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a b s t r a c t

The goal of the Cluster Editing problem is to make the fewest changes to the edge set of
an input graph such that the resulting graph is a disjoint union of cliques. This problem is
NP-complete but recently, several parameterized algorithms have been proposed. In this
paper, we present a number of surprisingly simple search tree algorithms for Weighted
Cluster Editing assuming that edge insertion and deletion costs are positive integers. We
show that the smallest search tree has sizeO(1.82k) for edit cost k, resulting in the currently
fastest parameterized algorithm, both for this problem and its unweighted counterpart.We
have implemented and compared our algorithms, and achieved promising results.1

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

TheWeighted Cluster Editing problem is defined as follows: Let Gw = (V , E) be an undirected graph. For every vertex
pair {u, v} ∈

(V
2

)
= {{u, v} : u, v ∈ V , u 6= v} we know the cost of deleting {u, v} from Gw in case {u, v} ∈ E, or inserting

{u, v} into Gw in case {u, v} /∈ E. Our task is to transform Gw into a transitive graph (a disjoint union of cliques) by applying
edge modifications with minimum total cost. For our theoretical analysis, we assume that all pairs have non-zero integer
weight. In the unweighted Cluster Editing problem, insertion or deletion cost are one for each vertex pair.
In application, the above task corresponds to clustering objects, that is, partitioning a set of objects into homogeneous

andwell-separated subsets. Clustering data still represents a key step of numerous biological andmedical problems, such as
class discovery for tissue identification using gene expression data. Here, a clustering corresponds to a vertex disjoint union
of cliques. The input graph is corrupted and we have to clean (edit) the graph to reconstruct the clustering [14] under the
parsimony criterion.
Previous work.NP-hardness of the unweighted Cluster Editing problem [14] was proven by Křivánek andMorávek [10].

Several heuristics were developed for Weighted Cluster Editing or rely on its graph-theoretic intuition, including
CLICK [15] and FORCE [18]. The unweighted Cluster Editing problem is APX-hard and has a constant-factor approximation
of 2.5 [17]. To find exact solutions, Grötschel and Wakabayashi [6] formulated the problem as an Integer Linear Program.
The parameterized complexity of unweighted Cluster Editing, using the minimum number of edge modifications as the
parameter k, is well-studied: Until recently, the fastest implemented algorithm had running time O(2.27k + n3) on an
n-vertex graph [5,8], while in theory, the best known algorithm has running time O(1.92k + n3) [7]. Guo [9] presented
a linear problem kernel. In contrast, the fixed-parameter tractability of Cluster Editing with ‘‘don’t care edges’’, that is,
edges whose modification cost is zero, is still an open problem [3].
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Our contributions.Wepresent a problem kernel forWeighted Cluster Editing and branching strategieswith search trees
of sizes O(3k), O(2.42k), O(2k), and O(1.82k), where the parameter k is the minimum total cost of edge modifications. We
concentrate on the case that edge insertion and deletion costs are positive integers, and sketch how to adopt our results for
real-valued graphs where necessary.
In particular, we introduce a new branching strategy that is surprisingly simple, and show that the resulting search tree

is of size O(2k). We then refine our analysis and show that, by accurately choosing edges to branch on, we obtain running
time O(1.82k+ n3). Our algorithm is the fastest known for unweighted Cluster Editing and improves on the O(1.92k+ n3)
algorithm in [7]. To the best of our knowledge, this is one of the few cases where a weighted problem allows for a more
efficient fixed-parameter algorithm than its unweighted counterpart.
In Section 5, we compare running times of our algorithms forWeighted Cluster Editing. In our comparison, we use both

simulated graphs and graphs that stem from protein similarity data and aim at clustering homologous proteins.
We find that the data reduction step of merging vertices significantly reduces running times and, in contrast to what

theoretical bounds suggest, theO(3k) strategy usually outperformed theO(2.42k) strategy. TheO(2k) andO(1.82k) strategies
were significantly faster.

2. Preliminaries

Let V be the set of objects to be clustered, corresponding to the vertices of the graph, and let n := |V |. In this work,
we consider only undirected graphs without self-loops and multiple edges. For brevity, we write uv as shorthand for an
unordered pair {u, v} ∈

(V
2

)
. Let s :

(V
2

)
→ Z be a weight function that encodes the input graph: For s(uv) > 0 a pair uv is

an edge of the graph and has deletion cost s(uv), while for s(uv) < 0, the pair uv is not an edge of the graph (we call it a
non-edge) and has insertion cost−s(uv). If s(uv) = 0, we call uv a zero-edge. Note that there are no zero-edges in the input
graph, so that each pair of vertices is either an edge or a non-edge whose edit cost (deletion or insertion cost) is a positive
integer. This is necessary solely to achieve provable running times. Nonetheless, zero-edges can appear in the course of
computation and require additional attention when analyzing the algorithm.
When analyzing connected components, we regard zero-edges as non-existing. Throughout this paper, we assume that

circles and paths do not contain zero-edges. A circle of length three is also called a triangle. We say that C ⊆ V is a clique
in an integer-weighted graph if all pairs uv ∈

(C
2

)
are edges. If all vertex pairs of a connected component are either edges

or zero-edges, we call it a weak clique. If all connected components of a graph are weak cliques, it is called transitive. Weak
cliques in a transitive graph are also called clusters. An unweighted graph G = (V , E) is transitive if and only if there exists
no conflict triple in G, that is, three vertices vuw such that vu, uw ∈ E but vw /∈ E. Unfortunately, there exists no direct
analogue of this statement for integer-weighted graphs. Vertices vuw form a conflict triple in an integer-weighted graph Gw
if uv and uw are edges of Gw but vw is either a non-edge or a zero-edge. We distinguish two types of conflict triples vuw:
if vw has weight zero then the conflict triple is called weak, whereas if vw is a non-edge then the conflict triple is called
strong. In case the integer-weighted graph Gw contains no conflict triples, Gw is transitive. But the converse is obviously not
true, as the example of a single weak conflict triple shows. A graph that does not contain any strong conflict triple is not
necessarily transitive: For V = {u, v, w, x} let uv, vw, wx be edges, let uw, vx be zero-edges, and let ux be a non-edge. The
resulting graph is connected and contains no strong conflict triple, but is not a weak clique.
To solve Weighted Cluster Editing we first identify all connected components of the input graph and calculate

the best solutions for all components separately, because an optimal solution never connects disconnected components.
Furthermore, if the graph is decomposed during the course of the algorithm, then we recurse and treat each connected
component individually. Our fixed-parameter algorithms often require a cost limit k: In case a solution with cost≤ k exists,
the algorithm finds this solution; otherwise, ‘‘no solution’’ is returned. To find an optimal solution, we call the algorithm
repeatedly, increasing k.
An unweighted Cluster Editing instance can be encoded by assigning weights s(uv) ∈ {+1,−1}. In the resulting graph,

all conflict triples are strong. During data reduction and branching, we may set pairs uv to ‘‘forbidden’’ or ‘‘permanent’’,
meaning that the status of uv cannot be changed in the future. In fact, permanent edges can bemerged immediately:Merging
uv means replacing the vertices u and v with a single vertex u′, and, for all vertices w ∈ V \ {u, v}, replacing pairs uw, vw
with a single pair u′w. See Section 3 for details. In this context, we say that we join vertex pairs uw and vw. Theweight of the
joined pair is s(u′w) = s(uw)+ s(vw). In case one of the pairs is an edge while the other is not, the parameter k is reduced
by min{|s(uw)| , |s(vw)|}. Note that we may join any combination of two edges, non-edges, or zero-edges when merging
two vertices. We stress that joined pairs can be zero-edges.
For unweighted Cluster Editing, Guo [9] uses the concept of critical cliques to construct a kernel of size 4kopt. Critical

cliques are cliques in the input graph that share the same neighborhood. In unweighted graphs, all vertices of a critical clique
must end up in the same cluster, so we can always merge critical cliques. This idea does not apply directly to Weighted
Cluster Editing but it is possible to adapt the concept as a data reduction by considering cliques with similar neighborhood
[2]. However, this does not result in a kernel forWeighted Cluster Editing. When given an unweighted Cluster Editing
instance, we merge all critical cliques and thus transform the graph into an integer-weighted graph with at most 4kopt
vertices. The graph where all critical cliques are merged can be easily constructed in O(m+ n) time [9] for an n-vertex and
m-edge graph. The weight of any tuple uv is simply the product of the corresponding critical clique sizes |Cu| · |Cv|.
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Fig. 1.Merging two vertices u, v into a new vertex u′: Let c1 = |s(uw)|, c2 = |s(vw)| be the edit costs. Dotted edges are nonexistent.

3. Data reduction

3.1. Problem kernel

In the beginning of our algorithm, and in each search node, we call the following data reduction routines in order to
downsize the input graph as much as possible.

Rule 1: Remove cliques. Remove already existing cliques from the input graph.

Rule 2: Check for unaffordable edge modifications. For each set of two vertices u, v from V , we calculate a lower bound for
the costs induced when uv is set to ‘‘permanent’’ or ‘‘forbidden’’, e.g. when the respective edge is modified. Let N(v) := {u |
s(uv) > 0} denote the set of neighbors of a vertex v, and let A4 B be the symmetric set difference of sets A and B. We define
induced costs icf (uv) and icp(uv) for setting uv to ‘‘forbidden’’ or ‘‘permanent’’, respectively:

icf (uv) = max{0, s(uv)} +
∑

w∈N(u)∩N(v)

min{s(uw), s(vw)} (1)

icp(uv) = max{0,−s(uv)} +
∑

w∈N(u)4N(v)

min{|s(uw)|, |s(vw)|}.

This is how we make use of these values:

• For all u, v ∈ V where icf (uv) > k: Insert uv if necessary, and set uv to ‘‘permanent’’ by assigning s(uv)←+∞.
• For all u, v ∈ V where icp(uv) > k: Delete uv if necessary, and set uv to ‘‘forbidden’’ by assigning s(uv)←−∞.

If there is a pair uv such that both conditions hold simultaneously, the problem instance is not solvable.

Rule 3: Merge vertices incident to permanent edges. As soon as we set an edge uv to ‘‘permanent’’, we infer that u and vmust
be in the same clique in every solution. In this case, wemerge u and v, creating a new vertex u′.
If w is a neighbor of both u and v, we create a new edge u′w whose deletion costs as much as the deletion of both uw

and vw. If w is neither a neighbor of u nor of v, we calculate the insertion cost of the nonexistent edge u′w analogously. In
casew is a neighbor of u or v but not both, uvw or vuw is a conflict triple, and we must decide whether we delete the edge
connectingwwith u or v, or we insert the nonexistent edge. By summing the weights (one of which is negative) to calculate
s(u′w)we carry out the cheaper operation, decreasing k accordingly, and maintain the possibility to edit u′w later.
This is how we merge u and v into a new vertex u′: For each vertex w ∈ V \ {u, v} set s(u′w) ← s(uw) + s(vw). Let

k← k− icp(uv), and delete u and v from the graph. See Fig. 1. Note that these reduction rules conserve the optimal solution.
To start our data reduction, we have to compute icf (uv) and icp(uv) for all u, v ∈ V , which takes O(n3) time. Setting an

edge to ‘‘forbidden’’ or ‘‘permanent’’ can reduce the parameter k because we might have to delete or insert an edge. If we
merge a permanent edge, this can further reduce the parameter. This, in turn, may trigger other edges to become forbidden
or permanent. In addition, setting an edge to ‘‘forbidden’’ or ‘‘permanent’’ will change the induced costs of other edges.
This lemma shows how to execute our data reduction in running time O(n3) for integer-weighted input graphs and in time
O(n3 log n) and for a real-weighted input graph.

Lemma 1. Data reduction according to Rules 1–3 can be carried out in running time O(n3) for integer-weighted graphs and
O(n3 log n) for real-valued edge weights.

Proof. The induced costs icf (uv) and icp(uv) for each vertex pair u, v ∈ V can be computed in O(n) time. Therefore it
initially takes O(n3) time to compute the induced costs of all u, v ∈ V . Note that during the data reduction, at most

(n
2

)
edges

will be set to ‘‘forbidden’’, and at most n−1merge operations are executed before the graph collapses into a single vertex. If
we deal with real-valued edges, we initialize the following data structures: For each u ∈ V we use a binary heap to store all
icf (uw) and another binary heap to store all icp(uw) for w ∈ V . This allows us to find maxw{icf (uw)} and maxw{icp(uw)}
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for each u ∈ V in constant time. If edge weights are integers, we replace the binary heaps with double-linked lists, see [8]
for details.
We repeatedly do the following: Usingmaxw{icf (uw)} andmaxw{icp(uw)} for each u ∈ V , we find the overall maximum

icf and icp value in time O(n). We test if there exist u, v ∈ V with icf (uv) > k or icp(uv) > k. If no such u, v exist, we stop.
Otherwise, we set the corresponding edge to ‘‘forbidden’’ or ‘‘permanent’’, we update parameter k← k− |s(uv)| and also
the heaps for icf and icp values as described below. The running time of this part of the algorithm is O(n3 log n).
Setting an edge uv to ‘‘forbidden’’ affects the values icf (ux), icf (vx), icp(ux), and icp(vx) for all vertices x ∈ V . We

concentrate on updating icf (ux), the other updates can be executed similarly. Let s0 be ourweight function before the update
and s1 after the update, then these functions agree except for s0(uv) 6= s1(uv) = −∞. Analogously, let icf 0(ux) and icf 1(ux)
denote ‘‘induced costs forbidden’’ of the tuple ux before and after the update, respectively. If s0(uv) ≤ 0 then no edge is
deleted andwe see from (1) that icf 1(ux) = icf 0(ux)must hold. A similar argument resolves the case s0(xv) ≤ 0. If s0(uv) >
0 and s0(xv) > 0 then u,v aswell as x,vwere adjacent in the initial graph and icf 1(ux) = icf 0(ux)−min{s0(uv), s0(xv)}must
hold. Clearly, computing icf 1(ux) takes constant time. Updating all affected icf values and all binary heaps takes O(n log n)
time: In case we have to decrease a key, we can remove the corresponding entry from the heap in time O(log n) and reinsert
a new entry also in time O(log n). Because every edge can be set to ‘‘forbidden’’ at most once, and since there are O(n2)many
edges, all updates induced from setting edges to ‘‘forbidden’’ take total time O(n3 log n).
When we set an edge uv to ‘‘permanent’’, the data reduction merges u and v into a new vertex u′ and deletes u, v from

the graph. We iterate over all vertices w ∈ V and first compute s(u′w)← s(uw) + s(vw) as well as icf (u′w) and icp(u′w)
using (1). Analogous to the previous paragraph, this affects the values icf (wx) and icp(wx) for all vertices x ∈ V . For every
vertexw, computing icf (u′w), icp(u′w) and updating all heaps takes time O(n log n), and so does updating the induced costs
of all icf and icp values affected by s(u′w). Hence, merging an edge can be executed in total time O(n2 log n). There can be
at most n− 1 merge operations, so the running time of all merge operations is also bounded by O(n3 log n).
Finally, we can detect and remove all connected components that are cliques in time O(n2).
For integer-weighted graphs, using double-linked lists breaks the total running time for data reduction down to

O(n3) [8]. �

The following lemma shows that our data reduction produces a problem kernel as the size of the resulting graph is
polynomial in k.

Lemma 2. Applying the above data reduction rules to an arbitrary instance of Weighted Cluster Editing with minimum
modification cost of one, the resulting graph has at most k2 + 3k+ 2 vertices and 12k

3
+
5
2k
2
+ 5k+ 2 edges.

Proof. Let G = (V , E) be a weighted graph reduced with respect to our data reduction for some cost k. If G is not connected
then we can treat each connected component individually, because inserting an edge between connected components is
never optimal. In the following, we assume G to be connected and not to be transitive. To obtain a disjoint union of cliques
G′ fromGwe carry out k = kd+ki edit operations, kd deletions and ki insertions. Sincewe assumeminimum edit costs of one
for each edge, we infer that icp(uv) and icf (uv) is always greater than, or equal to, the number of non-common neighbors or
common neighbors of u and v, respectively. This does not hold after we havemerged edges, because then edges of arbitrarily
small weight can occur: But in this case, the parameter k has previously been decreased by at least the amount that ismissing
from the edge weight to one. We omit the peculiarities of this bookkeeping for the sake of brevity.
Let C = (VC , EC ) denote a largest clique in G′. Since we delete at most kd edges, we infer that |VC | ≥ |V | /(kd + 1). Now

suppose u and v are two vertices in C: Clearly we can assume that u and v have at least |VC | − ki − 2 common neighbors
to end up in clique C after ki edge insertions. Moreover, u and v have at most k common neighbors: otherwise they would
have been reduced and merged by our data reduction. Thus, we infer |VC | − ki − 2 ≤ k. We conclude

|V |
kd + 1

≤ |VC | ≤ k+ ki + 2 = kd + 2ki + 2.

We can now define an upper bound for |V |:

|V | ≤ k2d + 2kikd + 2ki + 3kd + 2 ≤ k
2
+ 3k+ 2.

The last inequality follows by substituting ki = k− kd and differentiating for kd, showing that there exist no extrema in the
interval kd ∈ [0, k]. The same reasoning can be used to find an upper bound for the number of edges |E|. We omit the details
and refer the reader to [4]. �

4. Branching strategies

Wenowdescribe four search tree algorithms forWeighted Cluster Editingwith nonzeroweights, startingwith a simple
O(3k) branching on conflict triples in Section 4.1. In Section 4.2 we adapt a branching strategy for unweighted Cluster
Editing from [8] for the weighted problem, where we obtain a size O(2.42k) search tree. Afterwards, in Section 4.3, we
present a new and simple branching idea which leads to a size O(2k) search tree, and in Section 4.4 we refine this idea and
prove that the corresponding search tree has size O(1.82k). We stress that we demand integer weights for the running time
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analyses in Sections 4.3 and 4.4. In contrast, the analyses in Sections 4.1 and 4.2 only require that the absolute value of each
weight is at least one.
Recall that an undirected graph is transitive if and only if it does not contain a conflict triple. Each of our branching

algorithms takes advantage of this observation: Search for a conflict triple and branch on a number of possibilities to destroy
it. By this, we invoke a number of recursive calls, say l, on ‘‘simplified’’ instances of the problem where parameter k is
decreased by some constants a1, a2, . . . , al. For branching vector (a1, a2, . . . , al)we can compute a branching number using
the characteristic polynomial, and this branching number in turn governs the asymptotic size of the search tree, see e.g. [11]
for details.

4.1. Initial branching

Given a weighted graph G = (V , E), we now describe a simple recursive algorithm that is guaranteed to find an optimal
solution forWeighted Cluster Editing. Search for a conflict triple, and let u be the vertex of degree two and v,w be the
leaves. For algorithmic reasons, we can set existent (nonexistent) edges to ‘‘permanent’’ (‘‘forbidden’’) by assigning infinite
edit costs to them. Recursively branch into three cases:

1. Insert vw, set uv, uw, and vw to ‘‘permanent’’.
2. Delete uv, set uw to ‘‘permanent’’ and uv and vw to ‘‘forbidden’’.
3. Delete uw, set uw to ‘‘forbidden’’.

In each branch,we lower k by the insertion or deletion cost required for the executed operation. If a connected component
decomposes into two components,we calculate the optimumsolutions for these components separately. If k falls belowzero,
we discard the respective branch of the algorithm. This strategy leads to the following theorem. Using interleaving [12], we
reach:

Theorem 3. If every edge of the arbitrarily weighted graph G = (V , E) hasweight of at least one, theWeighted Cluster Editing
problem can be solved in O(3k + n3 log n) time, and in O(3k + n3) time for integer weights.

4.2. Refined branching strategy

In the following, we will refine the simple branching strategy resulting in a search tree of size O(2.42k), considering
induced subgraphs of size 4. Unfortunately, the O(2.27k) branching strategy of Gramm et al. [8] cannot be used in the
weighted case because it is based on an observation (Lemma 5) that does not hold for weighted graphs. We now modify
this branching strategy accordingly.
Note that the automated search tree generator of Gramm et al. [7] also found an O(2.42k) search tree for induced

subgraphs of size 4, but the branching strategy is not explicitly described there. If we consider induced subgraphs of size 5,
this results in an O(2.27k) search tree [7]. The latter branching strategy requires case distinction with 20 initial cases
and branching vectors of size at most 16. In comparison, our branching strategy distinguishes only four initial cases and
branching vectors of length five.
Let vuw be a conflict triple as above. We distinguish the following cases:

(W1) Vertices v,w have no neighbors except for u, that is, N(v) = {u} and N(w) = {u}.
(W2) Vertices v,w do not share a common neighbor, but there exists a vertex x such that, say, vx ∈ E. We distinguish two

sub-cases: (W2a) ux ∈ E (see Fig. 6), and (W2b) ux /∈ E (see Fig. 7).
(W3) Vertices v,w share a common neighbor x 6= u, so vx ∈ E and wx ∈ E. We distinguish two sub-cases: (W3a) ux ∈ E

(see Fig. 8), and (W3b) ux /∈ E (see Fig. 9).

In case (W1) holds, we ignore the conflict triple vuw for themoment, and continue with the next triple. In all other cases,
we branch as indicated by Figs. 6, 7, 8, 9 in Appendix A.
We describe the branching in detail for case (W2a), see Fig. 6: Here, edges uv, uw, ux, and vx are present in the induced

graph. We branch into five sub-cases:

• Delete uw and set uw to ‘‘forbidden’’.
• Set uw to ‘‘permanent’’, delete uv, ux, and set uv, ux, vw,wx to ‘‘forbidden’’.
• Insertwx, set uw, ux, wx to ‘‘permanent’’, delete uv, vx, and set uv, vw, vx to ‘‘forbidden’’.
• Insert vw, set uv, uw, vw to ‘‘permanent’’, delete ux, vx, and set ux, vx, wx to ‘‘forbidden’’.
• Insert vw,wx and set all six edges to ‘‘permanent’’.

The branching strategies for case (W2b), (W3a), and (W3b) can be easily derived from Figs. 7, 8, 9.
One can easily check that if only conflict triples of type (W1) are present in a connected graph, this graph is a star graph,

that is, a tree where all vertices but one are leaves. It is straightforward to quickly find an optimal solution for this case. We
omit the details. Again using interleaving [12], the analysis of the refined branching strategy leads to Theorem 4.

Theorem 4. If every edge of the weighted graph G = (V , E) has a weight of at least one, then the total running time using our
refined branching strategy is O(2.42k + n3 log n).
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4.3. Edge branching

We now describe a much simpler recursive algorithm in which we branch into two sub-cases to repair the conflict at a
chosen conflict triple. Please recall that, in this section, and in Section 4.4, we only refer to integer-weighted graphs.
The edge branching strategy is as follows: Let uv be an edge of a (weak or strong) conflict triple vuw. Then, (a) set uv to

forbidden, or (b) merge uv.
Let us first analyze this very simple strategy. One can easily check that this recursive procedure will at some point

generate an optimal solution, because in every step we resolve a conflict triple. In the following, we will analyze the size of
the search tree. When deleting an edge uv we decrease the parameter by s(uv). When merging vertices u and v, for each
vertex w ∈ V \ {u, v} we join the pairs uw and vw into a single pair with weight s(uw) + s(vw). If s(uw) 6= −s(vw)
then parameter k can be lowered by min{s(uw),−s(vw)}. In case s(uw) = −s(vw), the new pair is a zero-edge, and
this would prevent us from decreasing our parameter when joining the zero-edge in a later stage of the algorithm. To
circumvent this problem, we assume that joining uw and vw with s(uw) = −s(vw) only reduces the parameter by
min{s(uw),−s(vw)} − 1

2 = |s(uw)| −
1
2 ≥

1
2 . If at a later stage we join this zero-edge with another pair, we decrease

our parameter by the remaining 12 . Using this bookkeeping trick, our edge branching strategy has a branching vector of
(1, 12 ) that leads to a search tree of size O(2.62

k).
We can easily improve this branching strategy by choosing a ‘‘good’’ edge uv, as follows: Choose the particular edge

uv ∈ E thatminimizes the branching number of the corresponding branching step. The branching number is computed from
branching vector (a, b)where a is the cost of deleting edge uv, while b is the cost of merging this edge. If one of these costs
is zero, we say that the edge has an infinite branching number. Using the bookkeeping trick introduced above, an edge uv
with a finite branching number is not necessarily part of any conflict triple: joining a zero-edge uw with a vertex pair vw
generates cost 12 irrespective ofwhether vw is an edge, non-edge, or zero-edge. So, even the edgewith aminimumbranching
number might not be part of any conflict triple.
The following is a simple observation regarding unweighted graphs. We will make use of it in the search tree analysis,

see Lemma 6.
Lemma 5. Given a connected, unweighted graph G, if every edge of G is part of at most one conflict triple, then G is either a clique
or a clique minus a single edge.
Proof. IfG = (V , E) contains no conflict triple thenG is a clique. Assume that there is at least one conflict triple vuw inGwith
uv, uw ∈ E and vw /∈ E. We constructively show that G is a clique minus the edge vw. If another vertex x ∈ V \ {u, v, w}
is adjacent to v then ux ∈ E must hold, too: otherwise, uv is part of two conflict triples vuw and uvx contrary to our
assumptions. Similarly, ux ∈ E implies vx ∈ E. In conclusion, ux ∈ E if and only if vx ∈ E. The same holds replacing v byw,
and we infer that if some vertex x is adjacent to one of u, v, orw then it is adjacent to all of u, v, andw.
Next, consider two vertices x, y adjacent to all u, v, w. If xy /∈ E then vxw and xvy are two conflict triples containing the

edge xv that conflicts with our assumptions, so xy ∈ E must hold. Finally, consider vertices x, z where x is adjacent to u, v,w
while z is not adjacent to u, v,w, and assume xz ∈ E. Now the edge vx is part of the two conflict triples vxw and vxz, again
a contradiction to our assumptions. So, any vertex x ∈ V \ {v,w}must be adjacent to all other vertices in G. �

Lemma 6. For an integer-weighted graph, the edge branching strategy that chooses an edge with minimum branching number
has branching vector at least (1, 1).
Proof. Recall that if we create a zero-edge, this reduces k by at least 12 ; and if we join a zero-edge, this reduces k by

1
2 . Let

uv be the edge with minimum branching number. Note that removing uv induces cost s(uv) ≥ 1, and let δ be the cost of
merging uv. If δ ≥ 1 then we are done, so assume δ < 1. This implies that at most one zero-edge was created or joined. In
particular, uv is part of at most one conflict triple vuw, and there cannot be an edge that is part of two conflict triples. We
transform the input graph into an unweighted graph G, where zero-edges and non-edges in the input graph are not present
in G. By Lemma 5 above, the connected component containing vuwmust be a cliqueminus vw in G. Regarding the weighted
graph, all vertex pairs are edges except vw, whichmay be a non-edge or a zero-edge. If vw is a zero-edge then our branching
will stop whenmerging uv, so assume that vw is a non-edge.We now show that, for this case, we can omit our bookkeeping
trick of delayed parameter decrease.
We now either delete uv with cost s(uv) ≥ 1, or merge uv. We distinguish the cases s(uw) ≥ −s(vw) and s(uw) <

−s(vw). If s(uw) ≥ −s(vw) holds then the joined pair has weight s(uw)+ s(vw) ≥ 0, the resulting connected component
is a clique that can be removed from the graph, and we reduce the parameter k by min{s(uw),−s(vw)} ≥ 1. For s(uw) <
−s(vw) the joined pair hasweight s(uw)+s(vw) < 0, sowe have not generated a zero-edge.We can assume in our analysis
that parameter k is reduced by the full min{s(uw),−s(vw)} ≥ 1. So, the branching vector is at least (1, 1) as claimed. �

Hence, edge branching results in a search tree of size O(2k) for integer-weighted graphs.

4.4. Refined edge branching

We now refine our edge branching and show that the respective search tree has size O(1.82k). This results in the fastest
known algorithm for unweightedCluster Editing: the previously best-knownbranching strategy byGrammet al. [7] results
in a search tree of size O(1.92k). This algorithm uses complicated branching rules (more than 1300 cases) and has never
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B1 B2 B3 B4

Fig. 2. Conditions (B1) to (B4) of edge sorting. Solid lines are edges, dashed lines are zero-edges, dotted lines are non-edges.

been implemented. To the best of our knowledge, the fastest implementation for unweighted Cluster Editing has running
time O(2.27k + n3) using 11 branching cases [5,8]. In contrast, our branching strategy is both fast and simple, using only
two branching cases.

Theorem 7. For an integer-weighted graph that contains no zero-edges, theWeighted Cluster Editing problem can be solved
in O(1.82k + n3) time.

We modify the order in which edges are processed by the edge branching strategy, which allows for a simpler analysis
of the running time behavior. We conjecture that Theorem 7 is also true for edge branching where edges are sorted with
respect to branching number, but this requires further case distinctions.
Let Gw be an integer-weighted and connected graph. We say that we branch on an edge uv by setting uv to forbidden and

recursing, andmerging uv and recursing. To deal with zero-edges, we use the above bookkeeping trick: Creating a zero-edge
induces cost≥ 1

2 , and resolving a zero-edge induces the remaining cost
1
2 . We choose an edge to branch on according to the

following order:

(A) If there is an edge with branching vector (1, 32 ) or better, then we branch on this edge.
(B) If there is an edge xy and a vertex z in Gw such that x,y,z form a triangle, and if there exist two additional vertices v1,v2
such that for both v1,v2 one of the following conditions holds (where x and ymay be exchanged):
(B1) xvi is an edge and yvi is a non-edge
(B2) xvi is a zero-edge and yvi is a zero-edge
(B3) xvi is a zero-edge and yvi is a non-edge, and zvi is an edge or a zero-edge
(B4) xvi is an edge and yvi is a zero-edge, and zvi is a non-edge or a zero-edge.
Then branch on xy.

If no such edge exists, we stop the recursion. We will show below that the remaining graph must be a clique, a clique
minus one edge (where the last edge is either a zero-edge or a non-edge), a path, a circle, or contains only 4 vertices. Wewill
also show how to solve this remaining instance in polynomial time. See Fig. 2 for the four initial cases of condition (B). To be
more precise, there are ten different subcases of condition (B) that are combinations of (B1), . . ., (B4), taking into account
that we can exchange x and y. We denote them by (B11) to (B44). See Fig. 3 for an exemplar branching.
If there exists an edge satisfying condition (A) then branching on this edge has branching number 1.76. The following

lemma corresponds to condition (B) of edge sorting, and shows how we analyze two branching steps together: The first
branching step can in fact result in a branching vector of (1, 1) but the next branching steps result in better branching
vectors, leading to an overall branching number as desired.

Lemma 8. Let Gw be an integer-weighted and connected graph, and assume that there is an edge xy that satisfies condition (B).
Then, branching on xy and performing another branching step where edges to branch on are chosen according to the edge sorting,
results in a branching vector of (2, 52 , 2, 3) with branching number≤ 1.82.

Proof. Branching on edge xy leads to a branching vector of (1, 1): Deleting xy induces cost at least 1, and merging xy results
in cost at least 2 · 12 = 1 since for each vi a conflict triple or a zero-edge will be resolved. Wewill now show that after setting
xy to ‘‘forbidden’’ there exists an edgewith branching vector (1, 32 ) and after merging xy there exists an edgewith branching
vector (1, 2). These are the worst-case branching vectors for the edge that is chosen in the next branching step.
First we analyze the case where xy is set to ‘‘forbidden’’, see Fig. 4: We show that now one of the edges xz or yz has

branching vector (1, 32 ). Setting xz or yz to forbidden results in cost 1. Merging xz or yz resolves the conflict triple xzy,
resulting in cost 1 since xy is forbidden. If condition (B2), (B3), or (B4) holds then in addition, a zero-edge is resolved when
merging xz or yz. If condition (B1) holds we distinguish two cases: If v1z is a non-edge or a zero-edge, then we branch on
xz, which either resolves an additional zero-edge, or resolves the conflict triple v1xz. If v1z is an edge then we branch on yz,
which resolves the conflict triple v1zy. Hence, either xz or yz have merging costs 32 .
Second we consider the case where x, y have been merged, see Fig. 5. Let wxy be the vertex resulting from merging xy:

We show that now, the edge wxyz has branching vector (1, 2). Deleting wxyz induces cost of 2 as s(wxyz) ≥ 2. Merging
wxyz induces cost of 12 for each vi: If condition (B1) holds for vi then wxyvi is a zero-edge. Otherwise, we infer s(xvi) > 1 or
s(yvi) < −1, so the initial branching on xy would have resulted in a branching vector of (1, 32 ). Merging wxyz resolves this
zero-edge. If condition (B2) holds thenwxyvi clearly is a zero-edge. For conditions (B3) and (B4)mergingwxyz either resolves
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Fig. 3. An example for branching with branching vector (2, 52 , 2, 3) under condition (B12): (B1) holds for vertex v1 and (B2) holds for vertex v2 .

B1 B2 B3 B4

Fig. 4. Branching conditions (B1) to (B4) after xy is set to ‘‘forbidden’’.

B1 B2 B3 B4

Fig. 5. Conditions (B1) to (B4) after merging xy.

a zero-edge viz or a conflict triple wxyzv or vwxyz. These observations hold both for v1 and v2, so merging wxyz results in
total cost 22 .
We cannot guarantee that the edge branching strategy will actually branch on edges xz or yz (after xy has been set to

forbidden) and wxyz (after merging xy) in the next step of the branching. But we have shown that edges with branching
numbers 1.755 and 1.6191 exist after the first step of the branching. With regards to the first case, one can easily check
that all possible branching vectors with branching number ≤ 1.755 are of the form (a, b/2) for integers a ≥ 1 and b ≥ 3.
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Similarly, all branching vectors with branching number ≤ 1.6191 are of the form (a, b/2) for integers a ≥ 1 and b ≥ 4, or
a ≥ 2 and b ≥ 2. This shows that even if we pick other edges in the second step of our branching, we still can guarantee
branching vector (2, 52 , 2, 3)with branching number 1.82. �

The following is again an observation regarding unweighted graphs:

Lemma 9. Let G be a connected, unweighted graph. Assume that there is no edge in G that is part of three conflict triples, and
there exists no triangle uvw in G such that uv is part of two conflict triples. Then G is a clique, a graph with at most one non-edge,
a K1,3 (a star graph with four vertices), a path, or a circle.

Proof. Assume that G = (V , E) contains at least one edge xy that is part of two conflict triples: Otherwise, Lemma 5
guarantees that G is a clique or a clique minus a single edge. Let u and v be two vertices involved in conflict triples with
xy. This implies that either xu or yu is an edge, and that either xv or yv is an edge. Assume that there exists another vertex
z /∈ {x, y, u, v} with xz ∈ E: If yz ∈ E then xyz is a triangle as excluded by our assumptions, and if yz /∈ E then xy is part of
three conflict triples. So, no such z can exist and neither x nor y can be connected to any other vertex.
We distinguish two cases of intersecting conflict triples: the two conflict triples are either of the form uxy and uxv

(asymmetric case), or uxy and xyv (symmetric case). Note that we can exchange u and v in the asymmetric case.
Let us consider the asymmetric case first. Assume there exists another vertex w /∈ {x, y, u, v} with uw ∈ E. Then the

edge xu is part of two conflict triples yxu and xuw. If uv /∈ E then xu is part of three conflict triples. If uv ∈ E then the edge xu
is part of a triangle xuv that is excluded by our assumptions. This implies that no such vertexw can exist, and the connected
graph G is a K1,3.
For the symmetric case, assume that there exists another vertex w /∈ {x, y, u, v} with uw ∈ E. Now, the edge xu is part

of two conflict triples yxu and xuw, again in symmetric arrangement. If some z /∈ {x, y, u, v, w} exists with uz ∈ E, we can
show again that xu is part of three conflict triples or part of a triangle excluded by our assumptions. The same holds true for
a vertex w with vw ∈ E. Repeating this argument we show that all vertices in the connected graph G have degree one or
two, so G is a path or a circle. �

Let us now assume that there is no edge that satisfies branching conditions (A) or (B). Again, we transform the integer-
weighted graph into an unweighted graph G where zero-edges of the integer-weighted graph are transformed into non-
edges in G. Clearly, G does not contain an edge that is part of three conflict triples. Using Lemma 9 we infer that G is either
one of the graph structures described there, or there exists an edge xy that is part of a triangle xyz and that is part of two
conflict triples. In the first case, we have reduced the weighted graph as claimed: The weighted graph is a clique, a clique
minus one edge, a path, a circle, or contains only four vertices. In the second case, there is an edge xy that is contained in
a triangle and two conflict triples for which branching condition (B) does not apply. It can be shown by rather technical
analysis that, in all cases, the weighted graph is a weak clique or a graph with exactly one non-edge. See Appendix B for
details.
If the remaining graph is a (weak) clique, we are finished. If it is a graph with one non-edge uv, we can solve it in

polynomial time by calculating a minimum u-v-cut. In case the cost of the cut is higher than −s(uv), we insert uv and
are finished, otherwise we cut the graph according to the minimum u-v-cut and obtain two (weak) cliques. If the graph has
at most four vertices, we can easily try all possibilities of solving it. The only remaining case is that the graph is a path or a
circle. Our next step is to prove that such a graph can be solved in polynomial time.
Assume that our weighted graph is a path with n vertices. We will now show how to compute an optimal solution in

time O(n2).
Let v1, v2, . . . , vn be the vertices of the path, so s(vivi+1) > 0 and s(vivj) ≤ 0 for j > i+1. First, wemay assume that any

clique in an optimal solution will contain all vertices in an interval vi, vi+1, . . . , vj−1, vj: If there is a clique C in the optimal
solution such that vi, vj ∈ C but vi+1, . . . , vj−1 /∈ C where j ≥ i + 2, then cut C into two parts by removing all edges vi′vj′
for i′ ≤ i and j′ ≥ j from the solution.
We now compute an array K where K [i, j] is the cost of inserting all edges vi′vj′ for i ≤ i′, i′ + 2 ≤ j′, and j′ ≤ j.

So, K [i, j] is the cost for completing vi, . . . , vj to a clique. We can compute K [i, j] in time O(n2) using the recurrence
K [i, j] = K [i, j− 1] + K [i+ 1, j] − K [i+ 1, j− 1] + (−s(vi, vj))with initialization K [i, i] = 0 for all i.
Next, let D[j] be the cost of an optimal solution for the subgraph induced by vertices v1, . . . , vj. To compute an optimal

solution for the path that also contains vertex vj+1 we have to distinguish two cases: either vjvj+1 is not an edge of this
optimal solution, then we delete edge vjvj+1 and use the optimal solution on vertices v1, . . . , vj. Or, vj+1 is part of a clique
in the optimal solution with vertices vi+1, . . . , vj+1, then we delete edge vivi+1 for i ≥ 0, and add the cost of an optimal
solution on vertices v1, . . . , vi to the cost of completing vi+1, . . . , vj+1 to a clique. Set S(j) := s(vj, vj+1) and S(0) = 0. We
reach the recurrence

D[j+ 1] = min
i=0,...,j

{D[i] + S(i)+ K [i+ 1, j+ 1]}

with initialization D[0] = 0. Clearly, D can be computed in O(n2) time, and the optimal solution can be constructed using
backtracing.
Regarding circles, we just note that either all vertices of the circle are part of the same clique in the optimal solution, or

one of the edges of the circle has to be deleted. By iteratively deleting one edge from the circle and solving the recurrence
for paths, we can find an optimal solution in O(n3) time.
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Table 1
Average running times for artificial data with O(2.42k) branching strategy without merging, O(2.42k) branching strategy with
merging, O(3k) branching strategy, edge branching strategy and edge branching strategy with reduction. Numbers in lines labeled
‘‘# unfinished’’ are numbers of instances not finished after one week of computation. There were ten instances per bucket for sizes
10–50, five instances for sizes 60–100. For the computation of average running times, we ignored unfinished instances.
Size of instance 10 20 30 40 50 60 70 80 90 100
Average # edit 8.3 28.1 66.7 115.5 183.2 263.0 351.6 459.0 594.0 728.6

2.42k (no merging) 11 ms 69 ms 8.3 s 31.4min 47.8 h n/a n/a n/a n/a n/a
# unfinished – – – – 1 5 5 5 5 5
2.42k strategy 12 ms 56 ms 1.9 s 52.2 s 28min 17.5 h 26.3 h n/a n/a 9.4 h
# unfinished – – – – – – 3 5 5 4
3k strategy 10 ms 54 ms 1.0 s 29 s 7.6min 26.6 h 57.7 h 19days n/a n/a
# unfinished – – – – – – 1 4 5 5
edge branching 4 ms 16 ms 238 ms 2.5 s 18.2 s 5.5 h 17.7 h 13.8 h 34.8 h 6.6 days
# unfinished – – – – – – – – 2 4
with reduction [2] 3 ms 14 ms 169 ms 1.9 s 1.6 s 31.6 s 43.2 s 23.3 s 165.2 s 36.8 s
# unfinished – – – – – – – – – –

Now we have the means to prove Theorem 7.

Proof (Theorem 7). From the above, we infer that our search tree has size O(1.82k). This results in a total running time of
O(1.82k ·k8+n3): Initially, we run our parameter-dependent data reduction in timeO(n3), see Lemma 1. This data reduction
results in a problem kernel withO(k2) vertices. For every edge, we compute the branching number that results from deleting
and merging this edge in total time O(k6). Similarly, we can check for the substructures for branching condition (B) in time
O(k8). We get rid of the polynomial factor by interleaving [12], that is, performing data reduction repeatedly during the
course of the search tree algorithm whenever possible. This reduces the total running time to O(1.82k + n3). Alternatively,
we can deduce this running time from the fact that 1.82 is rounded up, so that the polynomial factor is already covered by
the O-notation. The remaining structures can be solved in polynomial time. �

RegardingWeighted Cluster Editing instanceswith real-valuedweights, the edge branching strategy is also guaranteed
to find the optimal solution. Let k be the cost parameter. We want to decide whether there is a solution of cost at most k. To
estimate the worst-case running time, we have to assume again that all vertex pairs have weight at least one [1]. We redo
our simple analysis from Section 4.3: Whenever joining two pairs of vertices results in a pair with absolute weight smaller
than one, we put aside 12 using our bookkeeping technique. This pair may later be part of a conflict triple, and when editing
this pair we decrease k by 12 we put aside earlier because the absolute weight of this pair can be arbitrarily small. A similar
analysis to that given in this section shows that the worst-case branching vector reduces to ( 12 , 2, 2) and the size of the
search tree is O(2.39k).

5. Computational results

We have implemented the edge branching algorithm with search for the edge with maximum branching number in C++.
We apply our data reduction from Section 3 to every instance in advance and when traversing the search tree. The program
accepts nonnegative real values as edge modification costs. All running times were measured on an AMD Opteron-275
2.2 GHz with 6 GB of memory running Solaris 10.
We want to explore and compare the performance of our branching and compare it to the previously fastest branching

strategy forWeighted Cluster Editing.
For our evaluation, we use both artificial and biological data. We generate artificial instances by first constructing a

transitive graph with n vertices by uniformly drawing clique sizes in {1, . . . , n} until all vertices have been used up. Next,
we perturb this graph: for each pair uv we delete or insert an edge uv with probability 0.15. Running times are reported in
Table 1. Our biological instances stem from protein similarity data, generated using more than 192 000 protein sequences
from the COG dataset [16]. Edge weights are computed from log E-values of bidirectional BLAST hits using a threshold of
10−10: Themodification cost of each vertex pair is the difference between the logarithms of the threshold and the respective
protein’s E-values. In the resulting graph, 3964 connected components are not transitive, and 3788 of these have up to
100 vertices. See Rahmann et al. [13] for more details. Running times for these data sets are shown in Table 2. Recently,
Wittkop et al.[18] showed that the Cluster Editing model leads to valid clusterings when applied to protein similarity data
and manages to outperform other methods.
As one can see, merging vertices clearly leads to drastic improvements, and unlike what theoretical running times

suggest, the O(2.42k) is mostly outperformed by the O(3k) strategy when we merge edges. Edge branching is much faster
than the other branching algorithms, and performance is increased by several orders of magnitude. For comparison, we
also report running times of the FPT algorithm from [2] that uses the same edge branching strategy but, in addition,
employs new parameter-independent reduction rules to cut down instance sizes before branching, and further heuristic
improvements.
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Table 2
Average running times for protein similarity data using the O(2.42k) branching strategy without merging, O(2.42k) branching strategy,
O(3k) branching strategy, edge branching strategy and edge branching strategy with reduction. Again, ‘‘# unfinished’’ gives the number of
instances not finished after seven days of computation. Unfinished instances were ignored for computing average running times.
Size of instance 3–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90 91–100
No. of instances 2080 726 308 178 181 117 93 57 28 26
Average # edit 2.32 11.78 30.92 62.02 101.6 137.4 176.4 227.8 430.9 315.0

2.42k (no merging) 3 ms 26 ms 640 ms 2.0 min 10.3 min 1.1 h 1.7 h 1.4 h 44.8 min 40.8 min
# unfinished – – – – 2 5 4 9 7 7
2.42k strategy 2 ms 14 ms 184 ms 2.2 s 7.1 min 20.4 min 4.4 min 4.8 h 4.6 h 7.1 min
# unfinished – – – – – 1 1 2 2 3
3k strategy 2 ms 12 ms 103 ms 680 ms 91 s 24 min 46.8 min 6.8 h 3.7 h 49 s
# unfinished – – – – – – – 1 1 2
edge branching 0.8 ms 5 ms 22 ms 203 ms 1.3 s 47.7 s 2.3 s 43.4 s 46.2 min 31.8 min
# unfinished – – – – – – – 1 – 1
with reduction [2] 11 ms 7 ms 31 ms 91 ms 218 ms 517 ms 581 ms 1.2 s 2.0 s 3.2 s
# unfinished – – – – – – – – – –

Fig. 6. Case (W2a): Vertices v,w do not share a common neighbor; v has a neighbor x connected with u.

6. Conclusion

We have presented several branching strategies for (weighted) Cluster Editing, including a surprisingly simple
branching strategy that leads to the fastest known parameterized algorithm for (integer-weighted) Cluster Editing with
respect to theoretical running time bounds. We believe that we can prove even better worst-case running times for this
same strategy, using a refined, automated analysis similar to [7].
We implemented different branching strategies and evaluated their performance. Together with further improvements

reported in [2], our best algorithm allows one to solve weighted Cluster Editing instances with several hundred edge
modifications in a matter of seconds. This clearly proves the practical usefulness of our approach and constitutes a huge
improvement over [5] where unweighted instances with 50 edge modifications required several hours of computation.
Wittkop et al. [18] recently demonstrated the power ofWeighted Cluster Editing for clustering homologous proteins, so
algorithms both fast in theory and efficient in practice are highly desirable.
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Appendix A. Illustration of the refined branching strategy

See Figs. 6–9.
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Fig. 7. Case (W2b): Vertices v,w do not share a common neighbor; v has a neighbor x not connected with u.

Fig. 8. Case (W3a): Vertices v,w share a common neighbor x, and ux ∈ E; see Fig. 2 in [8].

Fig. 9. Case (W3b): Vertices v,w share a common neighbor x, and ux /∈ E; see Fig. 3 in [8].

Appendix B. Graphs that do not meet refined edge branching conditions

In this part of the Appendix, we have a closer look at edges that are part of a triangle and two conflict triples but do not
fulfill conditions (B11)–(B44). See Fig. 10 for an illustration.
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I II III IV

Fig. 10. Illustration of the four cases that are not covered by the branching conditions of the refined edge branching strategy. Dashed edges represent
zero-edges, dotted edges are non-edges.

We show that a graph that contains such an edge but does not fulfill branching conditions (A) or (B) is already a weak
clique (zero-edges allowed) or a graph with at most one non-edge. For our analysis, we assume that the graph is connected.

Case (I). We can see that vz must be an edge, otherwise we could branch on yv with branching vector ( 32 , 1): If we merge
yv we lower k by 12 for each of the two conflict triples xyv and vyz and by another

1
2 for joining yu, and if we delete yv we

lower k by 1. The pair uv must be an edge as well. If it were a zero-edge, we could apply branching condition (B12) to yv,
if it was a non-edge, we could apply (B13) to yv. The induced subgraph of the five vertices we have considered has exactly
one non-edge. It remains to prove that there cannot be further non-edges in the graph.
Let us consider another vertex z ′. Envision that there cannot be further zero-edges incident to x or y since this would lead

to branching with vector ( 32 , 1) at xy. z
′ is connected to x if and only if z ′ is connected to y because otherwise xy would be

part of three conflict triples. Analogously, z ′x ∈ E iff z ′u ∈ E, and z ′y ∈ E iff z ′v ∈ E, else, we could branch on xu or yv with
branching vector ( 32 , 1). So a vertex is connected with x, y, u, or v if and only if it is connected with all these vertices.
Now assume there is a new vertex z ′ connected with z. Then z ′ must also be connected with v: If vz ′ was a non-edge, we

could apply branching condition (B11) to vz, if vz ′ was a zero-edge, we could branch on yv with branching vector ( 32 , 1).
Hence, a neighbor of z (or a neighbor of any other vertex connected with x, y, u, and v) must also be connected with x, y, u,
and v.
Now let us consider two vertices z1, z2 that are both connected with x, y, u, and v. If z1z2 was a non-edge, we could branch

on xz1 with condition (B11), so z1z2 must be an edge or a zero-edge.
All in all, xv is the only one non-edge in the graph induced by x, y, u, and v. All other vertices are connected to these four

vertices. Among each other, they are linked by edges or zero-edges, so Gw contains exactly one non-edge.

Case (II). In this case, we know that at least uv or zv must be an edge, else xv would be contained in three conflict triples
vxy, vxz, and vxu.
Neither of uv and zv may be a non-edge because otherwise we could apply branching condition (B11) to xv.
Let us suppose there is a further vertex z ′ that is connected to x or y. We show that there are no non-edges between z ′

and the vertices x, y, u, and v. Again, xz ′ ∈ E if and only if xy′ ∈ E, so z ′ is connected to x and y. Now uz ′ is an edge, else
we could branch on xy under condition (B14). If vz ′ was a non-edge, we could branch on xv under condition (B11), so vz ′ is
either a zero-edge or a non-edge.
Now assume that a new vertex z ′ is connected to u. If xz ′ is a non-edge, Case (I) applies at xu, so we do not have consider

this case further. If xz ′ was a zero-edge, we could perform a ( 32 , 1) branching on xy. Hence, z
′ is connected to x with all

implications shown in the last paragraph.
If we introduce a vertex z ′ connected to v, we see that xz ′ ∈ E: If xz ′ was a non-edge, we could branch on xv with

branching condition (B11). If xz ′ was a zero-edge, we had a ( 32 , 1) branching on xy. As shown above, z
′ is also connected to

y and u, and z ′v may be an edge or a zero-edge.
Finally, let us consider the case of a vertex z ′ connected to z. Then yz ′ is an edge, otherwise we could branch on yz with

branching vector ( 32 , 1).
We have shown that there are no non-edges between x, y, u, v, z and their neighbors. Introducing a neighbor of one of

these neighbors is equivalent to introducing a neighbor of z.
It remains to prove that there are no non-edges between vertices in V \ {x, y, u, v}. Consider two arbitrary vertices

z1, z2 ∈ V \ {x, y, u, v}. We know that they are connected to x, y, and u, and that each of vz1, vz2 is either an edge or a
zero-edge. If z1z2 was a non-edge or a zero-edge, we could branch on yz with branching vector ( 32 , 1).
We conclude that the only non-edge in Gw is yv.

Case (III). First we observe that vz must be an edge, or else we could branch on yv with branching vector ( 32 , 1). If uv was
a non-edge, uz would meet the criteria of Case (II), so we can assume that uv is an edge or a zero-edge.
If we introduce another vertex z ′ that is connected with one of the vertices u, v, x, or y, we observe that z ′ must be

connected with the other three vertices as well: Each of the edges xy, xu, yv already shares vertices with two zero-edges,
so they can neither be in a further conflict triple nor incident to further zero-edges. Otherwise, we could perform a ( 32 , 1)
branching on one of these edges. So if z ′ is connected to one vertex of xy, xu, or yv, it must also be connected to the other
vertex of the edge.
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If z ′ is connected with z (or any other neighbor of u, v, x, and y), it is also connected with u, v, x, and y. Otherwise, zz ′
would be part of the (weak or strong) conflict triples xzz ′, yzz ′, uzz ′, and vzz ′. This is not possible since no edge is part of
more than two conflict triples if branching condition (A) does not apply.
It remains to check how neighbors of u, v, x, and y are connected to each other: If an edge z1z2 between two such vertices

is a non-edge, we can apply Case (I) to uz. Otherwise Gv is a weak clique.

Case (IV). Here we notice that at least one of the pairs uv, zv must be an edge, otherwise xv would be part of three conflict
triples. With this observation, vz must be an edge or one of the former cases applies: If vz were a non-edge, Case (I) would
apply at uz, if it was a zero-edge, Case (III) would apply at uz. Similarly, uv must be an edge or a zero-edge, otherwise Case
(II) would apply at uz. We will now show that the graph is a weak clique.
As a first step, we analyze howother vertices can be connected to x, y, z, u, and v. Again, as xy is already part of two conflict

triples, every vertex z ′ ∈ V \ {x, y, z, u, v} connected with x is also connected with y and vice versa, and there cannot be
zero-edges incident to x or y, else we could branch on xy with branching vector ( 32 , 1). Since yz is also contained in two
conflict triples, we analogously observe that a vertex z ′ is connected with y if and only if it is connected with z. Then xz ′, yz ′,
and zz ′ are either all edges or all non-edges.
Now we have to distinguish the subcases (i) where uv is a zero-edge and (ii) the case where uv is an edge. First, let us

assume that (i) uv is a zero-edge. In this case, xu and xv are also edges that are part of two conflict triples each, so xz ′ ∈ E iff
uz ′ ∈ E and xz ′ ∈ E iff yz ′ ∈ E, and there may not be zero-edges incident to u or v. We infer that z ′ is connected with x, y, z,
u, or v if and only if it is connected with all these vertices.
Now (ii) let uv be an edge. Assume there is a vertex z ′ ∈ V \ {x, y, z, u, v} that is connected with x, y, and z. Then uz ′

must be an edge or a zero-edge, otherwise branching condition (B14) would apply to uz. Analogously, vz ′ must be an edge
or a zero-edge, or branching condition (B14) would apply to vz.
Now assume there is a vertex z ′ connected with u. If xz ′ was a non-edge, branching condition (B14) would apply to xu, if

it was a zero-edge we could branch on xy with factor ( 32 , 1). So z
′ is connected with x and thus also with y and z, and vz ′ is

at least a zero-edge.
Now we assume there is a vertex z ′ ∈ V \ {x, y, z, u, v} that is connected with v. With the same reasoning as in the last

paragraph except for u and v being swapped, we infer that z ′ is connected with x, y, and z, and uz ′ is at least a zero-edge.
We infer that every z ′ connected with x, y, z, u, or v is also connected with x, y, and z, and uz ′ and vz ′ are edges or

zero-edges. Again, the same holds for neighbors of any such z ′.
We still have to prove for both (i) and (ii) that two vertices z1, z2 that are connected with x, y, z, u, and v (but uz1, vz1,

uz2, and vz2 may be zero-edges in subcase (ii)), are connected with each other.
If z1z2was a zero-edge or a non-edgewehad the opportunity for a ( 32 , 1) branching on yz1, so z1 and z2must be connected.

With this observation we have shown that Gw is a weak clique.
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