the βi , we find
that
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f (X) = X4 − 8D2X + 4CD2.

Moreover, discf = 212D6(4C3 − 27D2) and the result follows. �
We can now go further and characterize the quaternionic Gk-groups that can be represented

by matrices.

Theorem 6. Let H be a Gk-group isomorphic, as a group, to the quaternion group; let K and
Ku be the associated fields. Then, H is Gk-representable in GL2(k̄) if, and only if, (K,Ku) is a
principal pair of fields.

Proof. If H is representable by matrices, then by Proposition 5, the statement in the theorem
holds.

Conversely, let f = X4 + AX + B be a principal polynomial with splitting field K , d =
discf and Ku = k(

√
d ). Then, the polynomial f̃ = X4 − 8A4d6X + 16A4Bd8 defines the same

extensions K and Ku, since the roots of f̃ are −2Ad2γi , with γi a root of f . Taking D = A2d3

and C = 4Bd2, one can construct the matrices M1,M2,M3 as in Proposition 3; note that D and
the discriminant d differ by a square. Since K and Ku determine the Gk-structure, the group
generated by these matrices is Gk-isomorphic to H and the result follows. �
1.5. Some remarks on principality

In this section, we rewrite the condition of principality in terms of elements in Br2(k). Namely,
we find conditions for the fields K , Ku to be generated by, respectively, the roots of an separable
principal quartic polynomial and the square root of its discriminant.

In the most generic case, let f be a quartic polynomial whose splitting field is K and Ku =
k(

√
discf ). By completing the cube, one can assume that the cubic coefficient of f is zero,

f = X4 + a X2 + bX + c.

Then, the obstruction to the existence of a principal quartic polynomial providing the same fields
that f is given by

(
2a discf,2a3 + 9b2 − 8ac

) = 1 ∈ Br2(k),

as is proved in [5].
When Gal(K/k) is isomorphic to either S3 or C3, the fields K and Ku can be given by a cubic

polinomial, whose quadratic coefficient can be assumed to be zero,

f = X3 + aX + b.

Then, the obstruction to the existence of a principal quartic polynomial providing the same fields
that f is given by

(
2a discf,2a3 + 9b2) = 1 ∈ Br2(k).

When K/k is a trivial, quadratic or biquadratic extension, the descriptions of the fields and
the obstructions can be simplified. In Table 2 we give a simple condition for principality in terms
of the fields K and Ku.
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Table 2

Type K Ku Obstruction

1 k k (−1,−1)

CA
2 k(

√
a ) k (−a,−1)

CB
2 k(

√
a ) k(

√
a ) (−a,−2)

V A
4 k(

√
a,

√
b ) k (−a,−b)

V B
4 k(

√
a,

√
b ) k(

√
a ) (−a,−2b)

2. Gk-groups isomorphic to S̃4 as groups of matrices

2.1. Galois actions on S̃4

Let A be a Gk-group isomorphic, as a group, to S̃4, the 2-covering of S4 where transpositions
lift to order 4 elements. One can give a presentation for A in terms of generators and relations as
follows:

A = 〈−1,U,V | −1 ∈ Z(A), U2 = (UV )3 = 1, V 4 = −1
〉
.

Note that A has a characteristic subgroup H = 〈V 2,UV 2U 〉 isomorphic to the quaternion group,
and hence H inherits a Galois structure.

The group of automorphisms of A is isomorphic to C2 × S4, generated by a non-inner central
involution ı and the two inner automorphisms given by conjugation by U and V ,

ı(−1) = −1, ı(U) = −U, ı(V ) = −V,

γU (−1) = −1, γU (U) = U, γU(V ) = UV U,

γV (−1) = −1, γV (U) = −V UV 3, γV (V ) = V.

Then, giving a morphism ρ from Gk to Aut(A) is equivalent to giving a pair of morphisms from
Gk to C2 and S4, respectively. Giving the first component is equivalent to giving the quadratic (or
trivial) extension Kd/k through which the morphism factorizes; note that Kd is the subfield of
k̄ fixed by ρ−1(Inn(A)). As for the second component, according to the discussion above on the
quaternion group case, and up to equivalence, it is determined by giving a pair of fields (K,Ku).
We summarize these considerations in the following proposition.

Proposition 7. Any Gk-structure on the group S̃4 is uniquely determined, up to equivalence, by
a triple of fields (K,Ku,Kd), where Gal(K/k) is isomorphic to a subgroup of S4, Ku/k and
Kd/k are quadratic (or trivial) extensions, and Ku/k is a subextension of K/k.

2.2. Linear 2-dimensional Gk-representations of S̃4

The goal of this section is to find conditions for a Gk-group isomorphic to S̃4 to be Gk-
representable by matrices.

From the table of characters for this group (see Table 3), it follows that any 2-dimensional
representation has trace χ4 (or χ5 = χ̄4) and determinant χ2. In particular, whenever GL2(L)

contains a subgroup isomorphic to S̃4, the field L must contain
√−2.
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Table 3
Character table for S̃4

1A 2A 2B 3A 4A 6A 8A 8B

χ1 1 1 1 1 1 1 1 1
χ2 1 1 −1 1 1 1 −1 −1
χ3 2 2 0 −1 2 −1 0 0
χ4 2 −2 0 −1 0 1 ε −ε

χ5 2 −2 0 −1 0 1 −ε ε

χ6 3 3 −1 0 −1 0 1 1
χ7 3 3 1 0 −1 0 −1 −1
χ8 4 −4 0 1 0 −1 0 0

ε2 = −2

Proposition 8. Let A be a sub-Gk-group of GL2(k̄) isomorphic to S̃4. Then A is GL2(k)-
conjugate to the group generated by the matrices

Mu = 1√−2
(M1 + M2), Mv = −1√−2

(M1 − I2),

where M1,M2 are as in Proposition 3.

Proof. Let Mu,Mv be the matrices corresponding to the elements U,V . Since the group gen-
erated by V 2 and UV 2U is isomorphic to the quaternion group, we can assume that, up to
GL2(k)-conjugation,

M2
v = M1, MuM

2
vMu = M2,

with M1,M2 as in Proposition 3. A simple computation yields that

Mv = ±1√
2

(1 + α1 β1
−1−α2

1
β1

1 − α1

)
or Mv = ±1√−2

(
α1 − 1 β1
−1−α2

1
β1

−1 − α1

)
.

Note that the respective traces of the matrices above are ±√
2 and ±√−2; then, only the second

option is possible and Mv = ± 1√−2
(M1 − I2).

As for Mu, using the equality MuM1Mu = M2, one analogously obtains that

Mu = ±1√
2

(
α1 + α2 β1 + β2

−β1−β2−α2
1β2−α2

2β1
β1β2

−α1 − α2

)
.

As for the choices of signs, the condition (UV )3 = 1 implies that the signs must be opposite, and
the proposition follows. �

We can now describe which Gk-groups isomorphic to S̃4 can be represented by a group of
matrices with the same Galois action.

Theorem 9. Let A be Gk-group isomorphic, as a group, to S̃4; let K,Ku,Kd be the associated
fields. Then, A is Gk-representable in GL2(k̄) if, and only if, (K,Ku) is a principal pair of fields
and Kd = k(

√−2 ).
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Proof. If the Gk-group is representable by matrices, then, by Theorem 5, the pair of fields
(K,Ku) is principal.

As for the field Kd , note that, by definition, σ ∈ Gk fixes Kd if, and only if, ρ(σ ) is inner, that
is, there exists M ∈ A such that

σMu = MMuM
−1, σMv = MMvM

−1.

Using that Mu = 1√−2
(M1 + M2) and Mv = −1√−2

(M1 − I2), if σ acts as an inner automorphism,
then

σMu =
σ( 1√−2

(M1 + M2)

)
= 1

σ√−2

(
σM1 + σM2

)

= MMuM
−1 = 1√−2

(
MM1M

−1 + MM2M
−1) = 1√−2

(
σM1 + σM2

)
,

and
σ√−2 = √−2; conversely, if

σ√−2 = √−2, then

σMu = 1√−2

(
σM1 + σM2

)
, σMv = −1√−2

(
σM1 − I2

)
.

Since all the automorphisms of H are inner inside S̃4, it follows that σ acts as an inner automor-
phism. Therefore, Kd = k(

√−2 ).
Conversely, from the condition that (K,Ku) is a principal pair of fields, and after Theorem 5,

one can construct the matrices Mu,Mv as in Proposition 8 that generate a sub-Gk-group of
GL2(K ·Kd); the fields associated to this group are, by construction, K,Ku,Kd , and since these
fields determine the Galois structure, it follows that these matrices provide a representation of
the Gk-group A. �
3. Twists of the curve y2 = x5 − x

We can now give a solution to the problem of classifying the k-twists over any perfect field of
the genus 2 curve given by the hyperelliptic equation

C : y2 = x5 − x.

The reduced group of automorphisms of this curve, which is defined as

Aut′(C) = Aut(C)/〈−1〉,
where −1 is the hyperelliptic involution on C, is isomorphic to S4 (cf. [1,7]), while its full auto-
morphism group Aut(C) is isomorphic to S̃4. We remark that this curve is, up to k̄-isomorphism,
the unique curve with maximal automorphism group. The goal of this section is to classify all
its k-twists, that is, classify all the k-isomorphism classes of curves k̄-isomorphic to the given
one. Note that the equation for C defines a smooth curve over any field of characteristic different
from 2, but in characteristic 5 its automorphism group is even larger, isomorphic to S̃5. For the
number of twists over any finite field of odd characteristic, we refer the reader to [2], and for the
characteristic 2 case to [3].
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The set of twists of a curve C over a field k, Twi(C/k), is a pointed set, whose distinguished
point is the k-isomorphism class of C, isomorphic to H 1(Gk,Aut(X)), the first cohomology set
of Gk with values in the Gk-group Aut(C). We will call the hyperelliptic twist of a genus 2 curve
associated to k(

√
e )/k the twist obtained from the morphism Gk → 〈−1〉 ⊂ Aut(C) that factors

through k(
√

e ), and we will denote it by Ce. Note that if y2 = f (x) is a hyperelliptic equation
for C, then ey2 = f (x) is a hyperelliptic equation for its hyperelliptic twist Ce .

Since k-isomorphisms fix the Gk-structure of the group of automorphisms, it makes sense to
group the k-isomorphism classes with the same Gk-structure on the automorphism group; more-
over, hyperelliptic twists also fix this Galois structure. Also, since the group of automorphisms
of a genus 2 curve can be represented by matrices, one only needs to consider representable Gk-
structures. We have thus reduced the problem of classifying the twists of the curve y2 = x5 −x to:

(1) Decide which representable Gk-structures on S̃4 correspond to the automorphism group of a
curve of genus 2.

(2) For each of the possibilities above, classify k-isomorphism classes of curves with the given
Gk-structure on its automorphism group.

The answer to the first question (see Proposition 10) is that every Gk-group isomorphic to S̃4
representable by matrices is the group of automorphisms of a genus 2 curve. As for the second
one, the set of curves with fixed Galois structure on its automorphisms are all obtained by hyper-
elliptic twists (see Proposition 12), and we can give an explicit description of the hyperelliptic
twists that are defined over the base field (see Proposition 13).

Proposition 10. Let A be the subgroup of GL2(k̄) isomorphic to S̃4 generated by Mu and Mv as
in Proposition 8. Then, the curve of genus 2 given by the hyperelliptic equation

y2 = a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0,

with

a6 = (
64C12 − 848D2C9 + 3020D4C6 − 4023D6C3 + 5832D8)s,

a5 = −4C
(
4C3 − 27D2)(32C9 − 416D2C6 + 1098D4C3 − 243D6),

a4 = 5C2D
(
4C3 − 27D2)(16C6 − 248D2C3 + 513D4)s,

a3 = −20D3(27D2 − 20C3)(27D2 − 4C3)2
,

a2 = −5CD2(4C3 − 27D2)2(4C3 + 9D2)s,
a1 = 8C2D2(4C3 − 27D2)3

,

a0 = D3(27D2 − 4C3)3
s,

has A as its group of automorphisms.

Proof. It follows from a direct computation that the given equation corresponds to curve of
genus 2 and that the matrices Mu, Mv , which generate a sub-Gk-group of GL2(k̄) isomorphic
to S̃4, are automorphisms of the curve. �



720 G. Cardona / Journal of Algebra 303 (2006) 707–721
Remark 11. The result above is obtained by taking an arbitrary genus 2 curve and finding con-
ditions on its coefficients to make the matrices Mu and Mv be automorphisms of the curve. With
this procedure, one easily finds expressions for these coefficients in terms of the roots βi of g(X),
and then use k-base of K (see Remark 4) to find the expressions above. Moreover, by using this
method one obtains that the given genus 2 curve is unique up to hyperelliptic twists.

Proposition 12. Let C,C′ be curves of genus 2 with Aut(C) � Aut(C′) � S̃4. If the Gk-structures
on both automorphism groups are equivalent, then C and C′ differ by, at most, a hyperelliptic
twist and a k-isomorphism.

Proof. A direct proof of this proposition is given in Remark 11. A more algebraic proof can be
easily obtained by adapting the proof of [4, Theorem 4.8]. �
Proposition 13. Let C be a curve of genus 2 with Aut(C) � S̃4, and Ce the hyperelliptic twist of
C over k(

√
e ). Let K , Ku = k(

√
u ), Kd = k(

√−2 ) be the associated fields to the Gk-structure
on Aut(C). Then, C and Ce are k-isomorphic if, and only if, e ∈ E ∩ k∗, where E is defined as:

(1) E = k∗2 if 3 | [K : k],
(2) E = (K · Kd)∗2 if [K : k] � 2,
(3) E = K∗2

d if Gal(K/k) � C4,
(4) E = K∗2 if Gal(K/k) � V4 and Ku = k,
(5) E = (Ku · k(

√−2v ))∗2 if Gal(K/k) � V4, with K = k(
√

u,
√

v ),
(6) E = k(

√
v )∗2 if Gal(K/k) � D8, where K/k(

√
v ) is cyclic.

Proof. Note that C and Ce are k-isomorphic if, and only if, there exists ϕ ∈ Aut(C) defined
over k(

√
e ) such that σϕ = ±ϕ for all σ ∈ Gk . Indeed, since ψe = √

eI2 defines an isomorphism
between C and Ce, any other isomorphism is of the form ψeϕ, with ϕ ∈ Aut(C), and this isomor-
phism is defined over k when ϕ is as claimed. The result is now obtained by explicitly finding
the Galois action on Aut(C) for each of the possibilities. �

The results obtained allow us to give a parametrization of the set of k-isomorphism classes
of curves of genus 2 with group of automorphisms isomorphic to S̃4, or, equivalently, the set of
twists of the curve y2 = x5 − x over any field k.

Theorem 14. The set of k-isomorphism classes of curves of genus 2 with group of automorphisms
isomorphic to S̃4 is parameterized by the set of triples (K,Ku, e), where (K,Ku) is a pair of
principal fields and e ∈ k∗/(E∩k∗), with E as in Proposition 13. A representative corresponding
to some triple (K,Ku, e) is obtained by taking the genus 2 curve ey2 = f (x), with f (x) as in
Proposition 10.
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