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Flavonoids are polyphenolic compounds found throughout the plant kingdom. They occur in every organ but
are usually concentrated in leaves and flowers. During the last two decades, in vitro and in vivo studies
demonstrated that flavonoids have inhibitory effects on human diseases through targeting of multiple cellular
signaling components. Wnt/β-catenin signaling regulates proliferation, differentiation and fate specification
in developmental stages and controls tissue homeostasis in adult life. For these reasons, this pathway has
received great attention in the last years as potential pathway involved in distinct Human pathologies. In this
review we discuss the emerging potential mechanisms for flavonoids on Wnt/β-catenin signaling in cancer
and possible investigation strategies to understand flavonoids mode of action on this signaling pathway.
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Introduction

The word flavonoid has its root in the Latin word flavus meaning
yellow. In fact, flower, fruit and leaves color accounts for the pigment
containing abundant amounts of flavonoids. Flavonoids form a very
large group of natural products characteristically containing a C6–C3–C6
skeleton structure (Fig. 1). Different plant families have characteristic
patterns of flavonoids and their conjugates which play important
biochemical and physiological roles in various cell types or plant organs
where they accumulate inside the cells or in the surface. Flavonoids differ
in the saturation of the heteroatomic ring C, and in the overall
hydroxylation patterns (Fig. 1). They may be modified by hydroxyl-
ation, methoxylation, or O-glycosylation of hydroxyl groups as well
as C-glycosylation directly to carbon atom of the flavonoid skeleton.
In addition, alkyl groups (often prenyls) may be covalently attached
to the flavonoid moieties, and sometimes additional rings are
condensed to the basic skeleton of the flavonoid core (Fig. 1).
Depending on the position of the linkage of the aromatic ring to the
benzopyrano (chromano)moiety, this group of natural productsmay
be divided into three classes: the flavonoids (2-phenylbenzopyrans),
isoflavonoids (3-benzopyrans), the neoflavonoids (4-benzopyrans),
and chalcones (Fig. 1) (Marais et al., 2007).

The multiplicity of possible modifications of flavonoids resulted in
more than 6000 different compounds from this class that was known
since the end of last century and this number continues to increase
(Harborne and Williams, 2000). Since flavonoids are abundantly
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Fig. 1. Structure drawing of the distinct four skeleton cores of Flavonoid classes and its possible modification sites. The chemical structures of this class of compounds are based on a
C6–C3–C6 skeleton and in the saturation of the heteroatomic ring C. It can be divided into fourmain classes: (A) Flavonoids; (B) Isoflavonoids; (C) Chalcones; and (D) Neoflavonoids.
Blue circles indicate most frequent hydroxylation sites; green circles indicate most frequent C- and/or O-glycosylation sites and pink circles indicate most frequent carboxylation
sites.
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found in the plant Kingdom, they are consequently present in many
animals diet, including Humans. Due to the different biological
activities of plant secondary metabolites, their regular consumption
may have serious consequences for health, both positive and negative
(Fritz et al., 2003; Manach et al., 2004).

Flavonoids: friend or foe?

Natural products, including flavonoids, have been used worldwide
as traditional medicines for thousands of years to prevent and treat
various forms of diseases, including cancer. Several studies have shown
that flavonoids effects on human diseases are mediated by targeting
multiple cellular signaling pathways (Sarkar et al., 2009). The intake of
flavonoids is associated with many beneficial effects, such as anti-
oxidative, antiviral, anti-inflammatory, hepatoprotective active, pre-
vention of cardiovascular diseases and anti-tumoral effect (Sies, 2010).
In the last decade studies have attempted to understand the molecular
mechanism involved in flavonoids action. However, not all flavonoids
and their actions are necessarily beneficial. The dual role of this
substance by producing either toxic or beneficial effects seems to
depend on doses and/or the experimental cell type (Hodek et al., 2002).
Some flavonoids available in the diet can cause genetic damage and
contribute to the cancer development (Vanhees et al., 2011). The
maternal exposure to the flavonol, Quercetin and to the isoflavone
Genistein during pregnancy increases the risk of infant leukemia due to
the inhibition of the DNA topoisomerase II (DNAt2) enzyme, highly
expressed during embryonic development (Vanhees et al., 2011;
Spector et al., 2005; Ross, 2000, 1998). The chromosomal damage
caused byQuercetin can also be related to papillomavirus oncogenic cell
transformation (Beniston et al., 2001). Naringenin presents high
teratogenic index on tests performed in frog embryos (Pérez-Coll and
Herkovits., 2004), which reflects the teratogenic hazard of this
compound. This substance exerts malformations of the neural tube
closure, developmental retardation and high lethality (Pérez-Coll and
Herkovits., 2004). In summary, the biological properties of flavonoids
have gained much attention and their beneficial or harmful health
effects do not only dependon the structure of the compound, but the life
period when those substances are consumed.

Aconsiderablenumberof reportshave shownthat the consumptionof
fruits, vegetables and beverages, like wine and green tea, is associated
with lower risks of tumor development (McCullough and Giovannucci,
2004). This effect is continuously associated with the abundant flavonoid
content of those foods (Surh, 2003; Smith-Warner et al., 2003; Kac et al.,
2008; Yang et al., 2009a,b). Given this importance, in the last 50 years,
substantial effort has beenmade tounderstand themolecularmechanism
whereby flavonoids act in cancer. The first reports are dated from the 60s
and then several studies show that many flavonoids can control different
types of cancer in variable doses and period of treatment targeting in
different cell processes (Sokoloff et al., 1951).

Cancer targeting by flavonoids

Cancer is a highly heterogeneous pathology related to defects in
regulatory circuits that govern cell homeostasis including cell death,
proliferation, differentiation and migration (Hanahan and Weinberg,
2000; Kreeger and Lauffenburger, 2010). Flavonoids can affect the
overall process of carcinogenesis by several mechanisms, including
antioxidant activities (Duthie and Dobson, 1999), the scavenging effect
on activated mutagens and carcinogens (Williamson et al., 1998;
Calomme et al., 1996), interaction with proteins that control cell cycle
progression depending on p53 (Plaumann et al., 1996), apoptosis
induction by activation of caspase-9 and caspase-3 (Ren et al., 2003),
and general inhibitors of cytokine-induced gene expression (Gerritsen,
1998) (Table 1). For instance, EGCG, the major catechin in tea, has been
largely studied compared to other tea compounds in many epidemio-
logical studies (Yang and Landau, 2000). EGCG induces a pronounced
and specific growth-inhibitory effect on breast cancer cells, but not
on their normal counterparts (Chen et al., 1998). EGCG has been
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reported to control tumor growth of different types of cancer, such as
prostatic cancer, gastric cancer, colon cancer, lung cancer and leukemia
(Brusselmans et al., 2003; Hibasami et al., 1996; Horie et al., 2005; Chen
et al., 2003). In addition, many in vitro studies show that EGCG is
associated with other anticancer benefits, like inhibition of migration
and invasion and induction of apoptosis in mammary cancer cell lines
(Punathil et al., 2008). Genistein – a soy-derived isoflavone – is believed
to contribute to the putative breast and prostate-cancer-preventive
activity of soy. Because of their structural similarity to estradiol and
their binding to estrogen receptors (Shao et al., 2000), these isoflavones
can inhibit growth of prostate and breast cancer cells, which is
intrinsically related to the levels of estrogens in the tumor tissue
(Cappelletti et al., 2006). In addition, Genistein is also related to
modulation of cell cycle (Mukherjee et al., 2010), induction of apoptosis
(Kim et al., 2010a,b), as well as antioxidant, anti-inflammatory (Sarkar
and Li, 2002), anti-invasive effects (Pavese et al., 2010), and anti-
angiogenesis effects in vitro in other cancer cell types (Fotsis et al., 1995;
Table 1
A list of flavonoids and their actions in different tumor types.

Flavonoids Plant Action

EGCG Green tea
(Camellia sinensis)

Cell cycle arrest
Induces apoptosis
Reduces cell adesion
Inhibits cell invasion
Inhibits angiogenesis

GENISTEIN Soy
Tea

Cell cycle arrest
Antiinflamatory activi
Induces apoptosis
Inhibits cell adesion a
Inhibits cell invasion

QUERCTIN Apple Antioxidant activity
Grape Cell cycle arrest
Lemon Induces apoptosis and
Tomato Inhibits cell migration
Onion Inhibits angiogenesis
Honey Induces cell differenti

Antiinflamatory activi

ISOQUERCITRIN Onion Reduces proliferation
Buckwheat Antioxidant activity
Hyptis fasciculata

KAEMPFEROL Kale cress Cell cycle arrest
Broccoli Induces apoptosis
Green tea Antioxidant activity
Honey Inhibits angioenesis
Mango Inhibits cell migration
Caper

ISORHAMNETIN Sea buckthorn Induces apoptosis
Nelumbo nucifera Induces necrosis

Inhibitor of angiogene

SILIBININ Silybum marianum Cell cycle arrest
Induces apoptosis
Induces cell differenti
Reduces invasion
Inhibitor of angiogene

BAICALEIN Scutelaria baicalensis Cell cycle arrest
Induces apoptosis
Supresses adesion and

BAICALIN Scutelaria baicalensis Inhibits metastasis
Cell cycle arrest
Induces apoptosis
Halliwell, 2008; Peterson, 1995) (Table 1). Silibinin is an antioxidant
flavonoid found in Silybum marianum that inhibits tumor growth and
metastasis in several tumor cell lines and rodent models (Deep and
Agarwal, 2010). In addition,flavonoids like Baicalin and Baicaleinwhich
come from Scutellaria baicalensis, an herb traditionally used in China for
treatment of many diseases have been described as potent anti-cancer
compounds (Yano et al., 1994; Zhang et al., 2003). Several reports show
that these flavonoids have cytotoxic effects in tumor cell lines derived
from prostate (Pidgeon et al., 2002; Chan et al., 2000), leukemia, (Roy
et al., 2007; Shieh et al., 2006) colon and lung cancers (Kunts et al.,
1999). Most importantly, they show low toxicity to normal cells (Ma
et al., 2007). Another well studied flavonoid is Kaempferol, a flavonol
with abundantdistribution in somevegetables like caper, kale cress, and
broccoli (Scalbert and Williamson, 2000) and also present in green tea
(Yang et al., 2009a,b). Kaempferol presents important roles in apoptosis
induction (Huang et al., 2010), inhibition of cell migration (Labbé et al.,
2009), antioxidant (Macpherson and Matthews, 2010) and
Tumor References

Breast Liang et al. 1999
Glioblastoma Yokoyama et al. 2001

and migration Leukemia Das et al. 2010
and metastasis Prostate Hibasami et al. 1996

Lung Demeule et al. 2000
Colon Tang et al. 2010

Taniguchi et al. 1992
Yang et al. 2005
McLarty et al. 2009
Jung et al. 2001

Ovarian Valachovicova et al. 2004
ty Intestine Ouyang et al. 2009

Breast Ruiz and Hailer 2006
nd migration Prostate Lara et al. 2007
and metastasis

Hepatoma Alia et al. 2006
Lung Robaszkiewicz et al. 2007

necrosis Leukemia Kang and Liang, 1997
and invasion Glioma Braganhol et al. 2006

Colon Hosokawa et al. 1990
ation Prostate Czokay et al. 1997
ty Tang et al. 2010

Anso et al. 2010
Turner et al. 2009

Glioblastoma Amado et al. 2009
Liver Yokohira et al. 2008

Silva et al. 2009
Leukemia Bestwick et al. 2007
Lung Leung et al. 2007a,b
Ovarian Luo et al. 2009

Labbé et al. 2009

Colorectal Jaramillo et al. 2010
Esophagus Ma et al. 2007

sis Lung Lee et al. 2008
Liver Hasebe et al. 2003
Colorectal Agarwal et al. 2003
Prostate Zi and Agarwal 1999

ation Lung Mateen et al. 2010
Liver Ramakrishnan et al. 2009

sis Oral cavity Chen et al. 2006
Singh et al. 2008

Breast Pidgeon et al. 2002
Prostate Roy et al. 2007

migration Leukemia Kunts et al. 1999
Colon Pidgeon et al. 2002
Lung Leung et al. 2007a,b
Prostate Wang et al. 2010
Leukemia Shieh et al. 2006
Prostate Himeji et al. 2007
Lung Chan et al. 2000

Du et al. 2010
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antiangiogenic effects (Luo et al., 2009) (Table 1). Quercetin, another
flavonol abundantly found in human diet, has been described as anti-
cancer and is one of the most studied phenolic compound (Chen et al.,
2010). In vitro and in vivo studies have shown that quercetin exerts a
dose-dependent inhibitory effect on cell growth (Yang et al., 2009a,b;
Ferry et al., 1996; Amado et al., 2009) in numerous types of cancer, such
as breast cancer (Singhal et al., 1995; Choi et al., 2001), leukemia
(Larocca et al., 1995; Russo et al., 2007), colon cancer (Kim et al., 2005;
Kalra et al., 2007), hepatoma (Granado-Serrano et al., 2006), ovarian
cancer (Gates et al., 2009; Scambia et al., 1990), oral cancer (El Attar and
Virji, 1999) and lung cancer (Nguyen et al., 2004) (Table 1). Quercetin
effects on tumor cells are related with inhibition of cell division by
interference with cell cycle components, like cyclinD1, and induction of
apoptosis and necrosis (Chen et al., 2010). Besides, it is also related to
antioxidant effects and inhibition of cell migration and invasion.
Quercetin glycosides, likeQuercitrin and Isoquercitrin, also has important
anticancer effects. Recently, our group showed that treatment of
Isoquercitrin isolated fromHyptis fasciculata, a plant found in the Atlantic
coast of South American, inhibits significantly proliferation in glioblas-
toma cells with marked reduction of cyclin D1 levels and an increase in
p27 levels, both important cell cycle components (Amado et al., 2009)
(Table 1). In the last years, Isorhamnetin, a flavonol that is metabolically
derived from Quercetin and shares similar chemical structure with
Kaempferol (Manach et al., 1998), has also been associated with tumor
growth control because its effects on apoptosis and necrosis (Jaramillo et
al., 2010; Ma et al., 2007), as well as in cell cycle arrest (Ma et al., 2007).
Altogether, these examples depict the hits and leads for flavonoid
functions in cancer inhibition, which indicate their potential as anti-
cancer drugs.

According to FDA (Food and Drug administration) nearly thirty
flavonoid trials are in course and have advanced up to phases II and III
with tests in volunteer people (www.clinicaltrial.gov).The majority of
flavonoids clinical trials are still under test on phase I or II. For
instance, EGCG and Genistein, are the main flavonoid target for trials
in distinct phases (Tsao et al., 2009; Bettuzzi et al., 2006). Silibinin has
been matter of eight advanced clinical trials in phases II or III showing
its importance in control of human cancers in vivo (Hoh et al., 2006;
Flaig et al., 2007; Deep and Agarwal, 2010). However, none of these
trials have reached FDA approval to be used as medicine for human
cancer treatment.

Flavonoids proposed mechanism of action on cancer
signaling pathways

During the past three decades, there has been substantial progress
in identifying the biochemical events that are associated with the
multistage process of carcinogenesis in which distinct molecular and
cellular alterations occur (Reya et al., 2001; Visvader, 2011). Many
alterations described during carcinogenesis are associated with cell
signaling pathways that regulate cell proliferation, death and
differentiation (Hanahan and Weinberg, 2000). Often, activators,
repressors, components or even target genes of different pathways are
found altered in numerous human cancers. Therefore, agents that
modulate these pathways have great potential for chemoprevention
and can be useful in cancer therapy, either alone or in combination
with conventional methods (Sarkar et al., 2009). In the last years,
many investigators have focused on elucidating the molecular
mechanisms and identifying the targets of these natural products in
different cell pathways (Fig. 2). Indeed, it has been elucidated many
flavonoid targets on pathways strongly related to tumorigenesis and
tumor progression. For instance, flavonoids like Genistein, Tangeretin,
EGCG and Fisetin can modulate different components of the NF-κB
pathway and thus inhibit translocation of this factor to the nucleus
and activation of target genes (Jaiswal et al., 2002). This pathway
plays important roles in control of cell growth and apoptosis and is
related with many types of cancer (Yan et al., 2005). Akt and MAPK
pathways play critical roles in mammalian cell survival signaling and
have been shown to be activated in various cancers (Chang et al.,
2003). Akt and MAPK pathways are also targets for flavonoids like
EGCG, Kaempferol, Tangeretin, Quercetin and Genistein (Sarkar et al.,
2009) (Fig. 2). In addition, it is known that flavonoid modulation on a
pathway component can induce effects on other signaling pathways,
because of a cross-link between these pathways,whichmay promote an
amplification offlavonoid action (Fig. 2). For example,modulation of Akt
by quercetin and EGCG andmodulation of MAPK by Genistein promotes
indirect effects on NF-κB pathway, enhancing the antitumor effects of
these natural products (Gadgeel et al., 2009). Another important
signaling pathway involved in cancer is Notch pathway. When Notch
signaling is abnormally activated, an increasingonproliferationof cancer
cells is observed (Wang et al., 2006b). Genistein and Quercetin can
decrease levels of Notch1 and Notch2 protein, respectively, and then
decrease the proliferation rates of cancer cell lines (Wang et al., 2006a)
(Fig. 2). Similarly, these flavonoids also inhibit, indirectly, the NF-κB
pathway across modulation on Notch signaling (Fig. 2).

Wnt signaling plays a central role in many processes during
development and diseases (Logan and Nusse, 2004). Wnt signaling
can be broadly categorized as canonical or noncanonical pathways
(Veeman et al., 2003). NoncanonicalWnt signaling pathway acts in a β-
catenin independent manner (Semenov et al., 2007). The noncanonical
Wnt signaling has been paradoxically implicated in tumorigenesis
(McDonald and Silver, 2009). Ectopic expression of Wnt5a, which is
noncanonical, in uroepithelial cancer reverted tumorigenesis (Olson
et al., 1997). Conversely, recent studies have reported that Wnt5a may
also enhance motility of malignant cells and tumor invasion such as in
breast cancer, melanoma, and gastric cancer (Kurayoshi et al., 2006;
Pukrop et al., 2006). Few reports have addressed the relation between
flavonoids and noncanonical Wnt pathway. For instance, Su and
colleagues demonstrated that genistein inhibited Wnt5a expression in
ratmammary gland tumor cells (Su et al., 2007). This treatment increased
the secretedWnt inhibitor (sFRP2), but did not change β-catening levels
indicating non-canonical effect of Genistein on mammary tumor.

In recent years, much progress has been made on understanding
Wnt/β-catenin signaling in respect to cancer development and their
possible modulators, which could be useful in cancer prevention and
therapy. In this regard, small molecules synthesized or from natural
origin, like flavonoids, have been identified as potential modulators of
Wnt/β-catenin signaling pathway (Sarkar et al., 2009; Thorne et al.,
2010).

Targeting Wnt/β-catenin with flavonoids

The canonical Wnt pathway has a protein β-catenin as a central
component. In the absence ofWnt ligands, β-catenin is phosphorylated
by a complex of proteins including axin, adenomatous polyposis coli
(APC), glycogen synthase kinase (GSK)3-β, and casein kinase 1 (CK1).
Phosphorylated β-catenin, in the amino terminal region, is recognized
by β-TrCP, an F-box component of the E3 ubiquitin ligase complex,
which promotes β-catenin ubiquitination and degradation by the
ubiquitin-proteasome system (Zhang et al., 2010; MacDonald et al.,
2009) (Fig. 3). Binding of Wnt ligands to their receptors, LRP6/5 and
frizzled, leads to the activation and recruitment of the adaptor protein
disheveled (Dsh), and recruitment of Axin complex to receptor complex.
These events reduce β-catenin phosphorylation and its subsequent
degradation. Stabilized cytoplasmic β-catenin is able to translocate to
the nucleus where it binds to members of the T-cell factor/lymphoid-
enhancing factor family of transcription factors (MacDonald et al., 2009,
2007) and activates Wnt target genes expression (Fig. 3).

The Wnt pathway plays many important roles in controlling
embryonic axis formation, cell fate, proliferation, migration, tissue
architecture, and organogenesis during development and play homeo-
static roles in adult life. Therefore, the increasing interest of the scientific
community, over the last decade, in the Wnt-dependent signaling

http://www.clinicaltrial.gov


Fig. 2. Cellular signaling pathways altered by flavonoids. The scheme depicts distinct signaling pathways main components and where flavonoids have been proposed to act. The
Wnt/β-catenin pathway components in shown in red, the EGF/AKT pathway in dark blue, the AKT in green, the MAPK in purple, the NF-κB in light purple and Notch pathway in light
blue color. Flavonoids appear in dashed boxes.(→) Indicates flavonoid activation and (⊣) indicates inhibition.
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pathways is supported by the documented importance of these
pathways in a broad range of physiological conditions and disease
states (Magdesian et al., 2008; Mermelstein et al., 2007; Janssens et al.,
2006; Zhang et al., 2010). For instance, it has been shown that
inappropriate regulation and activation of these pathways is associated
with several pathological disorders including cancer (Thiago et al., 2010;
MacDonald et al., 2009), retinopathy (Toomes et al., 2004), tetra-amelia
(Niemann et al., 2004) and bone and cartilage disease such as arthritis
(Loughlin et al., 2004). In addition, several components of the Wnt-
dependent signaling pathways appear to play important roles in
neurodegeneration such as Alzheimer's disease (Cerpa et al., 2009;
Magdesian et al., 2008), schizophrenia (Miyaoka et al., 1999), and
bipolar disorder (Gould and Manji, 2002) and in the emerging field of
stem cell research (Willert et al., 2003). Due to central role in Wnt
signaling, mutation of the Wnt pathway components have been
associated with many disease. This is the case of colorectal cancer,
where 60% of these tumors contain mutation or show abnormalities in
components of the Wnt/β-catenin signaling pathway (Segditsas and
Tomlinson, 2006). Besides colorectal cancer, Wnt pathway has been
implicated in melanoma, hepatocellular carcinoma, gastric carcinoma,

image of Fig.�2


Fig. 3. Flavonoids regulate different components of Wnt/β-catenin pathway. (A) Upper panel shows flavonoids interaction with extracellular inhibitors of Wnt/β-catenin signaling
sFRP1, DKK, HBP1 and WIF1. (B) Intracellularly, flavonoids interact with the degradation complex formed by GSK3, Axin, APC and CK1 as well as with phosphrylated β-catenin.
(C) Flavonoids affects β-catenin nuclear translocation, β-catenin/TCF association and Wnt/β-catenin target genes.
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Glioblastoma, Leukemia, Breast cancer and others. In the last 10 years,
several studies have reported that the anti-tumor effect promoted by
flavonoids is related to their ability to modulate the Wnt pathway
(Sarkar et al., 2009). Moreover, the effects promoted by flavonoids is
detected in different levels of the signaling pathway, from cell receptors
to the association between β-catenin and TCF (Fig. 3), and control of the
methylation of important pathway inhibitors.

Apigenin was the first described flavonoid as regulator of the Wnt
pathway because of its selective inhibition of CK2 (casein Kinase II). In
breast cancer cells, 40 μM of Apigenin reduces the levels of β-catenin
and Dsh proteins and accelerates the degradation of β-catenin in the
first two hours of treatment promoting cell cycle arrest in breast
cancer cells (Song et al., 2000; Landesman-Bollag et al., 2001). Wnt
signaling has been found to be inhibited by EGCG in a dose dependent
manner in breast cancer, lung cancer, colon cancer and in normal
cells where Wnt signaling was super-activated (Kim et al., 2006;
Dashwood et al., 2002; Pahlke et al., 2006; Gao et al., 2009; Mount et
al., 2006). The effect of EGCG is not direct in elements ofWnt/β-catenin,
but in other proteins that regulate this pathway. In breast cancers, EGCG
treatment at 25 to 100 μMinducedHBP1 transcriptional repressor levels
through an increase in HBP1 mRNA stability which is a suppressor of
Wnt signaling. EGCG reduced both breast cancer cell proliferation and
invasiveness through the induction of HBP1 and the subsequent
inhibition of Wnt signaling. Consistently, the HBP1 knockdown lines
had reduced sensitivity to EGCG in the suppression of Wnt signaling
and of a target (Kim et al., 2006). In lung cancer cells, EGCG promotes
demethylation of WIF-1 (Wnt inhibitory factor 1) (Fig. 3). WIF-1 is a
Wnt antagonist that inhibits Wnt signaling by direct binding to Wnt
molecules. WIF-1 is silenced when it is hypermethylation in lung
cancers (Mazieres et al., 2004;Yanget al., 2009a,b).Howeverwhen these
cells are treated with EGCG at 0 to 50 μM for 72 h, methylation levels
in WIF-1 reduce from 77.6% to 27.6% (Gao et al., 2009). Wnt specific
reporter activities were significantly inhibited in Hek293 cells trans-
fected with β-catenin and treated with EGCG for 48 h at 0 to 25 μM. In
addition, total extract of white and green tea (where the major
compounds are catechins) also inhibited Wnt signaling (Dashwood et
al., 2002). This treatment reduced tumor multiplicity in the ApcMin/+

mouse, a widely used model for intestinal tumorigenesis by inhibiting
the translocation of Wnt mediator β-catenin to the nucleus (Ju et al.,
2005; Bose et al., 2007) (Fig. 3).

While the Wnt inhibition by EGCG is indirect, the effect of
Quercetin controls theWnt pathway directly by affecting components
of the pathway in several types of cells. In 2005, Park and co-workers
showed that Quercetin interferes with the binding of Tcf complexes to
DNA in colon cancer cells (Park et al., 2005a,b). SW480 cells (colon
cancer cells) treated with 50 μM Quercetin for 24 h decreased the
amount of β-catenin/Tcf complex (Park et al., 2005a,b). Consistently,
another report showed that Quercetin inhibits expression of cyclin D1
and survivin as well as the Wnt/β-catenin signaling pathway (Shan
et al., 2009) (Fig. 3). Quercetin is a growth suppressor for several
leukemia and lymphoma cells acting throughWnt pathway inhibition
(Kawahara et al., 2009). Currently, Quercetin has been considered a
Wnt pathway inhibitor, being used in similar studies as negative
control for modulation of this pathway (Gelebart et al., 2008;
Kawahara et al., 2009; Wallace et al., 2010).

Recently, Fisetin was pointed as an inhibitor of Wnt/β-catening
signaling (Syed et al., 2011). Fisetin-treated melanoma cells resulted
in decreased cell viability with G1-phase arrest and disruption of
Wnt/β-catenin signaling. This effect was accompanied by a decrease
in the expression of Wnt protein and its co-receptors, as well as by a
parallel increase in the expression of endogenous Wnt inhibitors.
Fisetin-treated cells showed increased cytosolic levels of Axin
and β-TrCP and decreased phosphorylation of glycogen synthase
kinase 3β associated with decreased β-catenin stabilization. Fisetin-
mediated interference with the functional cooperation between
β-catenin and T-cell factor (TCF)-2 resulted in the downregulation
of positively regulated TCF targets, such as c-myc, Brn-2, and Mitf
(Syed et al., 2011).

Our group showed that Isoquercitrin (quercetin 3-O-β-D-gluco-
pyranoside), a glycosylated derivative of Quercetin, inhibits

image of Fig.�3
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Glioblastoma (Gbm) cells proliferation through mechanisms related
to control Wnt/β-catenin pathway. This work showed that 23% of β-
catenin staining in untreated Gbm cells was found in the nuclei.
However when 100 μM of Isoquercitrin was added to Gbm cell
culture, nuclear β-catenin staining was dramatically decreased to 4%,
while non-nuclear staining increased to 77%, supporting that
isoquercitrin treatment alters the distribution of β-catenin in Gbm
cells. These findings are consistent with a reduction in Wnt/β-catenin
signaling activity (Amado et al., 2009) (Fig. 3).

Genistein treatment of prostate cancer cells upregulates GSK-3β
expression and enhances GSK-3β association with β-catenin, leading
to β-catenin phosphorylation and degradation. As consequence
Genistein inhibits prostate cancer (Li et al., 2008). Genistein also
suppressed β-catenin/Tcf trancriptional activity in SW480 cells (colo-
rectal carcinoma cells) in a dose-dependent manner (Park and Choi,
2010). Genistein affect the upstream components of the β-catenin/Tcf
pathway by suppression of GSK-3β and Akt phosphorylation (Park and
Choi, 2010). Genistein also modulates Wnt pathway in other cell types.
For instance, in mesenchymal stromal cell isolated from human
umbilical cord, Genistein reduces cell proliferation through the
recruitmentofβ-catenin tomembraneand reducing cytosolicβ-catenin.
In addition, Genistein reduces the protein andmRNA levels of cyclin D1
(Shieh et al., 2010) (Fig. 3).

In gastric cancer the Flavanone controls cell proliferation by
modulation Wnt signaling on transcriptional levels (Park et al.,
2005b). Flavanone is able to reduce transcriptional activity, but not
interferes with β-catenin levels, distribution or association with Tcf
(Park et al., 2005b). It remains to be clarified the mechanism by which
Flavonone at TCF activity.

Recently, Park and Choi showed that the binding of Tcf complexes
with its specific DNA binding sites was suppressed by four flavonoids,
Kaempferol, Isorharmnetin, Genistein and Baicalein in colorectal
cancer through distinct mechanisms (Park and Choi, 2010). The effect
of Kaempferol, Baicalein and Isorharmnetin is related to upstream
regulators of the β-catenin/Tcf pathway other than GSK3, while
Genistein affects the Wnt pathway by suppression of GSK3 β (Park
and Choi, 2010) (Fig. 3).

It is intriguing that the effects of flavonoids have been found in
specific cell lines rather than in every cell types. For instance, the
flavonoid Silibinin controls the proliferation of colon tumor cells, only in
cell lines where the Wnt pathway is found to be altered. In SW480
(colorectal cancer line where Wnt pathway is altered), Silibinin
treatment inhibited cell growth, induced cell death, and decreased
nuclear and cytoplasmic levels of β-catenin. However, in HCT116 cells
(colorectal cancer wild type for Wnt signals), Silibinin have no effect,
suggesting its selective effects on the Wnt/β-catenin pathway (Kaur
et al., 2010).

Besides the effect on tumor cells, flavonoids may act on other cell
types and may also function as activators of the Wnt pathway. For
instance, theflavonoidsGenistein, Daidzein, Isorharmnetin andBaicalin,
the glucuronide of Baicalein, have been described to act in human
adipose tissue-derived stem cells (hMASCs). These flavonoids act by
activating the Wnt pathway and thereby inhibit the differentiation of
adipose stem cells into adipocytes. Baicalin maintains β-catenin and
Disheveled levels during adipogenesis, Isorharmnetin down-regulates
the mRNA levels of Frizzled-related protein-1 and Dickkopf-1 (specific
inhibitors of the Wnt pathway) (Lee et al., 2010b,a). In addition,
Genistein treatment induces higher Wnt-3 and β-catenin mRNA levels,
while Daidzein increased expression of β-catenin at the protein level
(Kim et al., 2010b).

Conclusion

Despite sharing common general chemical structure, flavonoids
presentmultiple functions in different tumor cells reflecting actions in
diverse signaling pathways. Here we reviewed that different
flavonoids interact with different components of the Wnt/β-catenin
pathway modulating signaling and tumor growth. These observations
strongly suggest that structural specificity may be a key for
understanding flavonoid mode of action. However, it remains to be
addressed what specific structural group, such as hydroxyl, methyl or
glycosyl, should be added to the phenylbenzopyrano (C6–C3–C6) core
to improve affinity and specificity for Wnt signaling components.
More importantly, modifications on these structuresmay shed light in
the mechanisms by which flavonoids impair cancer growth. A good
chemical strategy was the recent discovery of the N-substitution of
the diphenylsulfonyl sulfonamide 1 (Moore et al., 2009, 2010). This
piperidinyl was identified as an inhibitor of sFRP1 (secreted Frizzled-
Related Protein1) binding to Wnt ligands, therefore promoting Wnt
signaling. To improve the compound effect in theWnt signaling aswell
as to identify the structure region modulating Wnt/sFRP1 binding, the
authors performed structure–activity relationship in the sulfone
portion. As result, they found isosteric derivatives that improved
binding and potency of this molecule on Wnt signaling (Moore et al.,
2009, 2010). This strategy points toward a promising future in the study
of small molecules, such as flavonoids, with biological potential.

Six decades ago, first studies pointed the flavonoids as potential
molecules in cancer growth therapy. In last 10 years, several groups
showed that the biological effect of flavonoids is linked with their
ability tomodulate signaling pathways. Nowadays, the central issue in
flavonoids investigation is to uncover structure versus biological
effect. These studies will allow a large improvement about the
molecular mechanism that regulates the action of flavonoids, and will
also provide better understanding of the Wnt signaling functioning in
healthy and pathological conditions. Together these observations
show the importance of flavonoids as potent modulators of Wnt
signaling and highlight their potential as agents in fighting and
preventing cancer, particularly where conventional therapeutic is still
ineffective.
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