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Abstract. A sound and complete axiomatization of embedded cross dependencizx is given. Itis
prover iy b: complete through the study of the dual structure of nandecomposeble sets and the
exhisvizor o an Armstrong Relation for a family of cross dependencies.

Ré wme. t svateme dlaxiomes valide et complet pour les dépendances produit des relations
n-2'res est donaé. La preuve de la complétude 2st obtenue par Uetude de la structure duafe des
cnsembles d'uttributs non décomposanic . Cn exhibe une “Relation d'Armstrong’ pour toute
“amille de dépendance. produit.

1. Introduction

Ir. the context of the relational model twith which we will assume the reader s
famihar) many types of data dependencies have been defined: functional dependency
( “Ds) multivalued (MVDs). join dependencies (JDs:. One of the best characteri-
zations one can give to such dependencies is a souna and complete set of axioms:
A set A of axioms is sound if, given a set F of dependencies, every new dependency
| that can be desived from 7 using A is implied by F: it is complete if every f that
i implied by F s denivable crom F ousing A

Complete and sound sets o axioms have been given for FDs [1]and for FDs and
NMVDs 2] 1t was also shown that no complete and sound axiom .bzation could be
fr und for embedded MVDs.

In this paper we study @ special case of MVDs, cross dependencies, and we give
a sound and complete axiomatization for embedded crocs dependencies,

Tais is done through the stuuy of the dual structure of nondeccemposable sets,
and the exhibition of an Armstrong Relation (a relation that satisfies exactly a set
cf cross dependencies ).
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3. Nondecomposition

Definition 3.1. Let U be ar attribute set. A nondecompositior (ND) over L7 is a
subset X < U.

We say that R{ U) satisfies the ND X (R & X)) iff it does not satisfy any nontrivial
CD with scope X.

Finally we denote by ND'R) the set of NDs satisfied by R.

Theorem 3.2. The following set of axioms is sound Afi')r-‘rhe class of NDs-
(N1) VAe U, {A} is an ND (trivial XDs).
(N2 If Yy and Y- are NDsond Y, ~ Y7 0, then Y, 2 Y, is an ND (transisivity ).

Proof. (1) (N1} is trivial
(1) Assume Y, Y, are NDswith ¥, 0 Yeosdand assume Y, o0 Y is netan ND.

Then there is some partitior of Y, u Y,# 0 which is a cross decomposition.
Frojecting this partition on Y, and Y. we will generate a nontrivial CD with

scone Y, or Y., hence a contradiction.

4. Relationship between CD+ and NDs
We first associate with eash CDE and NDF as follows:

Detinition 4.1. Let F e a fa nily of Cis. The associated family of NDs F is defined
by

FelvYivyae U and (VZe F. ScopdZ) ™ Y => 7 is trivial )}

Iataitively it is the greatest family off NIDs that can be satisfied knowing that F
I8 satistied,
Detfmnition 4.2. Let £ be a faaily of NDs over U let Yo 70 we detine

MA Y)Y - 127 F 7o Y and (N7 F.70 7 YanZ o /0

L}

Theorem 4.3 Lot Fosansfy Ny and (N2 then
Mo 0Y oG parition op Yo torall Yy oo U

Proof. (1) Lot Z, and Z,¢ Max, (Y and assume Z, 2. » 0. Then Z,¢ F and

Z-o Fand F sausties (IN2Y > 7,0 Z-7 F and we have
Lo oLy s Lo 7 L

Svermetrically, 2o Lo 4o A
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(2} To see that Max (YY) is a covering of Y we just have to remember that each

-

A= Yisin F. ie., each element A will be covered by some element of F. [

We can now associate with each NDF a CDF as follows.

Deﬁniti-m 4.4. Let F be a family of NDs satisfying (N1) and (N2). We define the
associassd family of CDs F by

F={Max, (V) Yc U}

Let us now prove a set of results concerning the relationship between F and F.

Theorem 4.5. Let F be a familv «f CDs sarisfying (C1), (C2), (C3), ((‘41. Then F
satisfies (N1 and (N2).

Proof
F={YIVZc FScori(Z)=Y = Z trivial}.

We first prove that F satisfies (N1): {AJc F for all A« A, VA U VZe F il
ScovitZ) =1 A} Then Z is trivial.

Mow we prove that Fosatisfies (N2): Assume XN, ¢ Fand X, F and N, X =
then

V7.« F st ScopdZ) =X 7, =1\ L

pe ST

‘V/_ .- F s.L S‘ '(,)Vl“ Z} R Xf A;’j = \ﬂa
L
Let Zbesuchtbat ScopreZ) - X, o Nooby the projection anioms, 7 inhe projected
on X, end X.. It is clear that if Z is nontrivial, at least one of these projections
will be nontrivial, hence a contradiction: therefore, Z is trivial and Novo 0 X, 0 F

Lemma 4.6. [t R satisfies a familv of NDvFand F, then NDF(R) - F,
Proof, X' NDFIR) Assume X v F:then Max, (X hus at least two clements, e
there v a (N0 X in Fonentrivial and with seope Xlien N is decompuosable, bones

g contradiction,

Theorem 4.7, It R saiisties a junulv of NDs Foand B ithen

CDERY o Fy.

Proof. 1ot Y (N, N . ... X, 15 CDF Ry and consider

YOOl Man, i N

b the transitviny astom we have Y 2y,
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(2} Y'e F because

NDFR)=F =2 VXcF X<Score{Y), N Max (X, othenwvise

A

» would be decompasable;

therefore Y’ =Max,; (I, X/),ie, VY, F=>Y [

Theorem 4.8. Ler F be a famidyv of CDs satisfring (Ch, (C2), (C3y, (C4): then
(Fy*=F.

=

Proof. We first prove F < { F)*.

Let Y={X,,X., ... X, e Fandlet v"=Max (ScopitY).

Claim. ¥ X < Y, 3X, 7Y st X< X,

Proof of the Claim Assuine this is aot to be true. Then dhore exi s some X - Y7
not included in any X, v i- thercfore covered by more than cne X assume by X
and X ithe proof casily generaiizesi. (LN 1 F andl by the projectiea axiom,
(X, " X.X.n X))o F:thereore X 2 F and X cannot be in Max, (Scorrt Yii. The
claim 1s proved. i

Therefore Y'is u refinement of Y. By the clustering axiom, Y'= Y and Y '« £
Yo R )

\i'e new prove the reverse inclusior, (7 2 F -
it DL O O3y, (O, it is setlicient to ~show 1o oLt

veing closed under
Y o Fothen there iy some 7 b Y = Max, 0 Z0=0X, X0 0N 1 Assume Yo b
ther 3X sw (XU

Therelore, these exisis serre T F that intersects both X, und ' X, and X

X2 F {otherwise, by projection and transitivity, Y- B

1

e

no: maximal vadecomposable, honee a contradiction.

5. {“ompleteness of NDs

Theorem 5.1, Given a famiy of NDs F.otheie exises a relation B such tha:

R/ = i‘ (1.'1(1 z’q; & ;:

Preof. We butld thi relation as follows:
cbr Detine some woding o0 fFh

21 Foreach A L7 detive

D04 - Tar Y ey oA YL
far Divfine

RlA A A = DUA 7 DUA = 00

e Foreach Yo B0y o delete rom R ad! taples xosuch that

Thus we have obtned rolation K,
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Before proceeding with the proof of this theorem, let us look at an example:
U~=ABC, ... F={{A},{B},{C}.{AB},{ABC}}.
Define ¢ as foliows:
c({AN=1: c({BhH=2; c({CH=3; c({ABC}H=4: c({AB})=5.
Then
D(A)={1,4,5} (Ae{A},{AB}.{ABC}),
D(B)=1{2,4,5} (Be{B},{AB}.{ABC}),
D(CY=13,4)  (Ce{C},{ABCY),

’-i"! r'n,n
R4ABC)=14|x|4 x[1
EHRE wed
The final relation is ‘

4 4 4

RAABC)={5 § 3|

s 5 4

{4 4 4] is deleted because {ABC}e F: [5 5 3] and [3 5 4] are deleted because
{AB}- F. ‘

It is easy to check that by removing these 3 tuples we have forbidden any
decomposition of ABC on AB. while all others are satisfied. (A, CVand (B, C') are
satisfied cross decompositions.

We now proceed to prove that R, 1s indeed the good candidate. This witl be
proved in a number of claims.

Claim 5.1.1. Let Ye Fand X < Y. Then (c¢Y ) etV o ciY o R0 XD

Prool
VA X ot Yo RyA) thecause A< X o '} < By,
VAY N oAy ByeAY ibecause 1AV Fou
Denote [0 X2 B B, B, (single attributes) et v, be the tollow ing tuple:
R AN . B/ B....B,
QYT Y Bt

.o RU). Moreover, VY ¢ F 1Y -,

‘4

wIY P A e Y L el Y

fherefore, v R, and s N R0 Ny
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Claim 5.1.2, Let X< U, YU, XY -0 If v RiiX:, ve Ro(Y) and Xy
R, (XY), then 37 < XY, 7 ¢ F such that

Proof
xe Re(X)= xz R(X). veRA{Y)=>ve RUY).
Therefore, Xy Ry(XY).

s ™ ~ .

et T=U~-XY =B/B, ... B, Define tuple ¢ as “ollaws.

Rj X Lw B, R
¢ v

| x 1 victB) el
Then vo R, and i XY= vvand. since x\v 7 R, v Ry, e, it wis erased becaune
for some Ze £.1Z] > 1,
vlzy=1(clz) ... eizh)

Since all 2« hove size 1, Z is necessartly included in XY,

Claim 5.3, Let V@ Uand Max, (Y = IN | N L AL Let o Ry(N Y
L2 oo n Then xyo o0 ReUOX O XL LX),

A

Preof. Assume v o= yox. o oy ¥

i

-

i
x
e
I

S0 Then, by Chuam 512, 37
NoaL o 0N such that
X(A) = ctodetn) . el

{1V Assume 2 2 X forsome & Then, x (= (e 2) oo e{zyyand x ¢ RN, which
is a contradiction.

(2) In that case it s necessarity the case that 2 intersects two X' ~sov X and
N.. Then,since X2 F, X v Fand Z« F byrude (IN2) we have X XN Fliel X
ard X are nosecximal in Y which is i contrad ction.

This claimy s cicn 5 ecutvalent to R savishies &

Claim SAd. Ler X0 B Than By 0Ny v potr decomposable Owfuet i equitadend 1o v,

R+ b

Proof. Assume [\ -1 (otherwise the resultis trivial), Then X = AX, with LY. - 1
fetairs Ry (A tein) L o) CRpGX Dy and el oo s Ry tX L A,

Fhr o completes te proot of Theerem 501
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6. Completeness of CD

We can now state the main theorem of this paper.

‘Theorem 6.1. -Axioms (Cl}), (C2), (C3), (C4) are complete for CDs.

~ Proof. Let F satisfy (C1), (C2), (C3), (C4). By Theorem 4.5, F satisfies (N1) and
{N2). By Theorem 5.1 there exists an R, such that

Ry= F and R;= F*

By Theorem 4.8, F*o F,i.e.. R, satisfies F and F.
Finally, by Theorem 4.7, .

CDVIR,y=F o3

The reader should note that R, is indeed an Armstrong Relation for £
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