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Peptide families are characterized by structural motifs, which often comprise specific

post-translational modifications (PTMs) required for biological activity. In conventional

bioactivity-based peptidomics studies natural peptide mixtures are chromatographically

separated and the bioactive fractions purified to homogeneity, prior to structural char-

acterization. In this paper we illustrate the reverse methodology, in which the primary

structures of peptides with presumed bioactivity are first determined before investigating

functions/bioactivities. We exemplify mass spectrometry (MS)-based strategies (employing,

in particular, high resolution MS) to specifically select peptides – from complex mixtures

such as frog defensive secretions – by virtue of the occurrence of particular PTMs, including
Disulfide bridges amidation, disulfide-bonding, l- to d-amino acid isomerization, tyrosine-sulfation, proline-

hydroxylation, and aminoterminal pyroglutamate formation.

© 2014 The Authors. Published by Elsevier B.V. on behalf of European Proteomics

Association (EuPA). This is an open access article under the CC BY-NC-ND license

approach so far are post-translationally modified (e.g., [3,4]).
1. Introduction: conventional
bioactivity-based peptide discovery

Skin secretions of anurans are a rich source of biologically
active peptides with high pharmaceutical potential. Over the

last decades various frog secretions have been subject of
intense research and this has led to the discovery and char-
acterization of several peptides with interesting biological
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activity (e.g., [1]). In the majority of cases, these bioactive
peptides are first identified by specific bioassay screening
and after this their structural sequence is further eluci-
dated using Edman degradation and/or mass spectrometry
[2]. Many of the peptides identified and characterized by this
tide Biology Group, Department of Biotechnology, Delft University

These post-translational modifications (PTMs) contribute to
the bioactivity of these peptides, either by enhancing recep-
tor binding affinity or by extending the molecules’ half-life
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ue to increased resistance against proteolytic degradation
e.g., [5]). In this traditional discovery scheme, a substantial
mount of secretion/venom is required for individual peptide
urification and bioassays screening. However, the amphibian
ecretions are complex cocktails of peptides with many of the
ighly active compounds present in low abundance [6]. The
umber of bioassays that can be performed on limited size
amples is restricted, and many potentially interesting pep-
ides risk to be missed by this narrow approach and thus to
scape from the investigator’s attention.

. Alternative peptide discovery strategies
ased on structural analyses

.1. Peptide encoding mRNA based

n cases where full length messenger RNAs can be extracted,
olecular cloning can be an excellent alternative technique

o obtain (or confirm) the primary structure of frog pep-
ides. Pioneering work by Chen, Shaw and co-workers has
hown that amphibian skin secretions still contain clonable
ull length mRNAs which encode the typical defense peptides
6]. This thanks to the fact that frogs secrete peptides through

holocrine process which involves rupturing of the mature
ranular syncytium at the center of the poison gland, resulting
n the release of all cytoplasmic components in the secre-
ion, including intact poly-adenylated mRNAs. We emphasize
hat this is a very elegant and sustainable way of obtaining
equence information of amphibian secretory peptides, which
s totally non-invasive and completely harmless to the sam-
le donor. In this respect it is upsetting to read that seven
ears after Chen’s original publication, scores of specimens
ontinue to be sacrificed for peptide transcript sequencing
urposes [7]. Yet, it shall be clear that also this molecular
loning approach has its limitations. Not all peptide encod-
ng mRNAs are equally abundant, and some may, therefore, be
verlooked. More importantly, essential PTMs featuring on the
ature secreted peptides cannot be prompty predicted from

DNA sequencing results. However, particularly when com-
ined with high resolution tandem mass spectrometry (MS)
ata on the respective peptide gene products (as discussed
elow), nucleic acid derived sequence data are highly useful
or full primary structure elucidation. We have personally used
his method successfully to help elucidate the primary struc-
ure of several different post-translationally modified frog
eptides [8,9].

.2. Peptide based

t is evident that the best sample to analyze in order to get a full
tructure of a mature naturally occurring bioactive peptide, is
he peptide itself, directly from its biological source.

To achieve this, the high resolution and dynamic range

f today’s generation tandem MS offer elegant alternative as
ell as complementary approaches in the study of complex
mphibian defense secretions. We here present an overview
f different LC–MS/MS-based methodologies which we have
sed/elaborated thus far in our frog skin peptide research.
5 ( 2 0 1 4 ) 32–40 33

3. Concept: PTM directed MS analysis to
screen for peptides with potential bioactivity

In view of the large number of different peptides which are
detectable in the amphibian skin secretion, the overall aim to
fully sequence all of them and perform bioassays to character-
ize their biological activity, as pioneered by Vittorio Erspamer
[10], is a virtually impossible task. Whereas LC–MS/MS anal-
yses on hybrid orbitrap systems yield Gbyte-size data sets,
only in very rare cases can the full structure of a peptide be
readily deduced from automated data acquisitions. Typically
additional labor intensive manual (re-) analyses are required
before the primary structure of a peptide ion peak of interest
can be completely resolved.

We here discuss and illustrate various analytical workflows
which can be employed to select peptides for full structure elu-
cidation, on the basis of specific structural features detectable
by MS, which they share with known regulatory peptides.
These include the presence of certain PTMs, such as car-
boxyterminal amidation, disulfide-bonding, l- to d-amino acid
isomerization, tyrosine-sulfation, proline-hydroxylation and
aminoterminal pyroglutamate formation [11].

The idea behind this tactic is as follows: peptide ions with
structural features in common with known bioactive peptides
are analyzed to reveal specific signatures in overall secre-
tome LC–MS profiles. These signatures can either be directly
visible on a 2D image representation of the LC–MS run, or
they may exhibit themselves after chemical treatment of the
sample. By setting the MS system to focus on PTM-specific
features, including neutral losses; and taking advantage of
the high resolution of orbitrap-based instruments to distin-
guish between quasi-isobaric regular residues and modified
residues, candidate bioactive peptides can be pinpointed with
little effort. Subsequent de novo MS/MS sequencing of the
selected peptides including the identification of their PTMs
can then follow after the generation of sufficiently informa-
tion rich fragmentation spectra. In our experience, this often
requires a combined analysis of the fragmentation data of
CID (collision induced dissociation)/HCD (higher energy col-
lision induced dissociation) experiments on precursor ions of
multiple charge states from the same peptide.

Fig. 1 shows the LC–MS profile (chromatogram) of a crude
washed-off skin gland secretion – we typically use a ‘frog milk-
ing’ procedure as originally described by Tyler et al. [12] – of
Phyllomedusa burmeisteri as typical example. The total ion at
each chromatographic time point (retention time) contains
multiple peaks from several peptides in varying charge states
(Fig. 2A). Some of these peptide ions yield good fragmenta-
tion spectra from which partial or full sequence information
can be obtained straightaway (as demonstrated in Fig. 2B). A
database search with LC–MS/MS data using search engines
for proteomics data such as Mascot (www.matrixscience.com)
or Sequest (http://fields.scripps.edu/sequest), therefore, usu-
ally yields a number of peptide identifications. However, this
classically holds for only the minority of the fragmented pre-

cursors, and these obviously represent peptides that had been
identified before and were submitted to public databases such
as Uniprot or others. Not seldom it is necessary to combine
the fragmentation spectra of multiple charge states of the

dx.doi.org/10.1016/j.euprot.2014.11.001
http://www.matrixscience.com/
http://fields.scripps.edu/sequest
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Fig. 1 – Base peak intensity chromatogram of LC–M

same precursor ion to get to a more complete sequence cov-
erage. Manual interpretation of the MS/MS spectra that are
not initially matched by these database (de novo sequencing)
searches therefore often turns out to be very labor intensive
and time consuming. Yet, to date this still remains the only
way to solve a novel peptide sequence, although continually
improved algorithms combining database mining with de novo
sequencing (e.g., PEAKS v. 7; www.bioinfor.com), promise to be
a step in the right direction.

To enhance the success-rate, various methods utilizing the
performance of today’s generation high resolution MS can be
employed to specifically target peptides that contain ‘prede-
fined’ PTMs.

A quick view on the complexity of the sample is obtained
by automated conversion of LC–MS data into a 2-dimensional
(2-D) display, in which both retention time (RT) and mass-
to-charge ratio (m/z) are plotted (Fig. 3). To achieve this, we

typically employ the publicly available software tool MSight
(SIB, Switzerland, http://web.expasy.org/MSight/; originally
described by [13]) for this conversion. In addition, the thus

Fig. 2 – Example of MS based characterization of P. burmeisteri sk
during LC separation in which several multiply charged peptide
precursor at m/z 667 corresponding to peptide phylloseptin (FLSL
alysis of skin secretion of Phyllomedusa burmeisteri.

generated LC–MS ‘images’ enable the experienced eye to either
directly or indirectly (after chemical treatment) ‘spot’ peptides
with one of the particular PTMs mentioned above.

Indeed, a chemical or enzymatic treatment affecting a spe-
cific PTM prior to a second LC–MS analysis results in specific
shifts in RT and/or m/z. As a consequence, peptides carrying
such PTM are readily detected by their altered location in the
2-D profile, when comparing treated with non-treated sam-
ples.

(Differential) 2-D profiling can thus be employed to create
a list of those peptide ions with predicted PTMs that deserve
subsequent characterization by tandem MS in more detail. To
demonstrate the power of this approach we below list some
illustrative examples.

3.1. C-terminally amidated peptides
Carboxyterminal amidation of peptides is one of the PTMs
that is required for the bioactivity of many known signaling
peptides. The mass difference between the free carboxyl and

in secretion peptide. (A) Full scan MS spectrum acquired
ions are visible. (B) MS/MS spectrum of triply charged
IPHIASGIASLVKNF-amide).

dx.doi.org/10.1016/j.euprot.2014.11.001
http://www.bioinfor.com/
http://web.expasy.org/MSight/
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Fig. 3 – 2-Dimensional LC–MS peptide profile of P. burmeisteri skin secretion (image generated using MSight
( ity.
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http://web.expasy.org/MSight)), illustrating sample complex

he amide group in a peptide’s carboxyterminal residue is
Da (more exactly −0.984 Da; the very same difference as
etween Glu and Gln or Asp and Asn). We observed that
ot seldom a small percentage of a C-terminally amidated
eptide is found in the sample as free acid isoform. This

s remarkable, as, to the best of our knowledge, it is not

escribed that the typical peptidylglycine alpha-amidating
onooxygenase (PAM) responsible for C-terminal amidation,

an yield this side product. Anyhow, by virtue of this trait,
midated peptides are easily recognized in the 2-D display

ig. 4 – Illustration of peptide with and without C-terminal amid
eptide ion isotopes. Characteristic is close retention time and 0
eptides showing similar fragmentation pattern. M/z values of b
y 0.98 amu in non-amidated peptide compared to amidated one
eavier than carboxyterminally amidated peptide, illustrating sa
as two ions (isotope clusters) with a −0.984 Da shift in m/z
and small shift in RT as illustrated in (Fig. 4A). Amidated
and non-amidated/de-amidated peptides typically do not dif-
fer much in chromatographic elution behavior and in most
cases they elute near each other. Once this feature is detected,
the fragmentation spectra of both forms of this peptide need

to be analyzed and compared to yield the full sequence
(Fig. 4B). De novo sequencing of carboxyterminally amidated
peptides is facilitated by comparative analysis with its free
acid version. Since this PTM occurs at the final C-terminal

ation. (A) Zoom in area of 2-D peptide display depicting
.98 amu mass difference. (B) Orbitrap MS/MS spectra of both
-ions are identical, whereas m/z values of y-ions are shifted
. 2D display shows additional peptide ion cluster 4 Da
mple complexity, revealed by analytical resolution.

dx.doi.org/10.1016/j.euprot.2014.11.001
http://web.expasy.org/MSight
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Fig. 5 – (A) Zoomed-in part of 2D LC/MS analysis of skin secretion of B. variegata, highlighting several peptides pairs that
have identical mass, but different retention times. This feature is indicative of presence of d-amino acid in one of two
variants. (B) MS/MS spectra of two such peptides are virtually identical. Evidently higher resolution MS systems (here

spec
orbitrap) allow more accurate comparison of fragmentation

residue, both amidated and non-amidated peptide tandem
mass spectra yield identical b-ions series, whereas all y-ions
shift 0.984 Da (change of OH to NH2 from free acid to
amide). The easy annotation of y- and b-ion series greatly facil-
itates de novo sequencing (Fig. 4B). Tandem MS also allows
to distinguish C-terminal amidation from other PTMS with
identical mass shifts, such as de-amidations of Gln or Asn
residues.

3.2. d-Amino acid containing peptides
Using the same 2-D display, other PTMs encountered on frog
peptides can be observed as well. Several frog peptides have
been characterized to contain a single d-amino acid at the
second N-terminal position, for example deltorphin [14,15].

Fig. 6 – Schematic overview of neutral loss driven data-dependen
tyrosine-sulfated peptides in hybrid ion trap-orbitrap system (LT
tra.

Although all peptides are initially fully synthesized in their l-
amino acid form, peptidyl-aminoacyl-l/d isomerases, which
have been identified in frog skin before [16] may specifically
alter the stereochemistry of – typically – one amino acid within
a peptide. This conversion is, however, seldom complete and,
therefore, both versions of the peptide (the original full l-
isoform and the one with a d-residue) can be ‘spotted’ in a
sample 2D display. Both obviously have an identical mass,
however their chromatographic behavior is slightly different.
For example, deltorphin is detected at two different RTs in
P. burmeisteri secretion with both differently eluting peptides

displaying identical peptide fragmentation. Also in Bombina
variegata skin secretion several peptides are found to show
this behavior, suggesting the presence of a d-amino acid. As
example, Fig. 5A highlights five l- and d-peptide pairs in the

t MS2/MS3 scans-settings used for detection of
Q-Orbitrap Velos; ThermoFischer).

dx.doi.org/10.1016/j.euprot.2014.11.001
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Fig. 7 – Chromatograms of data dependent analyses using sulfate neutral loss driven MS3 analysis of sulfated peptides from
skin secretion of P. burmeisteri. Mass range of this measurement was between 600 and 800 m/z. Shown are ion intensity
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hromatograms of (A) MS spectra, (B) MS2 spectra and (C) MS

-D display of B. variegata crude secretion. The mass spec-
rometer cannot distinguish between the l- or d-residue as
n both cases the MS/MS spectra are identical (Fig. 5B). Addi-
ional amino acid analysis is needed to solve this, however,
he 2-D display allows one to quickly detect those peptides
hat potentially contain a d-amino acid. Also the use of ion

obility MS can help to determine the exact position of the
-amino acid [17,18].

Obviously also other phenomena may result in different
etention times for peptides with (nearly) identical MS/MS pro-
les. These include Ile/Leu peptide isoforms or peptides with
ther isobaric sequence variations. Most of the latter, however,
re not PTMs but rather sequence mutations/polymorphisms
hat are much less plausible to occur together in the same 2D
isplay.

.3. Disulfide bridge containing peptides

he cyclic nature of native peptides with Cys residues form-
ng disulfide bonds (cystines) hampers efficient backbone
leavage in tandem MS. The resulting MS/MS spectra are rel-
tively poor in fragment ions, yielding very ambiguous partial

rimary structures. After reduction of such peptides by dithio-
hreitol (DTT) or Tris-2-carboxyethyl phosphine (TCEP), the
isulfide containing peptides appear much easier to fragment,
ielding less ambiguous sequences. They are readily detected
ectra.

in the 2D differential display by a shift in +2 Da, per reduced
cystine, as described in more detail before [19].

3.4. Other PTM containing peptides

Additional PTMs which are occasionally encountered on frog
peptides are sulfo-Tyrosine, hydroxyproline (Hyp or HyPro), and
an aminoterminal pyroglutamate (pGlu). We here illustrate this
with a few examples from our lab.

3.4.1. Tyrosine sulfation
Low energy CID spectra of sulfated peptides are often domi-
nated by neutral loss of the SO3 group (−79.9595 amu), leading
to a relatively poor sequence information for identification.
However, the specific neutral loss scan can be used to trig-
ger an MS3 experiment (Fig. 6). In a data dependent neutral
loss driven analysis of P. burmeisteri crude secretion, all doubly
charged peptides that showed a loss of 39.9798 in terms of m/z
in their MS2 spectrum, were used as a trigger for a second stage
of fragmentation analysis on the daughter ion (MS3 spectra,
Fig. 7). The chance of selecting sulfated peptides is increased
by analyzing the same sample 4 times, each at a different mass
range: from m/z 400 to 600, 600 to 800, 800 to 1000 and 1000

to 1200. This way more MS2/MS3 events are triggered when
compared to the same analysis performed with 1 broad mass
band (m/z 400–1500). An example of a sulfated peptide dis-
covered using this MS-based method is a phyllokinin, which

dx.doi.org/10.1016/j.euprot.2014.11.001
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Fig. 8 – (A) Full MS spectrum of phyllokinin [715.8522+2H]2+, (B) MS2 spectrum showing predominant neutral loss
[675.8682+2H]2+(identified as sulfate, thanks to high resolving power of orbitrap analyzer used) and (C) MS3 spectrum with

der
rich fragmentation, from which amino acid sequence can be

shows no backbone fragmentation in MS2, only a neutral loss
of sulfate. From the MS3 it is possible to de novo sequence this
tyrosine sulfated peptide (Fig. 8). Due to the high resolving
power and accuracy of the orbitrap analyzer, the system can
be programmed so that only peptides losing a sulfate group
(m/z = 39.9798) trigger MS3 fragmentation (and for instance not
potential losses of the quasi isobaric phosphate group), mak-
ing it a highly specific screening strategy for this PTM.

3.4.2. Proline hydroxylation
As an example, two phyllokinins from P. burmeisteri are
sequenced with identical structure to the original peptide
identified previously in Phyllomedusa hypochondrialis [20] –
RPPGFTPFRIY and RPPGFSPFRIY. Both peptides were also
found with the third proline residue modified to Hyp, in addi-
tion to the C-terminal residue being modified to sulfo-tyrosine.
The Hyp residue in phyllokinins could be distinguished from
Leu/Ile using high resolution (7500) orbitrap analysis. The dif-
ference of y8 and y9-ions is 113.0481 Da (Fig. 9), which matches
the mass difference of Hyp and not of Ile/Leu (113.0841 Da).
We remark here that the presence or absence of immonium

ions (including secondary ones) in the tandem MS spectra can
be of additional value to confirm a proposed/deduced novel
sequence: Hyp is prone to yield a 70 Da immonium ion which
is not evident from Ile/Leu fragmentation, etc.
ived.

3.4.3. N-terminal cyclization of Gln to pGlu
A last example is a peptide identified from P. burmeisteri with a
primary structure originally described from P. hypochondrialis
as “phypo Xa” [21], pEFRPSYQIPP. This peptide was found to
contain an aminoterminal pyroglutamic acid residue.

4. Perspectives and conclusion

Although none of the latter PTMs (sulfo-Tyr, Hyp or pGlu) can
be directly “spotted” on a 2-D peptide display, one could, in
principle, envisage a 2-D differential display method to assist
in the specific targeting of peptides carrying these PTMs. In
line with our strategy to detect cystine-containing peptides we
suggest to analyze the peptide containing sample (i.e., a crude
amphibian secretion) twice, once without any treatment and
once after either chemical, or enzymatic treatment to alter the
PTM of interest. From the comparison of the 2-D displays, the
peptides with altered RT and or m/z ratio are then detected
as new “spots”. For pGlu-containing peptides, pyroglutamate
aminopeptidase (e.g., from calf liver or from Pyrococcus furio-

sus) could be employed to treat the crude venom. This enzyme
is frequently used to deblock pGlu-peptides prior to Edman
degradation as it removes pyroglutamic acid from a pep-
tide/protein aminoterminus [22].

dx.doi.org/10.1016/j.euprot.2014.11.001
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Fig. 9 – High resolution Fourier transform CID fragmentation spectrum of hydroxyproline containing peptide (identified as
phyllokinin). Orbitrap MS/MS resolution of 15,000 at m/z 400 allows clear differentiation between HyP (113.0476) and Ile/Leu
(
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113.0841).

Similarly, sulfo-tyrosine containing peptides could be
etected after enzymatic removal of the sulfate group [23].

n these examples, the treatment would result in a mass
ecrease of 111 or 80 Da for pGlu and sulfoTyr, respectively.

Similar approaches can also be developed to look for, in
rinciple, any other PTM that can be specifically chemically of
nzymatically altered or removed.

Finally, it shall be clear that the approaches detailed above
re not restricted to amphibian secretions, but could equally
e employed to screen venoms of other organisms for inter-
sting biological peptides.
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