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Over the past few years increasing research effort has been directed
towards the automatic verification of infinite-state systems. This paper is
concerned with identifying general mathematical structures which can
serve as sufficient conditions for achieving decidability. We present
decidability results for a class of systems (called well-structured systems)
which consist of a finite control part operating on an infinite data domain.
The results assume that the data domain is equipped with a preorder
which is a well quasi-ordering, such that the transition relation is
``monotonic'' (a simulation) with respect to the preorder. We show that
the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.
Other safety properties can be reduced to the reachability problem.
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v Eventuality: whether all executions eventually reach a given set of
control states (represented as AFp in CTL).

v Simulation: whether there exists a simulation between a finite
automaton and a well-structured system. The simulation problem will be
shown to be decidable in both directions.

We also describe how these general principles subsume several
decidability results from the literature about timed automata, relational
automata, Petri nets, and lossy channel systems. ] 2000 Academic Press

1. INTRODUCTION

Over the past few years increasing research effort has been directed towards the
automatic verification of infinite-state systems. This has resulted in numerous highly
nontrivial algorithms for the verification of different classes of such systems.
Examples include timed automata [ACD90, AH89, C8 er92a], hybrid automata
[Hen95], relational automata [BBK77, C8 er92b, C8 er94], Petri nets [Jan90, JM95],
systems with many identical processes [CG87, PP92], and lossy channel systems
[AJ93, AK95]. As interest in this area increases, it will be important to extract
common principles that underlie these and related results.

Our goal is to develop general mathematical structures which could serve as suf-
ficient conditions for achieving decidability. Our objective is twofold. We aim on
the one hand to give a unified explanation of existing decidability results including
those mentioned above and on the other hand to provide guidelines for discovering
similar decidability results for other classes of systems.

Existing work on general principles for deciding properties of infinite-state
systems if fairly limited. Many existing methods are based on finite partitioning,
where the state space of the original system is partitioned into a finite number of
equivalence classes under bisimulation [ACD90, Hen95, C8 er94]. Two states
belonging to the same partition are equivalent in the sense that transitions from
them lead to equivalent states. The requirement of having an appropriate finite par-
titioning of the state space is rather restrictive since it implies that the system under
consideration is ``essentially finite-state.''

In this paper we present substantially more general conditions for decidability of
several verification problems. We work with a preorder on states instead of an
equivalence. We consider systems which consist of a finite control part operating on
an infinite data domain. The main requirement is that the data domain is equipped
with a preorder such that the following properties (which are generalizations of
those required by finite partitioning methods) hold: (i) the transition system is
``monotonic'' with respect to the preorder; i.e., transitions from larger states lead to
larger sates (this means that smaller states are simulated by larger states); and
(ii) the preorder on the data domain is a well quasi-ordering, which means that
each infinite sequence contains an element which is larger than or equivalent to an
earlier element in the sequence. We call the class of systems satisfying these proper-
ties well-structured systems.
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Our method generalizes finite partitioning in the following sense:

v We employ a preorder instead of an equivalence relation. It is clear that
having an equivalence relation is a special case of having a preorder (an equiv-
alence relation is a preorder which is symmetric).

v We work with states which are related through simulation, instead of
bisimulation in the case of finite partitioning. Observe that by taking the preorder
to be an equivalence, the definitions of simulation and bisimulation coincide.

v We require the preorder to be a well quasi-ordering, instead of requiring the
number of equivalence classes to be finite. In case the preorder is taken to be an
equivalence relation, our requirement implies that the number of equivalence
classes is finite.

This means that, apart from systems whose state spaces can be finitely parti-
tioned, e.g., timed automata [ACD90, C8 er92a], various classes of hybrid automata
[Hen95], and rational relational automata [C8 er94], our methods can be used to
analyze systems which do not allow for finite partitioning, such as Petri nets
[JM95], lossy channel systems [AJ93], and integral relational automata [C8 er94].

In this paper, we show that the following properties are decidable for well-struc-
tured systems:

v Reachability: whether a certain set of control states is reachable. Several
properties can be reduced to the reachability problem, notably invariant properties
and safety properties represented by the prefix-closed set of traces of a finite
automaton.

v Eventuality: whether all executions eventually reach a given set of control
states (represented as AFp in CTL).

v Simulation: whether there is a simulation between a finite automaton and a
well-structured system. The simulation problem is shown to be decidable in both
directions.

The reachability problem is solved by a backwards reachability analysis. Starting
from a set I of states, the reachability of which is to be decided, we generate the set
of states from which I can be reached by a sequence of at most j transitions, for suc-
cessively larger j. The sets that are successively generated in this way are upwards
closed with respect to the preorder and form an ascending chain (under set inclu-
sion). Since the preorder is a well quasi-ordering, each set can be represented by a
finite set of minimal states, and the chain converges after a finite number of itera-
tions. The problem of whether a well-structured system is simulated by a finite
automaton is solved using similar principles. Eventuality properties and the
problem of whether a finite automaton is simulated by a well-structured system are
checked by a standard tableau method. Again the tableau construction terminates
by the well quasi-ordering property.

The iteration method in this paper can also be viewed as an abstract interpreta-
tion of the infinite state space. Instead of working with sets of states of the tran-
sition system, we work in an abstract domain consisting of finite sets of minimal
states. One contribution is that we show, for well-structured systems, that we can

111ALGORITHMIC ANALYSIS OF PROGRAMS



work in this abstract domain without losing precision in our analysis of
reachability, and with the additional benefit that fixpoint iterations of this kind
always converge.

Related Work. The idea of verifying a system by analyzing a property for an
abstraction or a simpler approximation of the system has been considered by
several authors [CGL92, LGS+95, DGG94]. These papers present conditions such
that if the property is satisfied by the abstract program, then it will be satisfied by
the original program. Sufficient conditions are given for an abstraction to preserve,
e.g., the branching time logic CTL* or fragments thereof. However, these works are
not concerned primarily with constructing decision procedures for verification.

Finkel [Fin90] shows that, for well-structured systems, it is decidable whether a
system has a finite reachability tree. In this paper we use essentially a variant of his
algorithm for checking eventuality properties. In addition, Finkel considers a
restricted class of well-structured systems, namely those with strict monotonicity.
This means that transitions from strictly larger states lead to strictly larger states.
For this class it is shown that the coverability problem and the problem of whether
the set of reachable states is finite are both decidable. The coverability problem is
equivalent to the control state reachability problem and is solved in [Fin90] using
a generalization of the Karp�Miller algorithm [KM69]. The Karp�Miller algo-
rithm can be used to solve the coverability problem for, e.g., Petri nets. However,
the algorithm depends on strict monotonicity, which does not hold in general for
well-structured systems (e.g., for lossy channel systems), and hence the Karp�Miller
algorithm cannot be applied to our class of systems.

Outline. The remainder of the paper is structured as follows. In the following
section, we define infinite-state systems as systems with a finite-state control part
operating on a possibly infinite domain of data values. In Section 3 we define well-
structured systems. Section 4 presents the method for deciding reachability,
Section 5 treats eventuality properties, and Section 6 shows how to check simula-
tions. In Section 7 we give examples of several classes of well-structured systems. In
Section 8 we give some conclusions and directions for future research.

2. INFINITE-STATE SYSTEMS

In this section we give the basic definitions for infinite-state systems. As a general
model of such systems, we adopt labeled transition systems. We assume a finite set
4 of labels. Each label * # 4 represent an observable interaction with the environ-
ment.

Definition 2.1. A (labeled) transition system L is a pair (S, $), where

v S is a set of states, formed as the cartesian product Q_D of a finite set Q
of control states and a possibly infinite set D of data values, and

v $�S_4_S is a set of transitions.

We use (q, d) to denote the state whose control state is q and whose data value
is d and s w�* s$ to denote that (s, *, s$) # $. Intuitively, s w�* s$ means that the
system can move from state s to state s$ while performing the observable action *.
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We let s � s$ denote that there is a * such that s w�* s$ and let *� denote the
reflexive transitive closure of � .

For q # Q and A�D, we use (q, A) to denote the set [(q, d) | d # A]. For s # S
and T�S we say that T is reachable from s (written s *� T ) if there exists a state
s$ # T such that s *� s$.

For T�S and * # 4, we define pre* (T ) to be the set [s$ | _s # T.s$ w�* s].
Analogously, we define post* (T ) as [s$ | _s # T.s w�* s$]. By pre(T ) ( post(T )) we
mean �* # 4 pre* (T ) (�* # 4 post* (T )). Sometimes we write pre(s) ( post(s)) instead
of pre([s])( post([s])).

A computation from a state s is a sequence of the form s0s1 } } } sn , where s0=s,
si � si+1 , and either n=� (i.e., the sequence is infinite) or there is no state s$ such
that sn � s$.

3. WELL-STRUCTURED SYSTEMS

In this section, we define a class of transition systems which we call well-struc-
tured systems, for which we will present our decidability results. First, we recall the
notion of preorders.

3.1. Preliminaries

A preorder P is a reflexive and transitive (binary) relation on a set D. We say
that P is decidable if there is a procedure which, given a, b # D, decides whether
aPb. The relation P is a well quasi-ordering if there is no infinite sequence a0 , a1 ,
a2 , ..., such that ai P� aj for all i< j. A set M is said to be canonical if a, b # M
implies aP� b. We say that M�A is a minor set of A, if (i) for all a # A there exists
b # M such that bPa and (ii) M is canonical.

A set I�D is an ideal (in D) if a # I, b # D, and aPb imply b # I; i.e., the set I
is upward-closed with respect to the relation P . We define the (upward ) closure of
a set A�D, denoted C(A), as the ideal [b # D | _a # A .aPb], which is generated
by A.

For sets A and B, we say that A#B if C(A)=C(B). Observe that A#B if and
only if for all a # A there is a b # B such that bPa, and vice versa.

Lemma 3.1. If a preorder P is a well quasi-ordering, then for each set A there
exists at least one finite minor set of A.

Proof. Suppose that no finite minor set of A exists. We show that P is not a
well quasi-ordering. We construct an infinite sequence a0 , a1 , a2 , ... of elements in
A as follows. Let a0 be any arbitrary element in A. We choose ai+1 such that
aj P� ai+1 for each j: 0� j�i. The element ai+1 exists, since otherwise we could
easily construct a minor set of the finite set [a0 , a1 , ..., ai] which would also be a
minor set of A, contradicting the assumption that no such sets exist. It is clear that
the sequence a0 , a1 , a2 , ... violates the well quasi-orderedness property. K

Notice that although Lemma 3.1 implies that each minor set is finite, there may
still be infinitely many such minor sets. Also, we observe that if P is a partial
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order, then there exists a unique minor set of A. We use min to denote a function
which, given a set A, returns a minor set of A.

From Lemma 3.1, and the fact that C(min(I ))=I for each ideal I, it follows that
we can use min(I ) as a finite representation of I.

Lemma 3.2. For a preorder P on a set A, P is a well quasi-ordering iff for each
infinite sequence I0 �I1 �I2 � } } } of ideals in A there is a k such that Ik=Ik+1 .

Proof. (only if ) Suppose that we have an infinite sequence I0 /I1 /I2 / } } } . It
follows that there is a sequence a0 , a1 , a2 , ... of elements in A such that for all k�0
we have ak # Ik and ak � I j for each j<k. This means aj P� ak for j<k, otherwise
ak # Ij , since Ij is an ideal. This is a contradiction since the sequence a0 , a1 , a2 , ...
will then violate the well quasi-ordering assumption.

(if ) Suppose that we have an infinite sequence of elements a0 , a1 , a2 , ... in A,
where aj P� ak if j<k. We define an infinite sequence I0 , I1 , I2 , ... of ideals, where
Ik=C([a0 , a1 , ..., ak]). It is clear that I0 /I1 /I2 / } } } . K

In fact, for any sequence I0 , I1 , I2 , ... we can show that there are j and k such
that j<k and Ij=Ik . We use the only if-direction of Lemma 3.2 to prove termina-
tion of some of our verification algorithms.

3.2. Well-Structured Systems

In our framework we require that the set D of data values be equipped with a
decidable preorder P and assume that we are given a minor set of D which we
henceforth call Dmin . We extend the preorder P on D to a decidable preorder P
on the set S of states defined by (q, d) P(q$, d $) if and only if q=q$ and dPd $.

A transition system (S, $) is monotonic (with respect to P ) if for each s1 , s2 ,
s3 # S and * # 4, if s1 Ps2 and s1 w�* s3 , then there exists s4 such that s3 Ps4 and
s2 w�* s4 .

Lemma 3.3. A transition system (S, $) is monotonic iff the set of ideals in S is
closed under the applications of both pre* and pre.

Proof. We show the claim for pre* . The claim for pre follows from the fact that
pre=�* # 4 pre* .

(only if ) Suppose that (S, $) is monotonic. Take any ideal I in S. Suppose that
s1 # pre* (I ) and s1 Ps2 . We show that s2 # pre* (I ). We know that there is s3 # I
such that s1 w�* s3 . By monotonicity it follows that there is s4 such that s3 Ps4 and
s2 w�* s4 . Since I is an ideal, we have s4 # I, and hence s2 # pre* (I ).

(if ) Suppose that (S, $) is not monotonic. It follows that there are states s1 , s2 ,
and s3 , and * # 4 such that s1 Ps2 , s1 w�* s3 , but there is no s4 where s3 Ps4 and
s2 w�* s4 . Define the ideal I=C([s3]). It is clear that s1 # pre* (I ) but s2 � pre* (I ).
This means that pre* (I ) is not an ideal. K

Definition 3.4. A transition system L=(S, $) , assuming a decidable pre-
order P on the set D of data values, is said to be well-structured if
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1. it is monotonic;

2. P is a well quasi-ordering; and

3. for each state s # S and * # 4, the set min( pre* (C([s]))) is computable.

Note that min( pre* (C([s]))) is finite if P is a well quasi-ordering. We define
minpre* (s) as notation for min( pre* (C([s]))). For a set T of states we use
minpre* (T ) to denote �s # T minpre* (s). On the concrete models where we shall
apply our theory (Section 7) the computability of minpre* (s) will be rather obvious
given the explicit syntactic representations of the transition relations.

Comment on the Representation of Ideals. In this paper, we will represent ideals
by minor sets. An alternative (and more general) representation is in terms of con-
straints. We then assume a set 8 of constraints over the domain D of data values.
Each constraint , denotes a subset �,� of D. Given a set 8 of constraints, we can
define a preorder P8 on D by dP8 d $ iff for all constraints , in 8 we have that
d # �,� implies d $ # �,�. We observe that the constraint representation is at least as
general as the approach we use here, where we start by a preorder: an arbitrary
preorder P can be obtained as the preorder P8 by letting 8 be the set which for
each d0 # D contains a constraint that denotes the set [d # D | d0 Pd].

Instead of using finite minor sets to represent ideals, we can use finite sets of con-
straints. A set of constraints denotes the union of the denotations of its elements
(recall that each constraint denotes a set). In some cases (e.g., for real-time
automat) such a representation is more convenient, since a constraint sometime
represents a large minor set.

3.3. Composition

For labeled transition systems L1=(S1 , $1) and L2=(S2 , $2) , we define the
composition L1 & L2 of L1 and L2 to be the transition system (S, $), where

v S=S1_S2 .

v (s1 , s2) w�* (s$1 , s$2) iff s1 w�* s$1 and s2 w�* s$2 .

Our definition of composition is the standard one taken from process algebras
such as CSP or LOTOS.

Theorem 3.5. For well structured systems L1 and L2 , the composition L1 &L2 is
well structured.

Proof. Let L1=(S1 , $1) and L2=(S2 , $2). Let P1 and P2 be the respective
preorders defined on S1 and S2 . Define the preorder P for L by (s1 , s2) P
(s$1 , s$2) whenever both s1 P1 s$1 and s2 P1s$2 . Monotonicity and computability of
minpre follow directly from their definitions. To prove the well quasi-ordering
property of P , consider an infinite sequence of state pairs (s0 , s$0) , (s1 , s$1) ,
(s2 , s$2) , ..., where s i # S1 and s$i # S2 . It follows from the well quasi-ordering of P1

that there is an infinite increasing sequence i0 , i1 , i2 , ..., such that sij
P1 sik

whenever
ij�ik . Since P2 is also a well quasi-ordering we conclude that there are j and k,
where j<k and s$ij

P2 s$ik
. This means that (sij

, s$ij) P(sik
, s$ik). K
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4. CONTROL STATE REACHABILITY

In this section we describe an algorithm to solve the control state reachability
problem for well structured transition systems. More precisely, given a state s and
a control state q, we want to check whether (q, D) is reachable from s. Our algo-
rithm actually solves the more general problem of deciding whether an ideal I is
reachable from a given state s. Since (q, D) is an ideal, the control state
reachability problem is a special case of the reachability problem for ideals.

To check the reachability of an ideal I, we perform a reachability analysis back-
wards. Starting from I we define the sequence I0 , I1 , I2 , ... of sets by I0=I and
Ij+1=I _ pre(Ij). Intuitively, Ij denotes the set of states from which I is reachable
in at most j steps. Thus, if we define pre*(I ) to be �j�0 Ij , then I is reachable forms
s if and only if s # pre*(I ). Notice that pre*(I ) is the least fixpoint +X. I _ pre(X).
By Lemma 3.3 each I j is an ideal in S. We know that I0 �I1 �I2 � } } } , and hence
from Lemma 3.2 it follows that there is a k such that Ik=Ik+1 . It can easily be seen
that Il=Ik for all l�k, implying that pre*(I )=Ik .

Our method for deciding whether I is reachable is based on generating the above
sequence I0 , I1 , I2 , ... of ideals and checking for convergence. This cannot be carried
out directly since Ij is an infinite set. Instead, we represent each Ij by a canonical
set Mj=min(Ij). By Lemma 3.1 each minor set Mj is finite. It is straightforward to
show that Mj+1 #min(min(I ) _ minpre(Mj)), which is computable as

Mj+1=min \min(I ) _ .
s # Mj

min( pre(C([s])))+
since, by the definition of well-structured transition systems, each set
min( pre(C([s]))) is computable, and the union is taken over a finite set of sets.

From the above discussion we conclude that if we define minpre*(M0) to be
�j�0 Mj , then there is a k such that Mk+1 #Mk , and minpre*(M0)#Mk . This
implies that minpre*(M) is computable for any minor set M of I and in fact
C(minpre*(M))= pre*(I ).

Theorem 4.1. The control state reachability problem is decidable for well-struc-
tured systems.

Proof. Given a state s and a control state q we compute minpre*((q, Dmin) ).
We then check whether there is an s$ # minpre*((q, Dmin) ) such that s$Ps. K

Abstract Interpretation. The above analysis algorithm can also be phrased in
terms of abstract interpretation [CC77, JN94]. We intend to compute the fixpoint
+X .I _ pre(X) for a set I�S by iteration. Instead of computing this fixpoint in the
lattice (2S, �) of sets of states, we move to the abstract lattice (M, C=) , where
M is the set of canonical subsets of S, and where M C=M$ if C(M)�C(M$). The
correspondence between the concrete lattice (2S, �) and the abstract lattice
(M, C=) is expressed by a pair (:, #) of functions as follows.

v :: 2S [ M, defined by :(T )=min(T ), maps each set of states in the
concrete lattice to its abstract representation.
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v #: M [ 2S, defined by #(M)=C(M), recovers the concrete meaning of an
element in the abstract lattice.

The pair (:, #) forms a Galois insertion2 of (M, C= ) into (2S, �) .
Our algorithm for deciding reachability can be seen as computing the fixpoint

+X .min(I ) ? minpre(X) in the lattice (M, C=) , where M1 ? M2=min(M1 _ M2).
The monotonicity of the transition relation ensures that this computation
corresponds exactly to the computation +X .I _ pre(X) in (2S, �) if I is an ideal
in S. Exactness follows from the identity

pre(#(M))=#(minpre(M))

for all M # M and ensures that if the fixpoint computation converges to Mk , then
#(Mk) is the least fixpoint of +X .I _ pre(X) in (2S, �). Finally, well quasi-
orderedness of P implies that all ascending chains in (M, C=) are finite, thus
guaranteeing convergence of any least fixpoint computation.

5. EVENTUALITY PROPERTIES

In this section we describe an algorithm for deciding whether each computation
starting from an initial state eventually reaches a certain control state satisfying a
predicate p over control states. In CTL, these properties are of the form AFp. We
present an algorithm for the dual property EGp from which an algorithm for AFp
can easily be derived using the correspondence AFp#cEGcp. The property EGp
is true in a state s0 iff there is a computation from s0 in which all states have a con-
trol part that satisfies p. Our algorithm will actually solve the more general problem
of whether s0 satisfies a property of the form EGI for an ideal I. We write this
property as s0<EGI.

The algorithm essentially builds a tree of reachable states, starting from the initial
state and successively exploring the successors of each state in the tree. We must
then consider the possibility that post(s) is infinite for some states s (i.e., the tran-
sition relation is not finite branching). To overcome this difficulty, we say that a
transition system is essentially finite branching if for each state s we can effectively
compute a finite subset of post(s), denoted maxpost(s), such that for each state
s$ # post(s) there is a state s" # maxpost(s) with s$Ps". If post(s) is finite, then
maxpost(s) can be taken as post(s). In the cases where post(s) in infinite (as can be
the case, e.g., for real-time automata), the subset maxpost(s) can fully represent the
set post(s) for the purposes of this algorithm.

In the algorithm, we build a tree labeled by properties of the form s<EGI. The
root node is labeled by s0<EGI. A node labeled by s<EGI is a leaf if either
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1. s � I, in which case, the node is considered unsuccessful, or

2. the node has an ancestor labeled s$<EGI for some s$ with s$Ps, in which
case, the node is considered successful, or

3. s # I and post(s) is empty, in which case, the node is considered successful.

From a non-leaf node labeled s<EGI we create a child labeled s$<EGI for each
state s$ # maxpost(s). The algorithm answers ``yes'' if a successful node is encoun-
tered; otherwise it answers ``no.''

The correctness of the algorithm follows from the fact that when a successful
node is encountered according to criterion 2, we can, by monotonicity, construct an
infinite path where all states are in I by continuing from the ancestor node. Com-
pleteness follows by the observation that the possibly unexplored successors of a
state (i.e., those in maxpost(s) but not in post(s) for some s) can be satisfactorily
represented by ``larger'' states (with respect to P ) in maxpost(s). The construction
of the tree terminates by Ko� nig's lemma, since the tree is finite branching and all
branches are finite (this follows from well quasi-orderedness). We have thus proved
the following theorem:

Theorem 5.1. The eventuality problem for control states is decidable for
well-structured and essentially finite branching systems.

In [Fin90] an algorithm is presented to check whether the reachability tree of
a well-structured system is finite. The algorithm can be seen as a variant of our
algorithm to check eventuality properties as follows. We take I to be the set S of
all states. A node labeled by s<EGS is a leaf if either

v the node has an ancestor labeled s$<EGS for some s$ with s$Ps. In this
case, the node is considered successful, or

v post(s) is empty. In this case, the node is considered unsuccessful.

The reachability tree is finite iff no successful nodes are encountered.

6. SIMULATIONS BETWEEN INFINITE SYSTEMS AND FINITE SYSTEMS

In this section we consider the problem of whether a well-structured system is
simulated by a finite transition system. A transition system is said to be finite if it
has a finite set of states. In our algorithms we assume that a finite transition system
is described by finite sets representing states and transitions.

Definition 6.1. Given two transition systems L1=(S1 , $1) and L2=
(S2 , $2) , we say that a relation R�S1_S2 is a simulation (of L1 by L2) if for
each (s1 , s2) # R, s$1 # S1 , and * # 4, if s1 w�* s$1 , then there exists s$2 # S2 such that
s2 w�* s$2 and (s$1 , s$2) # R.

Simulating an Infinite System by a Finite System. For s1 # S1 and s2 # S2 , we say
that s1 is simulated by s2 , denoted s1 C=s2 , if there is a simulation R of L1 by L2

such that (s1 , s2) # R.
A transition system is said to be intersection effective if min(C(s1) & C(s2)) is

computable for any states s1 and s2 .
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Theorem 6.2. For a state s in an intersection effective well-structured transition
system and a state q in a finite transition system, it is decidable whether s C=q.

Proof. The idea is to calculate the set of pairs (s, q) of states such that s C=3 q.
We observe that for each q, the set [s | s�3 q] is an ideal. This allows us to compute
the set by a fixpoint iteration analogous to that used for the reachability problem.
For each state q of the finite transition system, we define a sequence I q

0 , I q
1 , I q

2 , ...,
where I q

0=<, and s # I q
j+1 if and only if either

v s # I q
j or

v there are * and s$ such that s w�* s$ and for all q$ if q w�* q$, then s$ # I q$
j .

Intuitively, I q
j denotes the set of states (in the infinite transition system), which

s can simulate at most j&1 steps. It is clear that I q
j is an ideal and that I q

0 �I q
1 �

I q
2 � } } } . By Lemma 3.2 it follows that there is a k such that I q

k+1=I q
k for all q, and

s C=3 q iff s # I q
k .

We represent I q
j by the canonical set M q

j =min(I q
j ), where M q

0=<, and

M q
j+1=.

*

minpre* \ ,
q$ # post*(q)

M q$
j + .

Note that Mq
j+1 can be computed from M q

j for intersection effective well-structured
transition systems. We iterate until we reach a k such that M q

k+1 #M q
k . To decide

whether s C=q we check if _s$Ps such that s$ # M q
k . K

Weak Simulation. The result of Theorem 6.2 can be generalized to the case of
weak simulation as follows. We assume that the set of labels is extended by the
silent event {. Let (S, $) be a transition system. For s1 , s2 # S and *{{, we let
s1 =O

* s2 denote that s2 is reachable from s1 through a finite number of {-tran-
sitions, followed by a *-transition, followed by a finite number of {-transitions.
For T�S and *{{, we define pre* (T ) to be he set [s$ | _s # T.s$ =O

* s]. Analo-
gously, we define post* (T ) as [s$ | _s # T.s =O

* s$]. We let minpre* (T ) denote
min(pre* (C(T ))). From the discussion in Section 4, we conclude that minpre* ([s])
is computable for each s # S.

The definition of simulation can be generalized to weak simulation by replacing
the relation w� by =O .

Theorem 6.3. For a state s in an intersection effective well-structured transition
system and a state q in a finite transition system, it is decidable whether s is weakly
simulated by q.

Proof. We modify the algorithm in the proof of Theorem 6.2 and define

Mq
j+1=.

*

minpre* \ .
q$ # post*(q)

M q$
j + . K

Simulating a Finite System by an Infinite System. We consider the problem of
whether a finite transition system is simulated by a well-structured system. We
present an algorithm which assumes that the well-structured system is essentially
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finite branching. For a state s and label *, define the set maxpost* (s) analogously
to the definition of maxpost(s). To determine whether q0 C=s0 , we construct an
and�or tree as follows. The root is labeled by q0 C=s0 . A node labeled by q C=s is
an and-node. Such a node is a leaf if either

v post(q) is empty, or

v it has an ancestor labeled q C=s$ for some s$ with sPs$.

Every non-leaf and-node, with a label q C=s, has a descendant labeled q$<< * s,
for each q$ # post* (q). A node labeled by q$<< * s is an or-node. Such a node is a
leaf if post* (s) is empty. Every non-leaf or-node, with a label q$<< * s, has a descen-
dant labeled q$ C=s$, for each s$ # maxpost* (s).

By arguments similar to those used in the eventuality algorithm, the and�or tree
is always finite, and q0 C=s0 if and only if the root in the and�or tree generated from
q0 C=s0 evaluates to true (where or-node are leaves that evaluate to false, and-nodes
are leaves that evaluate to true). We have thus proved the following theorem:

Theorem 6.4. The problem of whether q0 C=s0 , for a state q0 of a finite-state
system and a state s0 of a well-structured and essentially finite branching system, is
decidable.

7. EXAMPLE MODELS

In this section we give four examples of computation models, namely, lossy
channel systems, vector addition systems with states (a model equivalent to Petri
nets), relational automata, and timed automata. For each model, we describe how it
can be viewed as an infinite-state transition system and show that it is equipped with
a preorder such that it satisfies the conditions in Section 3 for being well structured.
The set S of states of each model is formed by the Cartesian product of a finite set
Q of control states and an infinite set D of data values. The set $ of transitions is
derived from a finite set Cmd of commands, where a command corresponds to an
atomic event involving a change of state while performing an observable interaction
(represented by an element in the set 4 of labels) with the environment.

7.1. Lossy Channel Systems

Lossy channel systems (LCSs) [AJ93] are systems of finite-state processes that
communicate messages from a finite alphabet M over a finite set C of unreliable,
unbounded FIFO channels. The channels are unreliable in the sense that they may
lose messages at any time. The set Q of control states of an LCS is typically the
Cartesian product of the control states of the finite-state processes in the system.
LCSs have been used to model and verify data transfer protocols (e.g., sliding
window protocols) that are designed to tolerate message losses in channels [BZ83,
Boc78].

A command in Cmd is a quadruple of the form (q, op, *, q$) , where q, q$ # Q,
* # 4, and op is an operation of one of the forms
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v c ! m: sends m # M to c # C (appends m to the end of c).

v c? m: receives m # M from c # C (removes c from the head of c). This opera-
tion may be performed only if m is in the head of c.

v skip: is the empty operation (which does not change the channel contents).

The data domain D of an LCS is the set of mappings C [ M*. For strings x,
y # M*, we use x vy to denote the concatenation of x and y. For d # D, we use
d[c :=x] to denote d $, where d $(c)=x, and d $(c$)=d(c$), for c${c.

The preorder P on D (which is also a partial order) is given by d1 Pd2 iff for
each channel c, the string d1 (c) is a (not necessarily contiguous) substring of d2 (c).
Now we show that LCSs are well-structured systems.

Let d be any data value. A command of form (q, c ! m, *, q$) gives rise to the set
of transitions of form (q, d) w�* (q$, d[c :=d(c) vm]). A command of form
(q, c? m, *, q$) gives rise to the set of transitions of form (q, d[c :=m vd(c)]) w�*

(q$, d). A command of form (q, skip, *, q$) gives rise to the set of transitions of
form (q, d) w�* (q$, d). Also, if (q, d) w�* (q$, d $) is a (non-lossy) transition
obtained from a command in one of the ways just described, than a lossy transition
of the form (q, d1) w�* (q$, d $1) may be performed for any d1 pd and any d $1 Pd $.
Intuitively, the messages in d1 but not in d are unobservably lost immediately
before the non-lossy transition and those in d $ but not in d $1 are lost after the non-
lossy transition.

v Monotonicity: follows from the existence of lossy transitions, implying that
a state may lose any number of messages transforming to a smaller state and then
may perform all the transitions of the smaller state.

v Well quasi-orderedness: holds by a beautiful result which states that the sub-
string relation among strings over a finite alphabet is a well quasi-ordering
[Hig52].

v Computability of minpre* : the set minpre* ((q, d) ) is defined to be min(T ),
where T is the smallest set containing the following states:

�� (q$, d $) , if (q$, c ! m, *, q) # Cmd and d=d $[c :=d $(c) vm].

�� (q$, d $) , if (q$, c ! m, *, q) # Cmd, d=d $ and the last element of d(c) is
not equal to m.

�� (q$, d $) , if (q$, c ! m, *, q) # Cmd, d=d $ and d(c) is equal to the empty
string.

�� (q$, d $) , if (q$, c? m, *, q) # Cmd and d $=d[c :=m vd(c)].

�� (q$, d $) , if (q$, skip, *, q) # Cmd and d=d $.

Intersection effectiveness and essentially finite branching are obvious.
The decidability of control state reachability and eventuality properties is shown

in [AJ93], while the decidability of simulation with finite transition systems in both
directions is shown in [AK95].
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7.2. Vector Addition Systems with States (Petri Nets)

A vector addition system with states (VASS) models a finite-state machine operat-
ing on a finite number of variables which range over the natural numbers.

In a VASS, the data domain D is the set of k-dimensional vectors N=(n1 , n2 , ...,
nk) , where each ni is a natural number. We use N[i] to denote n i . We apply addi-
tion, subtraction, and relational operators pointwise on k-dimensional vectors. We
let 0� denote the vector which is constantly 0. The preorder (in fact partial order)
P on D is defined as N1 PN2 iff N1[i]�N2[i], for each i: 1�i�k.

A command in Cmd is of the form (q, N1 , N2 , *, q$) , where q, q$ # Q, * # 4, and
N1 , N2 are k-dimensional vectors. The set $ then contains all transitions of form
(q, N3) w�* (q$, N3&N1+N2) such that (q, N1 , N2 , *, q$) is a command and
0� �N3&N1 .

For a VASS, monotonicity, intersection effectiveness, and essentially finite
branching are obvious. Well quasi-orderedness is a special case of that for lossy
channel systems. The set minpre* ((q, d) ) is defined to be min(T ), where T is the
set of elements of the form (q$, N$) such that (q$, N1 , N2 , *, q) # Cmd and
N$[i]=max(0, N[i]&N2[i]+N1[i]) for each 1�i�k.

Control state reachability (often called coverability in the Petri net literature)
and eventuality properties for VASS can also be decided by the Karp�Miller algo-
rithm [Km69]. The control state reachability algorithm we present in this paper
performs backwards reachability analysis and can be considered as an alternative
to the Karp�Miller algorithm which uses forward reachability analysis. The
decidability of simulation with finite transition systems in both directions is shown
by Janc� ar and Moller [JM95].

7.3. Real-Time Automata

The data domain of a real-time automaton consists of the set of mappings from
a finite set X of clocks to the set of nonnegative real numbers. Real-time automata
have in recent years become important for modeling and analysis of time-dependent
systems. The exact definitions of real-time automata vary slightly. Here we give
a typical presentation. A command in Cmd is of the form (q, :, *, q$), where
q, q$ # Q, * # 4, and : is a guarded command of form g � stmt in which

v the guard g is a Boolean combination of inequalities of the form xtn,
where x # X, n is an integer, and t is one of the relations �, �, < or >.

v the body stmt for each x # X contains an assignment of one of the forms
x :=x or x :=0.

Each command (q, (g � stmt), *, q$) gives rise to the set of transitions of the
form (q, d) w�* (q, d $), where the values of clocks in d satisfy g, and where the
value of x in d $ is obtained by performing the assignments in stmt. Also, if
(q, d) w�* (q$, d $) is a transition obtained from a command in one of the ways
just described, then a transition of the form (q, d1) w�* (q$, d $1) may be performed
for any d1 and d $1 such that d1 is obtained from d by letting all clocks advance the
same (positive real-valued) amount, and d $1 is analogously obtained from d $.
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As the preorder P we take the equivalence relation on clock states, introduced
in [ACD90]. This is the largest equivalence induced by predicates of the form
xtn, or of the form x1�n 7 x2�n 7 x1&x2 tn for clocks x, x1 , and x2 , a rela-
tion t # [�, �, <, >], and a nonnegative integer n which is at most equal to
the largest constant that occurs syntactically in commands.

It can be shown that P is an equivalence, which is also a bisimulation, and
hence the transition system is monotonic. The system is well quasi-ordered since
there are finitely many equivalence classes. The computation rules for minpre* ,
intersection effectiveness, and the essentially finite branching property are also
rather straightforward.

7.4. Relational Automata

A relational automaton (RA) is a computing device which besides having a finite
control structure possesses a finite number of data variables, each one taking its
value from some (possibly infinite) ordered domain. The operations that the
automaton can perform on the data variables are comparison and assignment. The
ordering of the data values stored into the variables during runtime may influence
the control flow of the automaton.

A rational relation automaton (QRA) has a finite set X of data variables that
assume values in the set Q of rational numbers. A command in Cmd is a quadruple
of the form (q, :, *, q$) , where q, q$ # Q, * # 4, and : is a guarded command of
form g � stmt in which

v the guard g is a Boolean combination of inequalities of form x< y, x<c,
and c< y for x, y # X and c # Q, and where

v the body stmt contains, for each x # X, an assignment of one of the forms
x :=y, x :=c, or x :=[?] for y # X and c # Q.

Given a QRA P, we let Cons(P) be the set of all constants that occur syntacti-
cally in the command of P (clearly, there are only a finite number of those). The
set D of data values is the set X [ Q of possible combinations of values of the data
variables. For c # Q, we use the convention that d(c)=c for any data value d. Each
command (q, (g � stmt), *, q$) gives rise to the set of transitions of form
(q, d) w�* (q$, d $) , where the values of variables in d satisfy g, and where the value
of x in d $ is equal to

v d( y) if stmt contains x :=y, for y # X _ Cons(P).

v any element of Q if stmt contains x :=[?].

We say that two data values d1 , d2 # (Q [ Q) are equivalent if for all x, y in
(X _ Cons(P)) we have d1 (x)�d1 ( y) iff d2 (x)�d2 ( y). In other words, two data
values are equivalent if the relative ordering between the data variables and con-
stants of the program is the same. It turns out that when P is token to be this
equivalence on D, each QRA becomes a well-structured system. The equivalence P
has a finite number of equivalence classes.

We also consider the variation of relational automata, called integral relational
automata (IRA), obtained by replacing the data domain by the set of integers. In
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the case of IRAs, the situation is slightly more complicated, due to the fact that the
ordering on the set of integers is not dense. For IRAs there is no equivalence
relation which can be taken as P (see [C8 er94]).

We say that a data value d2 # (X [ I ) is sparser than a data value d1 # (X [ I ),
denoted d1 Pd2 , if for all x, y in (X _ Cons(P)) we have that d1 (x)�d1 ( y) implies
d1 ( y)&d1 (x)�d2 ( y)&d2 (x). For instance, if Cons(P)=[0, 1, 2], then the data
vector (2, 10, 12, 1997) is sparser than (2, 4, 6, 1000) , but not sparser than
(1, 10, 12, 1997) since the value of the first variable is no longer equal to the con-
stant 2, and not sparser than (2, 4, 7, 17) since 7&4>12&10. If Cons(P){<,
then the sparser than relation is a partial order. If Cons(P)=<, then the relation
is a preorder, but neither an equivalence nor a partial order. We note that if
d1 Pd2 , we can define a strictly monotone mapping \: I [ I such that

v \(d1 (x))=d2 (x) for all x # (X _ Cons(P)), and

v a�b implies b&a�\(b)&\(a) for all a, b # I.

We call such a mapping \ a sparsifier.
We now show that P meets the requirements for well-structured systems.

v Monotonicity: Suppose that (q, d1) w�* (q$, d $1) and d1 Pd2 . We show
that there exists d $2=d $1 Pd $2 such that (q, d2) w�* (q$, d $2) . We know that there
is a tuple (q, g � stmt, *, q$) # Cmd, where d1 satisfies g and d $1 is derived from d1

according to stmt. Since d1 Pd2 there is a sparsifier \ which satisfies the conditions
above. For any x # X we let d $2 (x)=\(d $1 (x)). It follows that (q, d2) w�* (q$, d $2)
and d $1 Pd $2 .

v Well quasi-orderedness: Consider an infinite sequence d0 , d1 , d2 , ... of data
values. We observe that there is an infinite increasing sequence i0 , i1 , i2 , ... such that
the variables and constants have the same relative ordering in each dij

. In other
words, dij

(x)�dij
( y) iff dik

(x)�d ik
( y) for each j, k�0 and x, y # X _ Cons(P). This

implies that dij
Pdik

iff |dij
(x)&d ij

( y)|�|d ik
(x)&dik

( y)| for all x, y # X _ Cons(P).
Since |dij

(x)&dij
( y)| is a natural number, the result follows as a special case of

Dickson's lemma [Dic13], which states that for any n, the � ordering on n-tuples
of natural numbers is a well quasi-ordering.

v Computability of minpre* : We define minpre* ([(q, d)]) to be min(T ),
where T is the smallest set with elements satisfying the following properties. Let
(q$, g � stmt, *, q) # Cmd. Let [X1 , X2] be a partitioning of X such that x # X1 iff
x appears in the right hand side of an assignment operation in stmt. Let k be the
number of elements in X2 . We say that a data element d0 is k-close to d iff dPd0

and |d0 (x)&d0 ( y)|&|d(x)&d( y)|�k and |d0 (x)&d(x)|�k for all x,
y # X _ Cons(P). It is clear that for any d the set of k-close d0 is finite.

The set T contains each element (q$, d $) such that d $ satisfies g and for some d0

which is k-close to d:

v if y :=x occurs in stmt, then d $(x)=d0 ( y), and

v if x # X2 , then d $(x) # [dmin&k, ..., dmax+k], where dmin and dmax are the
minimal and maximal values of d $( y) for y # X1 _ Cons(P).
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Intersection effectiveness of IRA is straightforward; however, IRAs are not
necessarily essentially finite branching due to the presence of random assignment.

The decidability of control state reachability for IRA is shown in [BBK74,
BBK77]. A detailed study of checking properties of IRA, which includes the
decidability of eventuality properties, can be found in [C8 er94]. The decidability of
simulation of an IRA by a finite transition system has not been published before.

8. CONCLUSIONS AND COMMENTS

We provide a unified approach to algorithmic verification of several classes of
infinite-state systems. Our method generalizes verification methods based on finite
partitioning in the sense that (i) we consider a well quasi-ordered state space
instead of a finitely partitioned one, and (ii) we consider states which are related
through simulation instead of bisimulation. We are able to explain and derive
several seemingly diverse algorithms for verification of different classes of infinite-
state systems in a uniform manner. We aim to extend the applicability of our results
to derive novel algorithms for verification of new classes of infinite-state states such
as parametrized networks of processes and programs with multi-sorted domains.

Although we show decidability of reachability, and hence several classes of safety
properties, model checking of, e.g., CTL or PTL formulas is in general undecidable
for our class of systems. For example, we show in [AJ96] the undecidability of
both these logics for lossy channel systems. Also, there are several computation
models, such as basic process algebras [BK85, CHS92] and push-down automata,
which have been considered in the literature of infinite-state systems, and which
cannot be described within our framework. In the paper we do not offer any com-
plexity analysis of our algorithms. However, the application of the reachability
algorithm is feasible for, e.g., lossy channel systems [Kin93]. For example, the
verification of a sliding window protocol with more than 10.000 control states and
two (unbounded) lossy channels is carried out in a few seconds.
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