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From Chebyshev’s method, new third-order multipoint iterations
are constructed with their efficiency close to that of Newton’s
method and the same region of accessibility.
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1. Introduction

In 1669, more than three centuries ago, Isaac Newton described what is now called Newton’s
method for finding numerical and algebraic solutions. The main features of the method are the
simplicity of its principle (based on linear approximation) and its efficiency. Newton explained his
method through the use of numerical examples and did not use the iterative expression that is
currently used. This latter was developed by Raphson in 1690 [1]. The method is now called Newton’s
method or the Newton–Raphson method.
Nowadays, Newton’s method goes on being the most used one-point iterative method for

approximating numerical solutions of nonlinear equations. This is due to the relation between several
factors, such as the number of necessary values of the function involved and its derivatives, the
computational cost and the speed of convergence (quadratic convergence).
When it comes to choosing a one-point iterative method for solving nonlinear equations, we have

in particular to take into account the speed of convergence and the computational cost. To do this, we
can use the efficiency index of an iterative method, which is a measure of its efficiency and is defined
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by the order of convergence to the inverse power of the number of computations of the function
involved and its derivatives [2]. In particular, this index is usually considered in the analysis of scalar
equations, where the computational costs of the successive derivatives are not very different.
For one-point iterative methods, it is known that the order of convergence is a natural number.

Moreover, one-point iterations of the form xn+1 = G(xn), n ≥ 0, with order of convergence q, depend
explicitly on the first q− 1 derivatives of F . This implies that their efficiency index is EI = q1/q, q ∈ N.
The best situation for this index is then obtained when q = 3, so third-order iterative methods are
frequently used to solve nonlinear scalar equations.
In this paper, we are interested in constructing, from the third-order Chebyshev method, some

multipoint iterations with cubical convergence and a better efficiency index than Newton’s method
in the scalar case, taking into account that their extension to nonlinear systems or Banach spaces does
not have the negative effects of third-order one-point iterative methods: the significant increase of
computational cost and the reduction in the region of accessibility, which consists of every starting
point from which iterative methods are convergent.
In Section 2, we study the efficiency of Newton’s method when it is used to solve nonlinear

systems, compare it with other iterative methods of order of convergence 3 and conclude that its
application is a better choice. This conclusion is deduced from the analysis of the following three
points: the evaluation of the function involved and its derivatives, the computational cost and the
region of accessibility. After that, from a modification of the technique presented in [3], we construct
in Section 3, from Chebyshev’s method, third-order multipoint iterative methods with efficiency
close to the efficiency of Newton’s method. In Section 4, we establish the convergence in Banach
spaces of the iterations constructed previously, so that a further generalization is then given. We
present a local convergence result, where the cubical convergence of the iterations is proved, and
a semilocal convergence result under conditions of Newton-Kantorovich type [4]. Once we have
obtained iterations with efficiency close to that of Newton’s method, we devote our attention to the
region of accessibility. So, we provide in Section 5 a family of hybrid iterative methods [5] which
combines Newton’s method as a predictor with the multipoint iterations constructed in the last
section as correctors. These iterations have the advantage of having the same region of accessibility
as Newton’s method. Related to this idea, in [6], Argyros is mixing the modified Newton method with
Newton’s method to expand the applicability of Newton’s method.
Finally, in Section 6, we give a practical result and illustrate how the new iterations can be used to

solve the following nonlinear integral equation of mixed Hammerstein type:

x(s) = 1+
1
2

∫ 1

0
G(s, t) x(t)2 dt, s ∈ [0, 1], (1)

where x ∈ C[0, 1], t ∈ [0, 1], and the kernel G is G(s, t) =
{
(1− s)t, t ≤ s,
s(1− t), s ≤ t. Solving a nonlinear

integral equation of mixed Hammerstein type is illustrated using the dynamic model of a chemical
reactor (see [7]).

2. Preliminary analysis

When finding successive approximations to the numerical solution of an equation F(x) = 0,
Newton’s method is also called the tangent method and the successive approximations are given by
the recurrence formula,{x0 given,

F ′(xn) δn = −F(xn), n ≥ 0,
xn+1 = xn + δn.

(2)

In the scalar case, it is known that the efficiency index of iterative methods is EI = q1/d, where q is
the order of convergence and d the number of new computations of F and its derivatives per iteration,
and represents a good measure of the efficiency of the iterative method, [2].
For one-point iterative methods of order d, there is imposed in [2] the restriction of depending

explicitly on the first d − 1 derivatives of F . Moreover, for these kinds of methods, we know that
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d = q (q ∈ N) and EI = q1/q, so the best situation is obtained for q = 3, namely, for third-order one-
point iterative methods. The best known one-point iterative methods are Chebyshev’s method [8],
Halley’s method [9] and the super-Halley method [10]. However, for nonlinear systems, third-order
methods are not considered as themost favourable; rather Newton’smethod is, although its efficiency
index EI = 21/2 is worse. This is due to the fact that the efficiency index does not consider other
determinants.
For example, if we consider the case of solving nonlinear systems of dimension n, F(x1, x2, . . . , xn)

= 0,where F : Ω ⊆ Rn → Rn is a nonlinear function and F ≡ (F1, F2, . . . , Fn)with Fi : Ω ⊆ Rn → R,
i = 1, 2, . . . , n, it is necessary to compute the n functions Fi (i = 1, 2, . . . , n) for computing F .
Moreover, for x = (x1, x2, . . . , xn), the computation of F ′,

F ′(x) =


(F1)1(x) (F1)2(x) · · · (F1)n(x)
(F2)1(x) (F2)2(x) · · · (F2)n(x)

...
...

. . .
...

(Fn)1(x) (Fn)2(x) · · · (Fn)n(x)

 ,
requires the computations of the n2 partial derivatives of first order, and the computation of F ′′,

F ′′(x) =


(F1)11(x) (F1)12(x) · · · (F1)1n(x) (Fn)11(x) (Fn)12(x) · · · (Fn)1n(x)
(F1)21(x) (F1)22(x) · · · (F1)2n(x) (Fn)21(x) (Fn)22(x) · · · (Fn)2n(x)

...
...

. . .
... · · ·

...
...

. . .
...

(F1)n1(x) (F1)n2(x) · · · (F1)nn(x) (Fn)n1(x) (Fn)n2(x) · · · (Fn)nn(x)

 ,
requires the computations of the n2(n + 1)/2 partial derivatives of second order. In addition, the
application of Newton’s method to solve the nonlinear system of n equations

F1(x1, x2, . . . , xn)= 0,
F2(x1, x2, . . . , xn)= 0,

...
Fn(x1, x2, . . . , xn)= 0,

(3)

requires n2 + n evaluations of functions per iteration, whereas a one-point third-order method, for
example Chebyshev’s method (which is possibly the most used, since its algorithm is the simplest),

x0 given,
F ′(xn) δn = −F(xn), n ≥ 0,
F ′(xn) γn = (−1/2) F ′′(xn) δ2n,
xn+1 = xn + δn + γn,

requires n2(n + 1)/2 evaluations of functions per iteration more than Newton’s method. Therefore,
for solving (3) with n ≥ 2, it is better to use Newton’s method than Chebyshev’s method; see Fig. 1.
Another important point to bear in mind when choosing an iterative method is the number

of operations (products and divisions) needed to apply it, which we define in this paper as the
computational cost of doing an iteration of the algorithm. So, Newton’s method requires (n3 + 6n2 −
4n)/3 operations to do an iteration (see (2)), whereas Chebyshev’s method requires us to do the same
operations plus obtaining the products (−1/2) F ′′(xn) δ2n (n

3
+ n2 + n operations) and the solution of

the linear system F ′(xn) γn = (−1/2) F ′′(xn) δ2n (2n
2
−n operations). Consequently, the computational

cost per iteration of Chebyshev’smethod is (4n3+15n2−4n)/3, which is higher than that of Newton’s
method. In consequence, for solving (3), it is clear that the application of Newton’s method is a better
option than that of Chebyshev’s method; see Table 1.
From the above, our interest is focused on constructing iterations from a modification of

Chebyshev’s method which reduces the number of evaluations of functions and the computational
cost.
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Fig. 1. Efficiency indices of Newton’s and Chebyshev’smethods for nonlinear systems, respectively 21/(n2+n) and 32/(n3+3n2+2n) .

Table 1
Number of evaluations of functions and computational cost per iteration when Newton’s and Chebyshev’s method are applied
to solve nonlinear systems (10, 50 and 100 equations).

n Newton’s method Chebyshev’s method
n2 + n (n3 + 6n2 − 4n)/3 (n3 + 3n2 + 2n)/2 (4n3 + 15n2 − 4n)/3

10 110 520 660 1820
50 2550 46600 66300 179100
100 10100 353200 515100 1383200

Firstly, from Chebyshev’s method, Hernández obtains in [3] the following family of third-order
multipoint iterations which do not require the computation of F ′′:

x0 and p ∈ (0, 1] given,
F ′(xn) δn = −F(xn), n ≥ 0,
zn = xn + p δn,

F ′(xn) γ̂n = −
1
2p
(F ′(zn)− F ′(xn)) δn,

xn+1 = xn + δn + γ̂n.

(4)

To obtain (4), the expression F ′′(xn) δ2n of Chebyshev’s method is approximated by the expression
(1/p)(F ′(zn) − F ′(xn)) δn, so the number of evaluations of functions and the computational cost per
iteration are reduced respectively to 2n2+n and (n3+15n2−n)/3. Therefore, the choice of iterations
(4) to solve nonlinear system (3) is better than that of Chebyshev’s method, although worse than that
of Newton’s method. See Table 2 and Fig. 2.
Secondly, by using a slight modification of the technique used in [3] by Hernández, we obtain

in the following section a family of third-order iterations which reduces even more the number of
evaluations of functions and the computational cost, such that these values are close to the ones of
Newton’s method.
On the other hand, when third-order methods are applied to solve nonlinear equations, it is

important to note that the region of accessibility is reduced with respect to Newton’s method. In
practice, we can see this with the attraction basins (the set of points in the space such that initial
conditions chosen in the set dynamically evolve to a particular attractor [11,12]) of iterative methods
when they are applied to solve a complex equation F(z) = 0, where F : C → C and z ∈ C,



J.A. Ezquerro, M.A. Hernández / Journal of Complexity 25 (2009) 343–361 347

4 6 8 10
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Fig. 2. Efficiency indices of Newton’s and Chebyshev’s methods and iterations (4) for nonlinear systems, respectively 21/(n2+n) ,
32/(n

3
+3n2+2n) and 31/(2n

2
+n) .

Table 2
Number of evaluations of functions and computational cost per iteration when iterations (4) are applied to solve nonlinear
systems (10, 50 and 100 equations).

n Iterations (4)
2n2 + n (n3 + 15n2 − n)/3

10 210 830
50 5050 54150
100 20100 383300

and we are interested in identifying the attraction basin for two solutions z∗ and z∗∗ [12]. To do
this, we choose for example Newton’s method and a particular method (4) for solving the complex
equation F(z) = sin z − 1/3 = 0, and show the fractal pictures that they generate to approximate
z∗ = arctan(1/2

√
2) = 0.33983 . . . and z∗∗ = π − arctan(1/2

√
2) = 2.80176 . . . . This also allows

us to compare the regions of accessibility of the two methods.
We take a rectangle D ⊆ C and iterations starting at ‘‘every’’ z0 ∈ D. In practice, a grid of 512×512

points in D is considered and these points are chosen as z0. The rectangle used is [0, 3] × [−2.5, 2.5],
which contains the two zeros. The numericalmethods starting at a point in the rectangle can converge
to some of the zeros or, eventually, diverge.
In all the cases, the tolerance 10−3 and amaximumof 25 iterations are used. Ifwehave not obtained

the desired tolerance with 25 iterations, we do not continue and we decide that the iterative method
starting at z0 does not converge to any zero.
The rectangles mentioned above and corresponding to the two iterative methods when they are

applied to approximate the solutions z∗ and z∗∗ of F(z) = sin z − 1/3 = 0 are shown in Figs. 3 and
4. The strategy taken into account is the following. A colour is assigned to each basin of attraction of
a zero. The colour is made lighter or darker according to the number of iterations needed to reach the
root with the fixed precision required. Finally, if the iteration does not converge, the colour black is
used. For more strategies, the reader can see [12] and the references appearing there. In particular,
to obtain the pictures, the cyan and magenta colours have been assigned for the attraction basins of
the two zeros. We mark with black the points of the rectangle for which the corresponding iterations
starting at themdonot reach any rootwith tolerance 10−3 in amaximumof 25 iterations. The graphics
shown here have been generated with Mathematica 5.1 [13].
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Fig. 3. Newton’s method.
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Fig. 4. Method (4) with p = 1.

If we observe the behaviour of the two methods, we see that method (4) with p = 1 is more
demanding with respect to the starting point than Newton’s method (see the black colour). We can
also observe that there exist lighter areas for method (4) with p = 1. These observations are as a
consequence of the higher speed of convergence of the lastmethod (cubical convergence) as compared
to Newton’s method (quadratic convergence), and consequently, it is more difficult to locate starting
points from which method (4) with p = 1 converges.
One goal will then be to construct, from iterations (4), new iterations that converge when they

start at the same points as Newton’s method. Firstly, we construct in the next section some iterations
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Table 3
Number of evaluations of functions and computational cost per iteration when iterations (5) are applied to solve nonlinear
systems (10, 50 and 100 equations).

n Iterations (5)
n2 + 2n (n3 + 12n2 + 2n)/3

10 120 740
50 2600 51700
100 10200 373400

from Chebyshev’s method that reduce the number of necessary values of the function involved and
the computational cost, while preserving cubical convergence. Later, in Section 5, we define the new
iterations as hybrid iterative methods, so that they have the same region of accessibility as Newton’s
method.

3. A modification of Chebyshev’s method

To construct then iterations from Chebyshev’s method we use a slight modification of the
technique developed in [3] to obtain iterations (4). The idea is now to approximate the expression
F ′′(xn)δ2n in Chebyshev’s algorithm by means of only combinations of F in different points, so that
F ′′ is not used and F ′ is only evaluated in xn. To do this, we consider yn = xn − [F ′(xn)]−1F(xn),
zn = xn + p(yn − xn), p ∈ (0, 1] and Taylor’s formula in the following way:

F(zn) = F(xn)+ pF ′(xn)(yn − xn)+
p2

2
F ′′(xn)(yn − xn)2 +

1
2

∫ zn

xn
F ′′′(x)(zn − x)2 dx,

so that

F(zn)− F(xn)− pF ′(xn)(yn − xn) =
p2

2
F ′′(xn)(yn − xn)2 +

1
2

∫ zn

xn
F ′′′(x)(zn − x)2 dx.

In consequence, since yn = xn − [F ′(xn)]−1F(xn), we can consider the following approximation:

F ′′(xn)(yn − xn)2 ≈
2
p2
((p− 1)F(xn)+ F(zn)),

and Chebyshev’s method is now modified as

x0 and p ∈ (0, 1] given,
F ′(xn) δn = −F(xn), n ≥ 0,
zn = xn + p δn,

F ′(xn) γ̃n = −
1
p2
((p− 1)F(xn)+ F(zn)) ,

xn+1 = xn + δn + γ̃n.

(5)

With this modification of Chebyshev’s method, we have reduced the computational cost from
n3+n2+n operations for doing (−1/2) F ′′(xn) δ2n to 2n operations for doing (−1/p

2)((p−1)F(xn)+F
(zn)), which is a considerable reduction. Moreover, observe that the efficiency is also improved, since
the number of evaluations of functions per iteration is also reduced from (n3+3n2+2n)/2 to n2+2n;
see Table 3.
Observe in Fig. 5 that the efficiency of Newton’s method is now improved by iterations (5), even

for high values of n. Consequently, to solve nonlinear system (3), method (5) is a better choice, since
the number of computations of functions is similar.

Remark 1. If we consider iterative methods with memory, the efficiency index could be improved.
Observe what happens in the one-dimensional case when the secant method, the most well known
iterative method with memory, is applied for solving nonlinear equations. The secant method has
better efficiency index than Newton’s method and iterations (5), (1 +

√
5)/2 as opposed to

√
2
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Fig. 5. Efficiency indices of Newton’s method and iterations (5) for nonlinear systems, respectively 21/(n2+n) and 31/(n2+2n) .
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Fig. 6. Method (5) with p = (
√
5− 1)/2.

and 3√3 respectively; so the efficiency index of iterations (5) lies between the efficiency indices of
Newton’s method and the secant method. Then, an interesting idea could be developed in future:
we can approximate F ′(xn) at each step of iterations (5) by a divided difference (exactly as we do in
Newton’s method to obtain the secant method) and construct new iterative methods with memory
(as in the secant method) where only the evaluation of a new function is needed at each step.

On the other hand, if we now consider the problem of the region of accessibility for iterations (5),
we can see in Figs. 3 and 6 that iteration (5) with p = (

√
5−1)/2 is still more demandingwith respect

to the starting points than Newton’s method when we apply it to approximate the solutions z∗ and
z∗∗ of the complex equation F(z) = sin z − 1/3 = 0. This problem is studied and solved in Section 5.
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4. Convergence analysis of iterations (5)

We establish in this section the convergence of iterations (5). In a more general situation, we
consider

F(x) = 0, (6)

where F : Ω ⊆ X → Y is a nonlinear operator defined on a non-empty open convex subset Ω of a
Banach space X with values in a Banach space Y , so that if certain conditions on the nonlinear operator
F are required, different problems can be solved: integral equations, boundary value problems,
systems of nonlinear equations, etc.
We begin with a local convergence result, where we prove that the order of convergence is at least

3. Next, we analyse the semilocal convergence of (5), which is now written as
x0 ∈ Ω,
yn = xn − ΓnF(xn),
zn = xn + p (yn − xn), p ∈ (0, 1],

xn+1 = xn −
1
p2
Γn
(
(p2 + p− 1)F(xn)+ F(zn)

)
, n ≥ 0,

(7)

where Γn = [F ′(xn)]−1, under mild differentiability conditions. In particular, we prove that iterations
(7) converge under the same conditions as Newton’s method:{

x0 ∈ Ω,
xn+1 = xn − [F ′(xn)]−1F(xn), n ≥ 0.

4.1. Local convergence

We first see that iterations (7) have order of convergence at least 3. If en = xn − x∗ is the error in
the n-th iterate, the relation en+1 = Ce

q
n+O

(
‖en‖q+1

)
, where C ∈ R, is called the error equation [14].

By substituting en = xn − x∗, for all n, in (7) and simplifying, we obtain the error equation for (7). The
given value of q is called the order of method (7) [14].

Theorem 4.1. Suppose that F is a sufficiently differentiable operator inΩ . If F has a simple root x∗ ∈ Ω ,
[F ′(x)]−1 exists in a neighborhood of x∗ and x0 is sufficiently close to x∗, then iterations (7) have order of
convergence at least 3.

Proof. From Taylor’s formula

0 = F(x∗) = F(xn)− F ′(xn)en +
1
2!
F ′′(xn)e2n −

1
3!
F ′′′(xn)e3n + O

(
‖en‖4

)
,

where en = xn − x∗, we obtain

ΓnF(xn) = en −
1
2
ΓnF ′′(xn)e2n +

1
6
ΓnF ′′′(xn)e3n + O

(
‖en‖4

)
.

Moreover, since zn − xn = −pΓnF(xn), it follows that

zn − xn = −p en +
p
2
ΓnF ′′(xn)e2n −

p
6
ΓnF ′′′(xn)e3n + O

(
‖en‖4

)
and, taking again into account Taylor’s formula, we have

F(zn) = F(xn)+ F ′(xn)(zn − xn)+
1
2
F ′′(xn)(zn − xn)2 +

1
6
F ′′′(xn)(zn − xn)3 + O

(
‖en‖4

)
= (1− p)F ′(xn)en +

1
2
(p2 + p− 1)F ′′(xn)e2n +

1
6
(1− p− p3)F ′′′(xn)e3n

−
p2

2
F ′′(xn)ΓnF ′′(xn)e3n + O

(
‖en‖4

)
.
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Therefore,

ΓnF(zn) = (1− p)en +
1
2
(p2 + p− 1)ΓnF ′′(xn)e2n

+
1
2

(
1− p− p3

3
ΓnF ′′′(xn)− p2(ΓnF ′′(xn))2

)
e3n + O

(
‖en‖4

)
.

In consequence, from (7), it follows that

en+1 = xn+1 − x∗ = en − Γn

(
p2 + p− 1
p2

F(xn)+
1
p2
F(zn)

)
=
1
6

(
(p− 1)ΓnF ′′′(xn)+ 3(ΓnF ′′(xn))2

)
e3n + O

(
‖en‖4

)
,

and iterations (7) have therefore order of convergence at least 3. �

4.2. Semilocal convergence

When we study the convergence of an iterative method, there are three types of convergence that
can be analysed: local, semilocal and global. The analysis of convergence presented here is focused
on the semilocal convergence, where two kinds of conditions are required: conditions on the starting
point and conditions on the operator involved.
Now, we give a semilocal convergence result for iterations (7), where mild differentiability

conditions are required. In particular, we study the semilocal convergence of (7) under the same
conditions as were used for Newton’s method in [15], where F ′ is Lipschitz continuous inΩ . Note that
third-order iterative methods are generally studied under more demanding semilocal convergence
conditions (see, for example, [16,9,3]).
So, we suppose that there exists the operator Γ0 = [F ′(x0)]−1 ∈ L(Y , X), for some x0 ∈ Ω , where

L(Y , X) is the set of bounded linear operators from the Banach space Y into the Banach space X . We
also suppose the following:
(i) ‖Γ0‖ ≤ β ,
(ii) ‖Γ0F(x0)‖ ≤ η,
(iii) ‖F ′(x)− F ′(y)‖ ≤ K‖x− y‖, for all x, y ∈ Ω .

And, from now on, we use the notation B(x, ρ) = {y ∈ X; ‖y − x‖ ≤ ρ} and B(x, ρ) = {y ∈
X; ‖y− x‖ < ρ}, where X is a Banach space.
Firstly, we guarantee the semilocal convergence of Newton’s method under conditions (i)–(iii).

Theorem 4.2 (See [17]). Let X and Y be two Banach spaces and F : Ω ⊆ X → Y an operator that is once
Fréchet differentiable in an open convex domainΩ . Assume (i)–(iii). If B(x0, r) ⊆ Ω , where r = 2(1−a)

2−3a η

and a = Kβη < 1/2, then Eq. (6) has a solution x∗, and Newton’s method converges to x∗ and has R-order
of convergence at least 2.

After that, we are interested in proving the semilocal convergence of iterations (7) under the same
conditions, (i)–(iii), as for Newton’s method. In view of Theorem 4.2, we consider R = (1+a0/2) η

1−f (a0)g(a0)
,

where

f (t) =
2

2− 2t − t2
, g(t) =

t
8
(8+ 4t + t2), (8)

such that B(x0, R) ⊆ Ω , and define Kβη = a0. Then ‖y0− x0‖ ≤ η and ‖z0− x0‖ ≤ pη, so y0, z0 ∈ Ω .
Since

F(z0) = (1− p)F(x0)+ p
∫ 1

0

[
F ′(x0 + pt(y0 − x0))− F ′(x0)

]
(y0 − x0) dt,

as a consequence of Taylor’s formula, we have, provided that x1 ∈ Ω and a0 < σ1 = 0.4111 . . .,
where σ1 is the root of the real equation f (a0)g(a0)− 1 = 0,
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‖x1 − y0‖ ≤
K
2
‖Γ0‖‖y0 − x0‖2 ≤

a0
2
‖y0 − x0‖,

‖x1 − x0‖ ≤ ‖x1 − y0‖ + ‖y0 − x0‖ ≤ (1+ a0/2)‖y0 − x0‖ < R.

Therefore x1 ∈ B(x0, R) if a0 < σ1. Note that the value of R is later deduced.
On the other hand, if a0 <

√
3 − 1, it follows that ‖I − Γ0F ′(x1)‖ < 1, and consequently

Γ1 = [F ′(x1)]−1 exists, by the Banach lemma on invertible operators [4], and ‖Γ1‖ ≤ f (a0)‖Γ0‖.
Therefore, y1 and z1 are well-defined. Moreover, y1, z1 ∈ Ω .
Furthermore, from Taylor’s formulas,

F(x1) =
1
p

∫ 1

0

[
F ′(x0)− F ′(x0 + pt(y0 − x0))

]
(y0 − x0) dt

+

∫ 1

0

[
F ′(x0 + pt(x1 − x0))− F ′(x0)

]
(x1 − x0) dt,

F(z1) = (1− p)F(x1)+ p
∫ 1

0

[
F ′(x1 + pt(y1 − x1))− F ′(x1)

]
(y1 − x1) dt,

we obtain

‖F(x1)‖ ≤
K
8
(8+ 4a0 + a20)‖y0 − x0‖

2,

‖y1 − x1‖ ≤ ‖Γ1‖‖F(x1)‖ ≤ f (a0)g(a0)‖y0 − x0‖,
K‖Γ1‖‖y1 − x1‖ ≤ a0f (a0)2g(a0),

‖x2 − y1‖ ≤
a0
2
f (a0)2g(a0)‖y1 − x1‖,

‖x2 − x1‖ ≤ ‖x2 − y1‖ + ‖y1 − x1‖ ≤
(
1+

a0
2
f (a0)2g(a0)

)
‖y1 − x1‖,

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ (1+ a0/2)(1+ f (a0)g(a0))‖y0 − x0‖ < R

and x2 ∈ Ω , provided that a0 < σ2 = 0.3266 . . ., where σ2 is the smallest positive root of the real
equation f (a0)2g(a0)− 1 = 0.
Besides, if a0 < σ2, then ‖I − Γ1F ′(x2)‖ < 1, Γ2 = [F ′(x2)]−1 exists, by the Banach lemma on

invertible operators, and ‖Γ2‖ ≤ f (a0f (a0)2g(a0))‖Γ1‖. After that, we can deduce y2, z2, x3 ∈ Ω

from an analogous procedure.
Now, we define a0f (a0)2g(a0) = a1 and define the real sequence

an+1 = anf (an)2g(an), n ≥ 0, (9)

which is decreasing and such that an(1+ an/2) < 1, for all n ≥ 0, provided that a0 < σ2. Moreover, if
yn, zn, xn+1 ∈ Ω , this real sequence satisfies the following system of recurrence relations, fromwhich
we can guarantee that sequence (7) is well-defined. To prove them, we follow a similar method to the
above and then invoke the induction hypothesis.

Lemma 4.3. Let f and g be the two real functions defined in (8). If a0 < σ2 = 0.3266 . . ., the following
items are satisfied for all n ≥ 1:

[I] Γn = [F ′(xn)]−1 exists and ‖Γn‖ ≤ f (an−1)‖Γn−1‖,
[II] ‖yn − xn‖ ≤ f (an−1)g(an−1)‖yn−1 − xn−1‖ ≤ (f (a0)g(a0))n‖y0 − x0‖ < η,
[III] K‖Γn‖‖yn − xn‖ ≤ an,
[IV] ‖xn+1 − yn‖ ≤ an

2 ‖yn − xn‖,
[V] ‖xn+1 − xn‖ ≤

(
1+ an

2

)
‖yn − xn‖,

[VI] ‖xn+1 − x0‖ ≤
(
1+ a0

2

) 1−(f (a0)g(a0))n+1
1−f (a0)g(a0)

‖y0 − x0‖ < R, where R =
(1+a0/2) η
1−f (a0)g(a0)

.

Next, the convergence of iterations (7) is easily guaranteed from (i)–(iii), as we can see in the
following theorem.
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Theorem 4.4. Let F : Ω ⊆ X → Y be a once-differentiable Fréchet operator on a non-empty open convex
domainΩ of a Banach space X with values in a Banach space Y .We assume that there existsΓ0 ∈ L(Y , X),
x0 ∈ Ω , and (i)–(iii). If a0 < σ2 = 0.3266 . . . and B(x0, R) ⊆ Ω , where R =

(1+a0/2) η
1−f (a0)g(a0)

; then sequence

(7) is well-defined, is contained in B(x0, R) and converges to a solution x∗ of (6) in the ball B(x0, R). Besides,
the solution x∗ is unique in B

(
x0, 2Kβ − R

)
∩Ω if R < 2/(Kβ).

Proof. Firstly, we see that sequence (7) is well-defined. Observe

‖yn − xn‖ ≤ f (an−1)g(an−1)‖yn−1 − xn−1‖ ≤ · · · ≤

(
n−1∏
i=0

f (ai)g(ai)

)
‖y0 − x0‖

≤ (f (a0)g(a0))n ‖y0 − x0‖

as a consequence of recurrence relation [II] of Lemma 4.3. Therefore, form ≥ 1, we have

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + ‖xn+m−1 − xn+m−2‖ + · · · + ‖xn+1 − xn‖

≤

(
1+

an+m−1
2

)
‖yn+m−1 − xn+m−1‖ +

(
1+

an+m−2
2

)
‖yn+m−2 − xn+m−2‖

+ · · · +

(
1+

an
2

)
‖yn − xn‖

≤

(
1+

an
2

) n+m−1∑
j=n

(
j−1∏
i=0

f (ai)g(ai)

)
‖y0 − x0‖

≤

(
1+

a0
2

)
(f (a0)g(a0))n

1− (f (a0)g(a0))m

1− f (a0)g(a0)
η. (10)

If n = 0 in (10), it follows that

‖xm − x0‖ ≤
(
1+

a0
2

) 1− (f (a0)g(a0))m
1− f (a0)g(a0)

η < R.

Then, xm ∈ B(x0, R), for all m ≥ 1. Similarly, ym, zm ∈ B(x0, R), for all m ≥ 0. In consequence,
xm, ym, zm ∈ Ω , form ≥ 1.
Note that {xn} is a Cauchy sequence, as a consequence of (10) and a0 < σ2. Then, {xn} converges

to x∗, which is a solution of (6). Indeed, by letting n → ∞, we have ‖ΓnF(xn)‖ → 0 and, since
‖F(xn)‖ ≤ ‖F ′(xn)‖‖ΓnF(xn)‖ and the sequence {‖F ′(xn)‖} is bounded, we have ‖F(xn)‖ → 0 and, by
the continuity of F , it follows that F(x∗) = 0.
Finally, if we suppose that there exists another solution y∗ of (6) in B

(
x0, 2Kβ − R

)
∩Ω , we have

0 = Γ0(F(y∗)− F(x∗)) =
∫ 1

0
Γ0F ′(x∗ + t(y∗ − x∗)) dt (y∗ − x∗).

But, since

‖I − T‖ ≤ ‖Γ0‖
∫ 1

0
‖F ′(x∗ + t(y∗ − x∗))− F ′(x0)‖ dt ≤ Kβ

∫ 1

0
‖x0 − (x∗ + t(y∗ − x∗))‖ dt

≤ Kβ
∫ 1

0

(
t‖y∗ − x0‖ + (1− t)‖x∗ − x0‖

)
dt < 1,

where T = Γ0
∫ 1
0 F
′(x∗+ t(y∗− x∗)) dt , we obtain that the operator T is invertible, and consequently

y∗ = x∗. �

5. Description of the new iterations

We now pay attention to the conditions that starting points of iteration (7) must satisfy to
guarantee the convergence of (7) (see Theorem 4.4). We then observe the region of accessibility
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Fig. 7. Newton’s method.

of (7). If we consider the complex equation F(z) = sin z − 1/3 = 0 and the particular version of
(7) given by (7) with p = (

√
5− 1)/2,

x0 ∈ Ω,
yn = xn − ΓnF(xn),

xn+1 = xn −
3+
√
5

2
ΓnF

(
xn +

√
5− 1
2

(yn − xn)

)
, n ≥ 0,

(11)

which is also presented in [18] for the scalar case, we can see the behaviour of (11) in Fig. 6. Observe
that iteration (11) is also more demanding than Newton’s method with respect to starting points (see
Figs. 3 and 6), as a consequence of its higher speed of convergence. Consequently, it is more difficult
to locate starting points for method (11) than for Newton’s method.
On the other hand, it is clear that the condition a0 < σ2 = 0.3266 . . . required to guarantee the

convergence of iterations (7) in Theorem 4.4 is more demanding than the one required for Newton’s
method, a0 < 1/2, under the same general convergence conditions (i)–(iii). Therefore, the application
of iterations (7) is more restrictive than the application of Newton’s method. To illustrate this, we can
respectively see in Figs. 7 and 8 the regions of accessibility of Newton’s method and method (11),
when they are applied to approximate the solutions z∗ and z∗∗ of F(z) = sin z − 1/3 = 0. Observe
that the domain of starting points for Newton’s method is a little bigger than for method (11) (see the
size of the regions of convergence).
Since the main goal is to construct iterative methods from iterations (7) that converge when they

start at the same points as Newton’s method, we define the following iterations:

{
x0 ∈ Ω,
xn = xn−1 − Γn−1F(xn−1), n = 1, 2, . . . ,N0,
x̄0 = xN0 ,
ȳk−1 = x̄k−1 − [F ′(x̄k−1)]−1F(x̄k−1),
z̄k−1 = x̄k−1 + p(ȳk−1 − x̄k−1), p ∈ (0, 1],

x̄k = x̄k−1 −
1
p2
[F ′(x̄k−1)]−1

(
(p2 + p− 1)F(x̄k−1)+ F(z̄k−1)

)
, k ≥ 1,

(12)
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Fig. 8. Method (11).

where x0 is such that a = Kβη < 1/2 and x̄0 = xN0 such that a0 = K β̃η̃ < σ2 = 0.3266 . . . with
β̃ ≥ ‖[F ′(x̄0)]−1‖ and η̃ ≥ ‖[F ′(x̄0)]−1F(x̄0)‖. In this case, we can apply Newton’s method for a finite
number of steps N0, provided that the condition a < 1/2 is satisfied, until the condition a0 < σ2 is
satisfied for x̄0 = xN0 , and then apply iterations (7) to accelerate the convergence. To do this, we have
to guarantee the existence of N0.

5.1. Semilocal convergence of iterations (12)

We have seen that Newton’s method andmethod (7) converge under the same conditions (i)–(iii).
The convergence of both methods is guaranteed as a consequence of the fact that both sequences are
Cauchy sequences. We use the same argument to prove the semilocal convergence of iterations (12).
We suppose that the initial iterate x0 is such that a = Kβη ∈ [σ2, 1/2) and we look for the

existence of xN0 = x̄0, N0 ∈ N, such that a0 ∈ (0, σ2), where a0 = K β̃η̃, β̃ ≥ ‖[F ′(x̄0)]−1‖ and
η̃ ≥ ‖[F ′(x̄0)]−1F(x̄0)‖.
Starting from α0 = a, we define the scalar sequence

αn+1 =
α2n

2(1− αn)2
, n ≥ 0,

and, for n ≥ 1, we construct the system of recurrence relations (see [17])

‖Γn‖ ≤
1

1− αn−1
‖Γn−1‖,

‖xn+1 − xn‖ ≤
αn−1

2(1− αn−1)
‖xn − xn−1‖ ≤ δn‖Γ0F(x0)‖,

‖xn+1 − x0‖ ≤
1− δn+1

1− δ
‖Γ0F(x0)‖ < r,

where δ = a
2(1−a) and r =

2(1−a)
2−3a η.

The strict decreasing of the positive real sequence {αn} guarantees the existence of the term αN0
such that αN0 < σ2.
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Now, from x̄0 = xN0 ,

K‖[F ′(x̄0)]−1‖‖[F ′(x̄0)]−1F(x̄0)‖ ≤ K β̃η̃,

we define the initial parameter a0 = K β̃η̃ for (7), which starts at x̄0 = xN0 , where xN0 is the last
iteration obtained by Newton’s method. Next, we define the real sequence (9) and construct the
corresponding system of recurrence relations given in Lemma 4.3 so that the convergence of the
sequence given by (7) is guaranteed from the strict decreasing of (9). In consequence, we can apply
iterations (12) to approximate a solution of Eq. (6), starting at the same iterate x0 as Newton’smethod,
since

K‖ΓN0‖‖ΓN0F(xN0)‖ ≤ αN0 = a0 < σ2,

so xN0 = x̄0 can be chosen to start iterations (7) and the convergence of iterations (12) is then
guaranteed by Theorem 4.4.
Since the sequence given by (12) is well-defined, we only have to prove that this sequence is a

Cauchy sequence. To do this, we rewrite it as

wn =

{
xn, if n ≤ N0,
x̄n−N0 , if n > N0.

Theorem 5.1. Let X and Y be two Banach spaces and F : Ω ⊆ X → Y an operator that is once Fréchet
differentiable on a non-empty open convex domainΩ . Let x0 ∈ Ω and (i)–(iii) be satisfied. Suppose that
a < 1/2 and B(x0, r + R) ⊆ Ω . Then, the sequence {wn}, which starts at w0, converges to a solution
x∗ of (6). Moreover, wn, x∗ ∈ B(x0, r + R). Furthermore, x∗ is unique in B

(
x0, 2Kβ − (r + R)

)
∩ Ω if

r + R < 2/(Kβ).

Proof. From the above, it is clear that an N0 exists. Besides, wi ∈ Ω , for i = 0, 1, . . . ,N0. Indeed,
since wi = xi (i = 0, 1, . . . ,N0) are iterates of Newton’s method, then ‖wi − x0‖ < r ≤ r + R
(i = 1, 2, . . . ,N0) andwi ∈ Ω , for i = 0, 1, . . . ,N0.
After that, we have thatwN0 = x̄0 = xN0 andwi (i > N0) are iterates of (7), so ‖wi −wN0‖ < R, for

i > N0. In consequence, ‖wi − x0‖ ≤ ‖wi − wN0‖ + ‖wN0 − x0‖ < r + R (i > N0) and wi ∈ Ω , for
i > N0. Therefore, the sequence {wn} is well-defined.
The fact that {wn} is a Cauchy sequence in Ω follows immediately, since {wn}n≥N0 is given by

(7), which is a Cauchy sequence (see Theorem 4.4). Consequently, limnwn = x∗, x∗ ∈ B(x0, R) ⊂
B(x0, r + R) and F(x∗) = 0.
Finally, the uniqueness of the solution x∗ in B

(
x0, 2Kβ − (r + R)

)
∩ Ω follows as in Theorem 4.4.

�

Remark 2. Observe that the domain of starting points is extended in Theorem 5.1 compared to
Theorem 4.4, so domains of existence and uniqueness of solutions can be given by Theorem 5.1 which
cannot be given by Theorem 4.4.

Remark 3. Notice that iterations (12) have order of convergence at least 2 until iterationN0 and order
of convergence at least 3 from iteration N0 + 1.

If we consider again the previous complex equation, F(z) = sin z − 1/3 = 0, we can see in Figs. 9
and 10 the regions of accessibility of method (12) with p = (

√
5 − 1)/2 when condition a < 1/2 is

satisfied (Fig. 10) or not satisfied (Fig. 9). Observe that the domain of starting points is the same as for
Newton’s method, but the colour intensity is different, lighter or darker, according to the number of
iterations needed to reach the roots. There are lighter areas for method (12) with p = (

√
5− 1)/2 as

a consequence of the higher speed of convergence.
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Fig. 9. Method (12) with p =
√
5−1
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Fig. 10. Method (12) with p =
√
5−1
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6. Application of the new iterations

Note that if the conditions of Theorem 5.1 are verified, then iterations (12) can be applied, since N0
always exists. The goal is now to estimate a priori the value ofN0, which improves the use of iterations
(12), since the verification of a0 < σ2 = 0.3266 . . . is saved in every step.

Theorem 6.1. Under the general hypotheses of Theorem 5.1, we suppose a ∈ [σ2, 1/2) for some x0 ∈ Ω
which satisfies (i) and (ii). Set x̄0 = xN0 with N0 = 1+

[
ln σ2−ln a

ln a−ln(2(1−a)2)

]
, and [t] denoting the integer part

of the real number t. Then, x̄0 is such that the condition a0 < σ2 holds.
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Table 4
Nodes and weights for the Gauss–Legendre formula.

i ti wi i ti wi

1 0.019855. . . 0.050614. . . 5 0.591717. . . 0.181342. . .
2 0.101667. . . 0.111191. . . 6 0.762766. . . 0.156853. . .
3 0.237234. . . 0.156853. . . 7 0.898333. . . 0.111191. . .
4 0.408283. . . 0.181342. . . 8 0.980145. . . 0.050614. . .

Proof. We take into account that the above-mentioned ideas were carried out where we guarantee
that iterations (12) are well-defined, since there always exists N0 ∈ N such that iterations (7) can be
applied starting at x̄0 = xN0 . On the other hand,

αN0 =
α2N0−1

2(1− αN0−1)2
= · · · = α0

N0−1∏
i=0

αi

2(1− αi)2
< a

(
a

2(1− a)2

)N0
,

since the sequence {αn} is decreasing and α0 = a. If a
(

a
2(1−a)2

)N0
< σ2, then xN0 is a good starting

point for iterations (7). In consequence, if

N0 >
ln σ2 − ln a

ln a− ln(2(1− a)2)
,

the theorem follows. �

If we now take into account the nonlinear integral equation of mixed Hammerstein type (1), we
see in the following that iterations (4) cannot be applied to solve Eq. (1), but iterations (12) can.
First, we discretize (1) to transform it into a finite dimensional problem. This procedure consists of

approximating the integral appearing in (1) by a numerical quadrature formula. To obtain a numerical
solution, we use the Gauss–Legendre formula to approximate an integral∫ 1

0
h(t) dt '

n∑
i=1

wih(ti),

where the nodes ti and the weightswi are determined; in particular, see Table 4 for n = 8.
Ifwe denote the approximation of x(tj) by xj (j = 1, 2, . . . , 8), (1) is nowequivalent to the following

nonlinear system of equations:

xj = 1+
1
2

8∑
k=1

mjk x2k, j = 1, 2, . . . , 8, (13)

where

mjk =
{
wktk(1− tj) if k ≤ j,
wktj(1− tk) if k < j.

System (13) can be now written in the form x = 1+ 1
2Mx2, or

F : R8 −→ R8, F(x) ≡ x− 1−
1
2
Mx2 = 0,

where
x = (x1, x2, . . . , x8)T, 1 = (1, 1, . . . , 1)T, M = (mjk)8j,k=1, x2 = (x21, x

2
2, . . . , x

2
8)
T.

For this F , we have

F ′(x)(u) =


1−m11x1 −m12x2 · · · −m18x8
−m21x1 1−m22x2 · · · −m28x8

...
...

. . .
...

−m81x1 −m82x2 · · · 1−m88x8



u1
u2
...
u8

 ,
where u = (u1, u2, . . . , u8)T.
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Table 5
Numerical solution x∗ of (13).

i x∗i i x∗i i x∗i i x∗i
1 1.005450. . . 3 1.051629. . . 5 1.069365. . . 7 1.025815. . .
2 1.025815. . . 4 1.069365. . . 6 1.051629. . . 8 1.005450. . .

1

x̃

x0+ ( r+R) = 2 .5182...

x0= 1 .4

x0 –(r+R) = 0 .2817...0.5

1

1.5

2

2.5

3

Fig. 11. Approximated solution x̃ of Eq. (1).

If we choose x0 = (1.4, 1.4, . . . , 1.4)T and the max-norm, then

K = 1, β = 1.1382 . . . , η = 0.0691 . . . , Kβη = a = 0.4755 . . . < 1/2.

Observe that we can apply Newton’s method to solve (13), but we cannot use (5) because Kβη ≥
σ2 = 0.3266 . . .. However, by Theorem 6.1, we can use iteration (11) after the third approximation
given by Newton’s method, since N0 = 3, and obtain the numerical solution x∗ = (x∗1, x

∗

2, . . . , x
∗

8)
T,

which is shown in Table 5, after four more approximations.
Moreover, the existence of the solution is guaranteed in the ball B(x0, 1.1182 . . .) and the unicity

in B(x0, 0.5440 . . .) by Theorem 5.1.
Finally, we interpolate the points of Table 5 and taking into account that the solution of (1) satisfies

x(0) = x(1) = 1, an approximation x̃ of the numerical solution x∗ is obtained (see Fig. 11). Notice that
the interpolated approximation x̃ lies within the existence domain of the solutions obtained above.
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