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Abstract

Morris�style contextual equivalence�invariance of termination under any context

of ground type�is the usual notion of operational equivalence for deterministic

functional languages such as FPC �PCF plus sums� products and recursive types��

Contextual equivalence is hard to establish directly� Instead we de�ne a labelled

transition system for call�by�name FPC �and variants� and prove that CCS�style

bisimilarity equals contextual equivalence�a form of operational extensionality� Us�

ing co�induction we establish equational laws for FPC� By considering variations of

Milner�s �bisimulations up to �� we obtain a second co�inductive characterisation

of contextual equivalence in terms of reduction behaviour and production of values�

Hence we use co�inductive proofs to establish contextual equivalence in a series of

stream�processing examples� Finally� we consider a form of Milner�s original con�

text lemma for FPC� but conclude that our form of bisimilarity supports simpler

co�inductive proofs�

� Objectives

The object of this paper is to o�er a new perspective on the behaviour of

functional programs based on CCS�style labelled transitions and bisimilarity�

Morris�style contextual equivalence is widely accepted as the natural notion

of operational equivalence for PCF�like languages ����� Two programs are

contextually equivalent if they may be interchanged for one another in any

larger program of integer type� without a�ecting whether evaluation of the

whole program converges or not� The quanti�cation over program contexts

makes contextual equivalence hard to prove directly� One approach to this

di	culty is to characterise contextual equivalence independently of the syntax

and operational semantics of PCF� This is the 
full abstraction� problem for

PCF� see Ong ��� for a discussion and review of the literature�

Instead� our approach is to characterise contextual equivalence as a form

of bisimilarity� and to exploit operationally�based co�inductive proofs� Our

point of departure is Milner�s ��� entirely operational theory of CCS� based

on labelled transitions and bisimilarity� A labelled transition takes the form
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a

�

�� b� where a and b are programs� and � is an action� the intended meaning
of such a transition is that the atomic observation � can be made of program
a to yield a successor b� In CCS� the actions represent possible communica�

tions� Given a de�nition of the possible labelled transitions for a language�
any program gives rise to a �possibly in�nite� derivation tree� whose nodes are
programs and whose arcs are transitions� labelled by actions� Bisimilarity is

based on the intuition that a derivation tree represents the behaviour of a pro�
gram� We say two programs are bisimilar if their derivation trees are the same

when one ignores the syntactic structure at the nodes� Hence bisimilarity is a

way to compare behaviour� represented by actions� whilst discarding syntactic
structure� Park ��� showed how bisimilarity could be de�ned co�inductively�
the theory of CCS is heavily dependent on proofs by co�induction�

Bisimilarity has been applied to deterministic functional programming be�

fore� notably by Abramsky in his study of applicative bisimulation and lazy
lambda�calculus �� and by Howe ��� who invented a powerful method of

showing that bisimilarity is a congruence� Both showed that their untyped
forms of bisimilarity equalled contextual equivalence�a property known as
operational extensionality ���� If � is a divergent lambda�term� both these

untyped formulations of bisimilarity distinguish �x�� from �� because one
converges and the other diverges� But in a typed call�by�name setting� con�
textual equivalence would identify these two functions� because they have the

same behaviour on all arguments� Hence Turner ���� Preface� expressed con�
cern that applicative bisimulation would fail to be operationally extensional

for languages such as Miranda or Haskell�

We use Gunter�s ��� FPC �PCF plus sums� products and recursive types�
see Winskel ��� for a similar language� as the vehicle for this study� Our �rst
main contribution is to answer Turner�s concern by showing that by de�ning

a labelled transition system for FPC and then de�ning bisimilarity exactly as

in CCS� we obtain operational extensionality for call�by�name� call�by�name
plus convergence testing� and call�by�value variants of FPC� In particular� in

the call�by�name variant we have �A�B bisimilar to �x�A��B� Our second
contribution is to investigate how operational methods developed in the the�
ory of CCS apply to �deterministic� functional programming� We consider

various re�nements of co�induction� analogous to the idea of 
bisimulation up
to �� in CCS� In particular� by taking advantage of determinism� we obtain a
new co�inductive characterisation of contextual equivalence based on reduction

behaviour and production of values�

Before Park�s invention of bisimilarity� Milner ��� developed operational
methods for proving contextual equivalence based on his context lemma for

�combinatory� PCF� Our third contribution is to prove a generalisation of the
context lemma for FPC� and show how it gives rise to another co�inductive
characterisation of contextual equivalence� However we suggest that in a cer�

tain sense it is less useful than bisimilarity�

We begin by recalling the dual foundations of induction and co�induction

in Section �� We introduce the syntax and operational semantics of FPC and

PCF in Section �� Section � is the heart of the paper in which we de�ne a
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labelled transition system for call�by�name FPC� and replay the de�nition of
bisimilarity from CCS� We prove that bisimilarity equals contextual equiv�
alence� and develop an equational theory� We prove that bisimilarity is a

congruence in Section �� by adapting Howe�s method� We derive a range
of co�inductive characterisations of bisimilarity in Section �� motivated by a
collection of stream�processing examples� In Section � we generalise Milner�s

context lemma to FPC� to yield another co�inductive form of contextual equiv�
alence� We sketch several variations of FPC in Section � and discuss related
work and the signi�cance of our results in Section ��

� Induction and Co�induction

We brie�y recall how induction and co�induction principles derive from the
Tarski�Knaster �xpoint theorem� Aczel ��� and Davey and Priestley ��� are
good references� Let U be some universal set and F � ��U� � ��U� be a

monotone function �that is� F �X� � F �Y � whenever X � Y �� We say a
set X � U is F �closed i� F �X� � X� Dually� a set X � U is F �dense i�
X � F �X�� A �xpoint of F is a solution of the equation X � F �X�� Let

�X�F �X� and �X�F �X� be the following subsets of U �

�X�F �X�
def
�
T
fX j F �X� � Xg

�X�F �X�
def
�
S
fX j X � F �X�g

Theorem ��� �Tarski�Knaster�

�� �X�F �X� is the least �xpoint of F �

��� �X�F �X� is the greatest �xpoint of F � �

We say that �X�F �X�� the least solution of X � F �X�� is the set in�

ductively de�ned by F � and dually� that �X�F �X�� the greatest solution of
X � F �X�� is the set co�inductively de�ned by F � We obtain two dual proof

principles associated with these de�nitions�

Induction� �X�F �X� � X if X is F �closed�

Co�induction� X � �X�F �X� if X is F �dense�

Winskel ���� for instance� explains how structural and rule induction follow
from this basic induction principle� Here we use co�induction extensively�

� PCF and FPC

In this section we introduce two call�by�name languages� PCF�simply typed

lambda�calculus plus arithmetic and recursion�and FPC�an extension of
PCF with products� sums and recursive types� We de�ne syntax� type as�

signment� a 
one�step� reduction relation��� and a corresponding 
many�step�

evaluation relation� ��

Let X� Y � Z range over a countable set of type variables� and x� y� z over a

countable set of �program� variables� The type expressions� E� and �program�
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expressions� e� of PCF are given by the grammars

E ��� Num j Bool j E � E

e ���n j succ�e� j pred�e� j bv j zero�e� j if e then e else e

j �x�E� e j e e j recx�E� e

where n � N and bv � ftt��g� FPC is the PCF language extended with the
following kinds of type and program expressions�

E ��� Unit j E �E j E � E j X j recX�E

e ��� unity j �e� e� j splite as �x� x� in e

j inl�E � E��e� j inr�E � E��e�

j case e of inl�x�� e or inr�x�� e

j intro�recX�E��e� j elim�recX�E��e�

We identify �type and program� expressions up to alpha�conversion� that is�

consistent renaming of bound variables� We write e�e
�

�x� for the substitution of

expression e� for each variable x free in expression e� SimilarlyE�E
�

�X� denotes
substitution of a type expression for a type variable� We write fv�e� and ftv�E�

for the sets of program and type variables free in e and E� respectively� We
often omit type information when writing program expressions�

Let a type� A or B� be a closed type expression� The type assignment

relation is of the form � � e �A where � is an environment� a �nite map from
variables to types� If � � x��A�� � � � � xn�An� we write Dom��� for the domain
of �� that is� fx�� � � � � xng� We write � for the empty environment� We omit

the type assignment rules� but they are similar to those in Gunter�s book ����
Given the type assignment relation� we can construct the following universal
sets and relations�

Prog�A�
def
� fe j � � e �Ag

a� b � Prog
def

�
S
A�Type Prog�A�

Rel�A�
def
� f�a� b� j a � Prog�A� � b � Prog�A�g

R�S � Rel
def
�
S
A�Type Rel�A�

If A is a type� Prog�A� is the set of programs of type A� that is� closed� well�
formed program expressions� Prog is the set of programs of arbitrary type�
ranged over by a and b� The type of each program is unique� We shall write

a�� � � � � an�A to mean fa�� � � � � ang � Prog�A�� If A is a type� Rel�A� is the
universal �total� relation between programs of type A� and Rel is the universal
relation between programs of the same arbitrary type� We typically use R and

S to denote arbitrary relations between programs of the same type�

The operational semantics is a one�step reduction relation� � � Rel� It is

inductively de�ned by the axiom schemes in Table  closed under the structural
rule that E�a� � E�a�� if a � a

� where E is an experiment �a kind of atomic

evaluation context ����� a context generated by the grammar
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if bv thenatt elsea� � abv succ�n�� n	 


pred�n��

���
��
� if n � �

n� 
 otherwise
zero�n��

���
��

tt if n � �

� otherwise

��x� e� a� ea�x� split �a� b� as �x� y� in e� ea� b�x� y�

�caseinl�a� of inl�x��� e� or inr�x��� e��� e�a�x��

�caseinr�a� of inl�x��� e� or inr�x��� e��� e�a�x��

�recx� e�� erecx� e�x� elim�intro�a��� a

Table 
 Axiom schemes for reduction

E ���succ�� �� j pred�� �� j zero�� �� j if � � thenb� else b� j � � b

j split � � as �x� y� in e j elim�� ��

j case � � of inl�x��� e� or inr�x��� e�

Our choice of experiments gives rise to a deterministic� call�by�name evaluation

strategy� We sketch call�by�value and other variations in Section �� We de�ne

the usual notions of evaluation� convergence and divergence as follows�

a�
def
� 	b�a� b� 
a reduces�

a � b
def
� a�� b � 
�b�� 
a evaluates to b�

a�
def

� 	b�a � b� 
a converges�

a�
def
� whenever a�� b� b� 
a diverges�

By expanding the de�nition we can easily check �in this deterministic setting�

that � and � are complementary� that is� a� i� 
�a��� There is a divergent

term at every type� De�ne �
A def

� recx�A�x� We have �
A
� �

A
and hence

�
A�� Let the set of values� ranged over by u and v� be the set of programs

generated by the following grammar�

v ��� � j �x� e j unity j �a� b� j inl�a� j inr�a� j intro�a�

It is not hard to check that a program a is a value i� it is ��normal� that is�

that 
�a ��� Hence the set of values is exactly the image of the evaluation

relation� that is� fb j 	a�a � b�g�

Now we can de�ne a form of Morris� contextual equivalence ���� Let a

context� C� be a program expression possibly containing holes� each written as

� �� Contexts are not identi�ed up to alpha�conversion� Contextual equivalence�

� � Rel is given by�

a � b i�whenever C�a�� C�b��Num� C�a�� i� C�b���

It would be equivalent but less wieldy to formulate contextual equivalence in

terms of convergence to a particular integer�
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� Bisimilarity for FPC

We begin with a labelled transition system that characterises the immediate

observations one can make of a program� It is a family of relations �
�

�� �

Prog � Prog j � � Act�� indexed by the set Act of actions� If we let Lit� the

set of literals� indexed by �� be ftt��gf�� � �� � � �g� then Act� ranged over by

�� is the set

Lit  ffst� snd� inl� inr� elimg  f�a j a � Progg�

We partition the set of types into active and passive types� The intention

is that we can directly observe termination of programs of active type� but

not those of passive type� Let a type be active i� it has the form Bool�

Num� A � B or A � B� Let a type be passive i� it has the form Unit� A �

B or recX�E� We de�ne � to be some arbitrary divergent term of active

type� Given these de�nitions� the labelled transition system may be de�ned

inductively as follows�

�
�

�� �

�a� b�
fst

�� a �a� b�
snd

�� b

inl�a�
inl

�� a inr�a�
inr

�� a

a�B � A b�B

a
�b
�� a b

a�recX�E

a
elim

�� elim�recX�E��a�

a�A A active a� a
��

a
�� �

�� a
�

a
�

�� a
�

The derivation tree of a program a is the potentially in�nite tree whose

nodes are programs� whose arcs are labelled transitions� and which is rooted

at a� For instance� if A is an active type� the derivation tree of the combinator

�A is empty� In particular� the tree of � is empty� We use � in de�ning the

transition system to indicate that after observing the value of a literal there

is nothing more to observe� Following Milner ���� we wish to regard two

programs as behaviourally equivalent i� their derivation trees are isomorphic

when we ignore the syntactic structure of the programs labelling the nodes�

We formalise this idea by requiring our behavioural equivalence to be a relation

� � Rel that satis�es property ���� whenever �a� b� � Rel� a � b i�

�� whenever a
�

�� a
�
	b

� with b
�

�� b
� and a

�
� b

��

��� whenever b
�

�� b
�
	a

� with a
�

�� a
� and a

�
� b

��

As usual we can characterise this property as being a �xpoint of a certain

monotone functional on relations� and then take bisimilarity to be the greatest�

If S � Rel� de�ne hSi � Rel such that a hSi b i�

�� whenever a
�

�� a
�
	b

� with b
�

�� b
� and a

�
S b

��

�
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��� whenever b
�

�� b
�
	a

� with a
�

�� a
� and a

�
S b

��

It is easy to check that function h�i is monotone� Let a bisimulation be a
h�i�dense relation� and let bisimilarity� � � Rel� be �S� hSi� the greatest
bisimulation� Clearly a relation satis�es property ��� i� it is a �xpoint of
function h�i� By de�nition bisimilarity is such a relation� and indeed is the
greatest�

Let similarity� �� be the preorder form of �� that is� the greatest �xpoint
of the function obtained by omitting clause ��� of h�i� We can easily establish
the following basic facts�

Lemma ���

�� � is a preorder and � an equivalence relation�

��� a � b i� a � b and b � a�

��� � � � and hence � � �� �

Parts ��� and ��� depend on the determinacy of �� they would fail� for
instance� if we added nondeterministic choice to FPC�

��� Operational Extensionality

We have an obligation to show that bisimilarity� �� equals contextual equiva�
lence� �� The key fact we need is the following� that bisimilarity is a congru�
ence�

Theorem ��� �Congruence� If a � b then C�a� � C�b� for any context C�

We shall postpone the proof till Section �� We now have operational ex�
tensionality�

Theorem ��� � � ��

Proof� The proof of � � � follows from the congruence of �� The reverse
inclusion follows by co�induction after showing that � is a bisimulation� For
full details of a similar proof see Lemma ���� of Gordon ���� which was based
on Theorem � of Howe ��� If bisimilarity distinguished �A�B from �a��B

we would be unable to prove that � was a bisimulation� �

��� A Theory of Bisimilarity

We have de�ned bisimilarity as a greatest �xpoint and shown it to be a co�
inductive characterisation of contextual equivalence� In this section we shall
note without proof various equational properties needed in a theory of func�
tional programming� Proofs of similar properties� but for a di�erent form of
bisimilarity� can be found in Gordon ���� We noted already that� � �� which
justi�es a collection of beta laws� We can easily use co�induction to prove the
following eta laws for passive types�

Proposition ���

�� If a�A� B� a � �x�A� ax�

�
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��� If a�recX�E� a � intro�elim�a��� �

We have an unrestricted principle of extensionality�

Proposition ��	 Suppose f� g�A � B� If f a � g a for any a�A� then f �

g� �

Unde�nedness propagates through experiments�

Proposition ��
 E��� � � for any experiment E� �

We have the following adequacy result�

Proposition ��� Suppose a�A�

�� If A is active� a � �A i� a��

��� If A is passive� a � �A if a�� �

As promised� we can prove that �x�A��B � �A�B � in fact by proving that
�x�A��B � �A�B� Consider any a�A� We have ��x�A��B� a � �B by beta
conversion and �A�B a � �B by Proposition ���� Hence �x�A��B � �A�B

by extensionality� The converse of ��� is false� then� for �x�A��B � �A�B

but �x�A��B��

Subject to the following conditions� every program has a value�

Proposition ��� Suppose a�A�

�� If A is active� 	v�a � v� i� a��

��� If A is passive� 	v�a � v� unconditionally� �

Finally� the value constructors are injective�

Proposition ��

�� If � � �
� then � � �

��

��� If �x�A� e � �x�A� e� then e�a�x� � e
��a�x� for any a�A�

��� If �a�� a�� � �b�� b�� then a� � b� and a� � b��

��� If inl�a� � inl�b� then a � b�

��� If inr�a� � inr�b� then a � b�

��� If intro�a� � intro�b� then a � b� �

� Bisimilarity is a Congruence

In this section we shall sketch a proof that similarity is a precongruence�
that is� preserved by arbitrary contexts� Since � is the symmetrisation of
�� it follows that bisimilarity is a congruence �a precongruence that is an
equivalence�� Theorem ���� Howe �� originally proved that similarity was a
precongruence for a broad class of 
lazy computation systems�� These were
untyped and based on an evaluation relation� As in earlier work ���� we recast
his proof in a typed setting and using labelled transitions� The proof in this
section would not work for a nondeterministic calculus� where� does not equal

�
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� � x bR x � � � bR � � � unity bR unity

� � eR e�

� � fsucc� pred� zero� inl� inr� intro� elimg
� � ��e� bR ��e��

� � ei R e�

i
�i � 
� �� ��

� � if e� then e� else e� bR if e�

�
then e�

�
else e�

�

�� x�A � eR e�

� � �x�A� e bR �x�A� e�

�� x�A � eR e�

� � recx�A� e bR recx�A� e�

� � e� R e�

�
� � e� R e�

�

� � �e�� e�� bR �e�

�
� e�

�
�

� � e� R e�

�
�A� �A� �� x��A�� x��A� � e� R e�

�

� � split e� as �x�� x�� in e� bR split e�

�
as �x�� x�� in e�

�

� � e� R e�

�
�A� 	A� �� xi�Ai � ei R e�

i �i � 
� ��

� �

�
BBBB�
case e�of

inl�x��� e�or

inr�x��� e�

�
CCCCA
bR

�
BBBB�
case e�

�
of

inl�x��� e�

�
or

inr�x��� e�

�

�
CCCCA

Table � The compatible re�nement of a relation

mutual similarity� that is� the symmetrisation of �� Howe ��� has recently

shown how his method can be applied directly to bisimilarity� and hence is

applicable to nondeterministic languages�

We need to extend relations such as bisimilarity to open expressions rather

than simply programs� Let a proved expression be a triple ��� e� A� such that

� � e � A� If � � x��A�� � � � � xn�An� a ��closure is a substitution ���a��x� where

each ai�A� Now if R � Rel� let its open extension� R�
� be the least relation

between proved expressions such that

��� e� A�R�
��� e

�
� A� i� e��a��x�R e

�
��a��x� for any ��closure ��a��x��

For instance� relation Rel
�
holds between any two proved expressions ��� e� A�

and ��
�
� e

�
� A

�
� provided only that � � �

�
and A � A

�
� As a matter of notation

we shall write � � eR e
�
�A to mean that ��� e� A�R ��� e

�
� A� and� in fact� we

shall usually omit the type information�

We need the following notion� of compatible re�nement� to characterise

what it means for a relation on open expressions to be a precongruence� If

R � Rel
�
� its compatible re�nement� cR � Rel

�
� is de�ned inductively by the

rules in Table ��

�
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De�ne a relation R � Rel
� to be a precongruence i� it contains its own

compatible re�nement� that is� cR � R� This de�nition is equivalent to saying

that a relation is preserved by substitution into any context�

Lemma 	�� Assume that R � Rel
�

is a preorder� R is a precongruence i�

whenever � � eR e
�

and C is a context� it holds that � � C�e�R C�e��� �

Howe�s general congruence proof does not apply to our form of similar�

ity� based on a labelled transition system� but we can adapt it as follows�

Inductively de�ne relation �� � Rel
� by the following rule�

� � e c�� e
�� � � e

�� ��

e
�

� � e ��

e
�

Following Sands ����� we can present some basic properties of �� from Howe�s

paper as follows�

Lemma 	�� ��

is re	exive and the following rules are valid�

� � e ��

e
�� � � e

�� ��

e
�

� � e ��

e
�

� � e c�� e
�

� � e ��

e
�

� � e ��

e
�

� � e ��

e
�

Moreover� ��

is the least relation closed under the �rst two rules� �

The proof strategy is to show that �� � ��� and then since �� is a pre�

congruence �by the previous lemma� it follows that �� is too� as desired� We

have �� � �� already� so it remains to prove the reverse inclusion� We do so

by co�induction� Here is the key lemma�

Lemma 	�� Let S
def
� f�a� b� j � � a ��

bg�

�� Whenever a S b and a� a
�

then a
� S b�

��� Whenever a S b and a
�

�� a
�

there is b
�

with b
�

�� b
�

and a
� S b

�

� �

The proofs are by induction on the depth of inference of reduction a� a
�

and transition a
�

�� a
� respectively� Details of similar proofs may be found in

Howe �� and Gordon ���� Given this lemma� it is routine to show that �� � ��

and hence it follows that �� � ��� and hence similarity is a precongruence�

� Re�ning Bisimulation

We have developed equational laws of bisimilarity and shown it to be a co�

inductive characterisation of contextual equivalence� The basic co�induction

principle for bisimilarity is to prove a � b by exhibition of a bisimulation S

containing �a� b�� Since � is the union of all bisimulations� it follows that

�a� b� � �� Our purpose in this section is to illustrate co�inductive proofs

about a derived FPC type of unbounded streams� We begin with a direct

bisimulation proof� but then develop three techniques to simplify the details�

The FPC type of streams of type A is the following�

Stm�A�
def
� recX� Unit� �A�X�

�
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Stm�A�
def
� recX� Unit	 �A�X�

nilA�
def
� introStm�A���inl�unity��

consA��e�
def
� introStm�A���inr�e��

lcaseA��e�� e�� e��
def
� caseelimStm�A���e��of

inl�x�� e� or

inr�xy�� splitxy as �x� y� in e� x y

� � nilA� � Stm�A�

� � e �A� Stm�A�

� � consA��e� � Stm�A�

� � e� � Stm�A� � � e� �B � � e� �A� Stm�A�� B

� � lcaseA��e�� e�� e�� �B

nil �� cons�a� ��

lcase�a� b�� b��� lcase�a�� b�� b�� if a� a�

lcase�nil� b�� b��� b�

lcase�cons�a�� b�� b��� lcase�cons�a��� b�� b�� if a� a�

lcase�cons��a�� a���� b�� b��� b� a� a�

Table � De�nition and properties of the FPC stream type

We show in Table � de�nitions of nil and cons constructors� and a Martin�

L of style lcase destructor� As in ML� we shall write a �� as for cons�a� as�

�but remember these are possibly unbounded streams�� We need the following

exhaustion lemma� provable from the theory in Section ��

Lemma 
�� If as�Stm�A� then either 
A� as � �Stm�A�� 
B� as � nil� 
C�

as � cons��A�Stm�A�� or 
D� as � a �� as� where a�A and as
��Stm�A�� �

Suppose we have map and iterate combinators speci�ed by the following

equations�

map f nil � nil

map f �x��xs� � f x �� map f xs

iterate f x � x �� iterate f �f x��

These could easily be turned into formal de�nitions of two combinators� Pat�

tern matching on streams would be accomplished using lcase� but we omit

the details� Intuitively the streams

iteratef �f x� and mapf �iteratef x�

are equal� because they both consist of the sequence

f x� f �f x�� f �f �f x��� f �f �f �f x���� � � �

Here is how to prove this equality by co�induction�
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Lemma 
�� If relations S��S��S��S � Rel are

S�

def

� f�iteratef �f c�� mapf �iteratef c�� j c�A � f �A� Ag

S�

def
� f��c� a�� �c� b�� j c�A � �a� b� � S�g

S�

def
� f�elim�a�� elim�b�� j �a� b� � S�g

S
def

� S�  S�  S�  Id


where Id � Rel is the relation of alpha�conversion restricted to Rel� then S

is a bisimulation�

Proof� Let property ��� be S� � hSi� For now we shall assume ��� and hence

show that S is a bisimulation� then we shall return and prove ���� We consider

each of the four ways in which �a� b� � S and show that �a� b� � hSi in each

case�

�� �a� b� � S�� Since the type of streams is a recursive type� the only tran�

sitions are a

elim

�� elim�a� and b

elim

�� elim�b�� hence �a� b� � hS�i � hSi�

��� �a� b� � S�� Both a and b are values of pair type� say �c� a
�
� and �c� b

�
�

respectively� with c�A and �a
�
� b

�
� � S�� They each have two transitions�

a

fst

�� c b

fst

�� c a

snd

�� a

�
b

snd

�� b

�

Hence �a� b� � hId  S�i � hSi�

��� �a� b� � S�� Our assumption ��� is that �a� b� � hSi�

��� �a� b� � Id� Trivially �a� b� � hIdi � hSi�

Hence it remains to prove ���� Suppose then that �a� b� � S�� in which case

a� elim�iteratef �f c��

b� elim�mapf �iteratef c��

for some f �A � A and c�A� By computing the reduction behaviour of a and

b it is not hard to check the only transitions of a and b are

a

inr

�� �f c� iteratef �f �f c���

b

inr

�� �f c� mapf �iteratef �f c����

Property ��� follows� then as �a� b� � hS�i � hSi� �

Now� since S is a bisimulation it follows by co�induction that it� and indeed

S�� is contained in bisimilarity� A corollary then is that

iteratef �f c� � mapf �iteratef c�

for any suitable f and c� what we set out to show�

��� Variant Greatest Fixpoints

We can re�ne the proof of Lemma ��� in various ways� First� the following

lemma provides alternative characterisations of a greatest �xpoint�

�
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Proposition 
�� Let U be an arbitrary universal set and let F � ��U� �

��U� be some monotone function� If �
def
� �X�F �X� we have�

� � �X�F �X�  � ���I�

� �X�F �X  �� ���II�

� �X�F �X  ��  � ���III� �

These equations strengthen co�induction� For instance� we can slightly

simplify the proof of Lemma ��� by setting S to be S�  S�  S�� but with no

mention of Id� A replay of our calculations shows that S � hS  Idi� Since

Id � � it follows that S� though not a bisimulation� is dense with respect to

the map S �� hS �i� Hence by co�induction S � �S� hS  �i and therefore

S � � by ���II��

Paulson ���� implements co�induction principles based on these equations

in Isabelle� Dual equations strengthen induction� for instance� the dual of

���II�� � � �X�F �X � ��� corresponds to Melham�s strong induction ��� in

HOL�

��� Bisimulation via Values

Our second re�nement further simpli�es the proof of Lemma ���� If S � Rel�

de�ne S � Rel by

� S �
e�a�x� S e�

�a�x� ��a�A�

�x�A� e S �x�A� e�

a S b

intro�a� S intro�b�

a� S b� a� S b�

�a�� a�� S �b�� b��

unityS unity
a S b

inl�a� S inl�b�

a S b

inr�a� S inr�b�

If S � Rel� de�ne hSiV � Rel such that �a� b� � hSiV i� 	u� v�a � u S v � b��

Let �V
def
� �S� hSiV � We can prove that it approximates bisimilarity�

Proposition 
�� �V � �

Proof� The key lemma is that whenever S � hSioR� then �S� � �� Given

this lemma and symmetry we have ��V� � �� In fact �V � � since Id ���

The inclusion is strict because� for instance� � � �� although ����� �� �V
because no value is bisimilar to �� �

Intuitively �a� b� � �V i� a and b are bisimilar� and they both have a value�

and so do their immediate subterms� 
all the way down��

Co�induction with respect to h�iV relies on matching of immediate sub�

terms� We can allow matching via non�immediate subterms as follows� If we

de�ne hSiV� � h�R�S RiV then by use of both induction and co�induction

we can prove

Proposition 
�	 �V � �X� hXiV�� �

�
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Roughly speaking� unwinding the inner inductive de�nition permits arbi�

trary nesting of value constructors� Returning to Lemma ���� if we make

the assumption that each fn c has a value� it is not hard to check that

S� � hS�  �V iV�� and hence by co�induction and ���II� that S� � �V and

indeed S� � �� The reason for the restriction on each fn c is essentially that

�V is an incomplete co�inductive characterisation of �� Our third re�nement

provides a complete such characterisation�

�� Bisimulation via Reductions

We begin with another functional� h�i��

a hSi
�
b i�	a�� b��a�� a�� b�� b� � a� S b��

If S � hSi�� starting from any pair in S we can make reductions in both

programs to end up back in S�

Proposition 
�
 Let ��
def
� �S� hSi��

�� �a� b� � �� i� a� and b��

��� �� � �� �

The greatest �xpoints of both h�iV� and h�i� fall short of bisimilarity�

but combining them we exactly match bisimilarity�

Theorem 
�� � � �S� hSiV�  hSi�� �

We omit the proof� but the signi�cance of this equation is that it is a

complete co�inductive characterisation of bisimilarity �and hence contextual

equivalence� without mentioning labelled transitions� Let F �S�
def
� hSiV� 

hSi�� Returning again to Lemma ���� we can easily check that S� � hS��iV��

indeed that S� � F �S�  �� and hence by co�induction and ���II� that S� �
�S� F �S� � �� This time we need no restriction on each fn c�

Here is an example that depends on matching reductions� If filter is

de�ned by

filter f nil � nil

filter f �x��xs� �

if f x then x �� filter f xs

else filter f xs

we can prove the following equation �where o is function composition��

Proposition 
�� For any f �B � Bool and g�B � B�

filterf o map g � map g o filter �f o g�

Proof� Let S be the following relation�

f�filterf �map g as�� map g �filter �f o g� as�� j as�Stm�B�g

The result will follow if S � �� We will show that

S � hS  �iV�  hSi�  �

�
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and hence by co�induction and ���III� that S � �� Consider� then� any pair

�a� b� � S�

a� filterf �map g as�

b� map g �filter �f o g� as��

We proceed by a case analysis of as according to Lemma ��� There are four

cases� �A� as � �� �B� as � nil� �C� as � cons��� and �D� as � a
�
�� as

�
�

Only case �D� is of interest� the other cases follow easily� We must examine

the three possible evaluations of f�g a
�
�� �DA� f�g a

�
��� �DB� f�g a

�
� � true

and �DC� f�g a
�
� � false� Only �DB� and �DC� are of interest� In case �DB�

let u and v be the values

u � g a
�
�� filterf �map g as�

�

v � g a
�
�� map g �filter �f o g� as

�
��

We have a � u and b � v and hence �a� b� � hS  �iV�� Finally� in case �DC�

we cannot �nd matching values� but instead we have the matching reductions

a �
� filterf �map g as��

b �
� map g �filter �f o g� as

�
�

and so have �a� b� � hSi�� By consideration of all these cases we have shown

the desired inclusion and hence S � � follows by co�induction� �

Since filter is a partial function �think of filter ��x� false�� this ex�

ample cannot be programmed in a co�recursive framework such as Paulson�s

�����

We conclude with a more substantial example� a proof of the monad laws

for streams ����� Let �� be the stream append operation� join the function

that appends together a stream of streams� id the identity function and let

valx � x �� nil�

Proposition 
�

�� mapid � id

��� map �f o g� � mapf o map g

��� mapf o val � val o f

��� mapf o join � join o map �mapf�

��� join o val � id

��� join o map val � id

��� join o mapjoin � join o join

Proof� Parts ��� and ��� follow by routine equational reasoning� Parts ���

��� and ��� follow by straightforward co�inductions� If S� is the relation

f�mapf �joinass�� join �map �mapf� ass�� j ass�Stm�Stm�B��g

it is possible to prove that S� � hS� �iV�  hS�i� and hence part ��� follows

�
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by co�induction� ���II� and extensionality� Finally� if S	 is the relation

f�joinass �� join �map joinasss�� join�ass �� joinasss��

j ass�Stm�Stm�B��� asss�Stm�Stm�Stm�B���g

we can prove S	 � hS	  �iV�  hS	i�  � and hence part ��� follows by

co�induction� ���III� and extensionality� �

� A Context Lemma for FPC

Our �nal contribution is to rework Milner�s context lemma for FPC and show
it yields yet another co�inductive characterisation of contextual equivalence�

but one that is less wieldly than bisimilarity� Milner ��� showed that contex�
tual equivalence on PCF is unchanged if we restrict attention to 
applicative
contexts� of the form � � a� � � � an� The analogue in FPC is an evaluation context

of the form 	E � �� where if 	E � E�� � � � � En then 	E� � is the context E��� � � En� � � � ���
Let experimental equivalence� � � Rel be the relation such that

a � b i� whenever 	E �a�� 	E�b��Num� that 	E �a�� i� 	E �b���

By a straightforward modi�cation of Milner�s argument� we can prove the
following context lemma by induction on n�

Lemma ��� Suppose a � b and that C�a�� C�b��Num� If C�a�� in n steps� then

C�b�� too� �

An easy corollary is that � � �� Since it is straightforward to prove

that � � �� for instance� experimental equivalence and the context lemma
form a useful technique for establishing equational properties of contextual

equivalence� independently of bisimilarity�

Furthermore� we can co�inductively characterise experimental equivalence
as follows� If S � Rel� de�ne functional �F �S� � Rel such that �a� b� � F �S�

i�

�� if a� b�Num then a� i� b��

��� whenever E�a�� E�b� � Prog� �E�a�� E�b�� � S�

Proposition ��� � � �S� F �S��

Proof� Let � � �S� F �S�� It is easy to see that � is F �dense and so � � � by

co�induction� For the reverse inclusion� suppose that �a� b� � �� 	E �a�� 	E�b��Num

and 	E �a��� Since � � F ���� it follows by induction on the size of 	E that

�	E �a�� 	E�b�� � �� Hence if 	E �a�� it must be that 	E �b��� by clause �� of the
de�nition of F � Hence � � �� �

This yields a co�induction principle for contextual equivalence� but we can

improve it as follows�

�We took atomic experiments as primitive�rather than compound evaluation contexts�

to allow a simple presentation of this functional�

�
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Proposition ��� � � �S� F ��S��� �

The proof is a variation on the proof that in CCS a 
bisimulation up to

�� is contained in bisimilarity ��� p���� On the face of it� this yields a useful
co�induction principle� intuitively via 
matching experiments�� To show S is
contained in experimental equivalence� it su	ces to show that S � F ��S���
For instance� if our candidate relation S contains a pair �a� b� of function type�

we must show for every experiment E of form � � c that E�a� � a c �S� b c �

E�b�� which is equivalent to the bisimulation condition� But suppose S contains
a pair �inl�a�� inl�b��� we must show that E�inl�a�� �S� E�inl�b�� for all

suitable experiments� E� which must be of the form

case � � of inl�x��� e� or inr�x��� e��

Hence we must show e��a�x���S� e��b�x�� which� because of the quanti�cation
over the arbitrary term e� is almost as hard as proving contextual equivalence

directly� and certainly harder than proving �a� b� � S� the condition for S to

be a bisimulation� This is evidence that although the context lemma justi�es
a certain co�inductive characterisation of contextual equivalence� it is harder
to apply than bisimilarity�

	 Variations on FPC

We have presented one particular form of call�by�name FPC in detail� Our
main results hold under several variations of the language�

As case �C� of Lemma �� shows� our type of streams contains junk pro�

grams such as cons���� Miranda and Haskell have primitive sum�of�product
types on the grounds that the possibility of such programs causes implemen�

tation ine	ciency ���� If we include primitive sums�of�products we can rule

out case �C� of Lemma �� and our type of streams becomes isomorphic to
that in Miranda or Haskell�

Gunter ��� has fst and snd operations on pairs instead of split� In

the absence of sums�of�products we needed split�which gives control of
evaluation of pairs�to simplify proofs about streams� If we had fst and snd

operations instead of split we could make the product type passive� modify

the labelled transition system to allow unconditional fst and snd transitions�
and hence derive a surjective pairing law� that a � �fsta� snda� whenever
a�A�B�

In our language there are no experiments to determinewhether programs of
passive type terminate� We can add a convergence testing operation� seq�a� b��
which �rst evaluates a�of arbitrary type�and if it terminates� evaluates b

and returns its value� This is sometimes known as a 
lazy� variation �����

though implementations of call�by�name using lazy evaluation do not depend
on convergence testing� Contexts can now distinguish �A�B and �x�A��B� for

instance� We can still prove operational extensionality� but we must modify

the labelled transition system so that every transition a
�
�� b is contingent

on convergence of a� Every type must be active�

Similarly we can obtain a call�by�value version and prove operational ex�

�
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tensionality� Every type is active� Variables stand for values� not arbitrary

programs� We must eliminate the PCF recursion expression� recx�E� e� be�

cause although it is not a value its reduction rule involves substitution of itself

for the variable x� Fixpoint combinators can be coded in FPC anyway using

contravariant recursive types ���� Recursion �and hence divergence� can be

recovered in call�by�value PCF by adding recursively�de�ned constants�


 Discussion and Related Work

We have developed a 
CCS�view of lambda�calculus�� Using a novel labelled

transition system for FPC� we replayed the de�nition of bisimilarity from CCS

and proved that it equals contextual equivalence� Hence we answered Turner�s

���� Preface� concern that in a typed� call�by�name setting� Abramsky�s ap�

plicative bisimulation makes more distinctions than observable by well�typed

contexts� We developed some re�nements of the bisimulation proof technique

that take advantage of the determinacy of our language� and demonstrated

their utility on a series of stream�processing examples� Finally� we generalised

Milner�s context lemma from PCF to FPC� to yield another co�inductive form

of contextual equivalence� but o�ered evidence that it yields a weaker co�

induction principle than bisimilarity�

The main novelty of our work relative to earlier work on application bisimu�

lation �������� is our use of a labelled transition system to match contextual

equivalence exactly in a typed setting� and our re�nements of bisimulation in

Section �� These re�nements ought to be applicable to recent work on ap�

plicative bisimulation for deterministic languages with state �������� Mason�

Smith and Talcott ��� also advocate operational methods for functional pro�

gramming� Their work is based on a form of the context lemma� indeed they

derive a form of �xpoint induction� but they do not emphasise co�induction�

Bernstein and Stark ��� also use a labelled transition system for a functional

language� Their system is more complex than the one of this paper in that

they represent substitutions explicitly using labels�

Domain theory is the classical foundation of languages such as FPC� and

indeed Pitts ���� shows how to derive a co�induction principle for recursively

de�ned domains� In contrast our approach is based on the operational def�

inition of our language� Working directly with program texts rather than

with abstract denotations has some modest rewards� For instance the idea of


bisimulation via reductions�� which formalises a simple intensional intuition�

has no counterpart in Pitts� work�

Sangiorgi ���� has generalised various re�nements of co�induction found in

concurrency theory� in terms of his notion of respectful functions on relations�

The functions h�iV� and h�i� do not directly �t Sangiorgi�s framework� but

the possible connections are worth pursuing�

Our approach to proofs about in�nite streams rests on Tarski�s impredica�

tive proof of the existence of greatest �xpoints �Theorem ����the greatest

�xpoint is de�ned as the union of a set of relations which includes itself�

Coquand ��� is developing a predicative type theory that explains seemingly

�
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impredicative de�nitions�for instance of in�nite streams�in purely inductive

terms�
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